Message
Oriented
Middleware

XIPC

Version 3

Scalable Message Oriented Middleware for
Distributed Computing

MomS3ys

User Guide

Copyright © 2001 Envoy Technologies Inc. All rights reserved

This document and the software supplied with this document are the property of

Envoy Technologies Inc. and are furnished under a licensing agreement. Neither the software
nor this document may be copied or transferred by any means, electronic or mechanical,
except as provided in the licensing agreement. The information in this document is subject

to change without prior notice and does not represent a commitment by

Envoy Technologies Inc. or it's representatives.

Printed in United States of America

Envoy Technologies, Envoy XIPC, XIPC are either tradmarks or registered trademarks of
Envoy Technologies Inc. Other product and company names mentioned herein might be the
trademarks of their respective owners.

1.

2.
21
211
2.2
221
2.3
231
232
233
24
2.5

3.1

3.2

321
322
323
324

3.3

4.1

411
412
413
4.1.4
415

X4IPC VERSION 3.3.0

MomSys USER GUIDE

Table of Contents

INTRODUGCTION. ...t tett ettt ettt e e ettt e e e e et s e e e e at s e e e ett s e e e eatn s eeeeatnaeaaens 1-1
MOMSYS ARCHITECTURE AND PROGRAMMING MODELccccevvvviiiieaes 2-1
THe “30,000 FOOT” VIBW ..ceeeeeeeeeee ettt e e e e e e e ee e e e e e e e ennnn 2-1
XHPC NAMESPAGCEcooureeeeeessssseeeeessssessessessss s sess s 2-1
The “20,000 FOOL” VIEBW ...ouviiiiiiiieiie ettt 2-2
“LOCAL INSTANCES”.....ootereeeesssseeeesesssssesessssss s sesss st 2-2
The “10,000 FOOL” VIBW ...cueiiiiiiiiieiie sttt 2-3
XHPC CATALOG SERVERSooourreeeutimmeeeessssssesssesssssssssssssss s sssssss s sssssss s ssssssssssssssssssseeees 2-3
MESSAGE REPOSITORY ...oouuviuimmietsimesessisessssssesssssssssssssssssssesssnees 2-3
COMMUNICATION MANAGERcoooureeemmeeesseeeesssssessssesessssesesssssssssssessssssasssssssssssssssssesssssssssess 2-4
The Reliable Messaging Programming Modelcccccooiiiiiiiiiiiiniiieee 2-5
MOMSYS TeIrMINOIOQY....cciiiiiieiiiieiie e 2-5
BUILDING A SIMPLE MOMSYS APPLICATION ..ot 3-1
The ENVIFONMENT ...eiiiiiiiiie et 3-1
Programming STEPScuuiiiiiieiiiie ettt 3-1
SENDER PSEUDO-CODE.........ciietieeeesmneessseeessssssssssssssssssssssssssssssssssessssssssssssssssssssssssssssssssssess 3-1
RECEIVER PSEUDO-CODEciireeeesmeeeeesssseseeessessssssessssssssesssssssssssssssssssssssssssssssssssssssesssn 3-1
SENDER PROGRAMcooumireeeismieeeseessssessessssssssaseessesssss s sssss s ssssssss s sssss s ssssssssesssesssn 3-2
RECEIVER PROGRAM.......coessirivevttineeseesss s sssssssssesssssssss 3-3
SUMIMIAIY. ettt e e e e e e e e e e s s e e et e e e e s s aannb b e e e e e e e e e s e sannnrrreeeeeens 3-3
BASIC MOMSYS PROGRAMMING FUNCTIONALITY .ovriiiiieeireeeiee e 4-1
Creating an APP-QUEUEoeeiiiiiee ettt e e s rrree e e e s 4-1
WHAT IS AN APP-QUEUE? ..oovrvveeemeeeeessssessesssssssseesssssss s ssssssssssessssssssesssssssssssessssssssssssssssens 4-1
BASIC APP-QUEUE ATTRIBUTESrivutureeesseeeessessssssesssssssessnnees 4-1
THE MOMCREATE() FUNCTIONcocootumeeeeessssseeesesssseseessssssssssssssssssssessssssssssesssssssssssssssssssnseeees 4-2
PREDEFINED MOM_ATTRBLOCK_APPQUEUE BLOCKSoovvvrviuiereeessssseesssssssseessesssns 4-2
EXAMPLES OF CREATING AN APP-QUEUE...........imriieereesnneeesssseessssessssssesssssssssssssssssssnnees 4-2

Date: 9/20/2001 - Revision: 9

416
4.2

421
422
423
4.2.4
4.3

431
432
433
4.4

4.4.1
442
4.5

451
452
4.6

461
462
463
4.6.4

5.1
5.2
5.2.1
5.3
5.4
5.4.1
5.5
5.5.1
5.5.2
5.6
5.6.1
5.6.2
5.7

571
57.2

X+IPC Version 3.3.0: MomSys User Guide

RELOCATING APP-QUEUESoomeirieeeeumeeeeasssessesssesss s ssssssss 4-4
Accessing an App-Queue - MOMACCESS()...vveerureerieieiiieeriieesieeesireesnieee s 4-5
LOCAL APP-QUEUE NAME S........coirereeusmmeeeeeesssesseessessssseesssssssesssssssssssssssssssssessssssssssssesssessssns 4-6
REMOTE APP-QUEUE NAMESorrrieutmmreeeesssseeessessssssesssssssssesssssssssssssssssssssssssssssssssesssssssnns 4-6
VIRTUAL AQID HANDLESoouiivitmimereeessssssessssssssssesssssssssssssssssssss st ssssssssssssssssssssssssesnos 4-6
AQID SEMANTICS ...oooootummereeeessseeeseesssssseesessssss s sssssss s ssss st 4-7
MomDeaccess(AQid); Message Sending - MomSend()........ccoeveeriveeennnen. 4-8
OPTIONAL ARGUMENTS TO MOMSEND()......ccouummeeeeeessmmeeeeessssseessessssssesssssssssssssssssssssesssesssns 4-9
BLOCKING OPTIONS......ooccuuueeeeesssaeeeseessssseesssssssaseesssssssssssssssssses s ssssss s sssssss s sssssssssessssssssns 4-9
OPTIONAL FLAGS TO MOMSEND() .vvcvevuuuerereessssseeesesssssssesssnnans 4-10
Message Receiving - MOMRECEIVE()....ccuueeeiiiieie e 4-11
MESSAGE SELECTIONoouummiiveeummmeeseessssssessssssssssessssssssssesssessssssssnnns 4-12
OPTIONAL FLAGS TO MOMRECEIVE() «..ucvvvveeuuseeeeeessseseeeeessssssseesssssssssesssssssssssssssssssssesssessssn 4-13
MESSAGE TraCKING ...eeeiiiieiiiie ittt 4-14
MESSAGE STATUS VALUES.......cooirreeeemmeeeesesssssseesssesssssseessesssesssn 4-15
MESSAGE TRACKING LEVELSuiriviitimeeeesssssessssesssssssessesssssssssssssss s ssssssssssssssssssssssssssssnns 4-15
Client/Server INTeractioN ... 4-16
REQUEST-RESPONSE PROGRAMMING STEPSccommrrreitmnressessssessssssssssssssssssesssesssns 4-16
CLIENT-SIDE PROGRAMMING EXAMPLE........osssirreeeermnneeeeesssnenssesssssssessssssssssessssssssssessssssss 4-16
SERVER-SIDE PROGRAMMING EXAMPLE.........irrveeeeumneeeeeessssssnesessssssessssssssessessssssssssesssesssns 4-18
REQUEST-RESPONSE CORRELATIONccviuuumrreeissmmneesesssssssssssssssssesssssssssssssssssssesssesssnns 4-19
BASIC MOMSYS CONFIGURATION AND ADMINISTRATIONccccoevvviiiinneees 5-1
The X¢IPC Platform ENVIFONMENToocviiiiiiiiee e 5-1
Establishing a NameSpPaCecoooviiiiiiiiiiiie e 5-1
NAMESPACE CONFIGURATIONcrvveuuummeeeeessssseeessessssseeessssssessssssssssassessssssssssssssssssssssssesssnnns 5-1
X¢IPC Instance Namespace Affiliation..........cccoiiiiieiniceeeee e 5-4
X¢IPC Configuration: A Client/Server EXamplecccccoviiiiiniieniiieee 5-4
AN XHPC SOLUTION .ccovtoireeeesssameeseessssseeesessssses s sesssss s sssesss s essss st esss s ssssennns 5-5
Platform Configuration Parametersccoocveiiiiiniee e 5-6
GENERAL CATALOG PARAMETERSorrveeummeeesessssessessessssssssssssssssssesssssssssssssssssssssssssesssn 5-7
PROTOCOL-SPECIFIC CATALOG PARAMETERS........osirrrreetmmnnreseessneeessssssssesssssssssesssesssns 5-7
Platform Utility COMMAaNAScooiiiiiiiiiiiiee e 5-8
PLATFORM STARTUP = XIPCINIT....cioveetumeeeeesssseesssessssssesssnnns 5-8
PLATFORM SHUTDOWN = XIPCTERM.....crveoermmeeeeesssseeesssssssssssssssssssssssssssssssssssssssesssssssss 5-8
MomSys Subsystem - Instance Configuration Parameters............c.c........ 5-8
GENERAL XUPC PARAMETERSooooioooeseoeesesooeesssseesssseesssseesssseesssseesssseesssssees oo 5-9
GENERAL MOMSYS PARAMETERScoourreeeusmneeesessssssseessesssesssnns 5-9

Date: 9/20/2001 - Revision: 9

5.7.3
5.7.4
5.7.5
5.8
5.8.1
5.8.2
5.9
5.9.1
5.10
5.10.1
5.10.2
5.10.3
5.10.4
5.10.5
5.10.6
5.10.7
5.10.8
5.10.9
5.10.10

6.
6.1
6.1.1
6.1.2
6.2
6.2.1
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.35
6.4

6.4.1
6.4.2

7.
7.1

7.2

MESSAGE REPOSITORY PARAMETERS.........ccosmmrreieummeeeessssnssssssssssessssssssssessssssssssesssssssss 5-10
COMMUNICATION MANAGER PARAMETERS..........cccreeeessineeseessssssesssssssssssssssssssssesssessss 5-12
PROTOCOL SPECIFIC PARAMETERSciviutmeeesessssseeesesssesssnns 5-12
Instance Utility COMMaNdSueeiiiiiiiiiiieeeee e 5-12
INSTANCE STARTUP = XIPCSTART w..coooutmrreeissmmsesssessssssesssesssnns 5-13
INSTANCE SHUTDOWN = XIPCSTOP......oomreeeermeeeeessssneeesessssessssssssssssesssssssssssssssssssssesssssssss 5-13
Interactive Command Interpreter - “Xi PC>" ...oocvciviiiiiiienniie e 5-14
SAMPLE USAGE OF MOMSYS INTERACTIVE COMMANDSccoreeeesineeeeesssseeeseessss 5-14
MOoNitoring MOMSYS ACTIVITYcooiiiiiiiiee e 5-15
MOMVIEW MONITOR AND DEBUGGERcccerreemsieeeeessssenesssessssssssesssssssessssssssssssesssesssss 5-15
STARTING MOMVIEWcoorreeeemsmnneeseesssssssesssssssssseesssssss s sssssss s ssssssss s sssss s ssesssssssssssssesssnns 5-15
MOMVIEW LAY OUT ...oooevveetsnmaeeeessssssseeesssssssssesssssssse s ssessss s sssssss s sssssss s sssssssssssssssssssssssssssssns 5-15
MOMVIEW ZOOM WINDOWS........cooumrreeessmmeeeeasssseeesssssssssesssssssssssssssssssesssssssssssssssssssssessssssssnns 5-17
GENERAL MOMVIEW COMMANDS.......coouureeeeussaeeeseassseseeesesssssssssssssssssssesssssssssssssssssssssssssssssss 5-19
BROWSING MESSAGES WITH MOMVIEW.......ccorereeeemmmeeeeesssssessssssssssesssssssssssssssssssssesssesssn 5-20
MONITORING INSTANCE LINKS - THE “LINKS” WINDOWc.coovoorreeeessneeessssssseeseessssns 5-22
LOCAL AND REMOTE APP-QUEUE DISPLAY MODES..........ccomreeeeemeesesssnesesessssssesssesssns 5-23
PANNING WITHIN MOMVIEW’S MAIN WINDOWccourereessmmnneeseessssneessessssseesssssssssesssesssnns 5-24
STOPPING MOMVIEW.coorreeeessameeeseesssssesssssssssssssssssssss s ssssssssesssssssss s ssssssssssssssssssssesssssssnns 5-24

ADVANCED MOMSYS PROGRAMMING FUNCTIONALITY .o, 6-1
Message PrioritiZatiONcccuvieiiiiie e 6-1
TWO STEPS IN AMESSAGE’S TRIP.......iivviimeeeessissssssssssssssssssssss s sssssssssessssssssssssssssssnsseeees 6-1
SPECIFYING MESSAGE PRIORITY VALUESccciiiieeeeessseeeeeesssssessssssssseesssssssssesssesssns 6-2
Application Message Load Management..........ccccooeeerieieiieeenieesniee e 6-3
LOAD SHARINGccoueeeeeessseeeeeeessseseeseessss s esss s sesss ek 6-3
MOMSYS EVENTS ...ttt 6-3
THE MOMEVENT() FUNCTION c..ooceeveettseeeeeessssseessessss s sssssssssessssssss s sssssssssssssssssssssssssssssnseeees 6-3
SUPPORTED MOMSY'S EVENTS.....ccivvutummeeeeesssneeesessssssseessesssssssnns 6-3
MOMEVENT() “NOTIFICATION” OPTIONcovouummeeeeessssneeeeessssssessessssseessssssssssssssssssssessssssssns 6-4
MOMEVENT() EVENT SEMANTICScooouurreeeussneeeseessssseeessssssessessns 6-6
MOMSYS EVENT MONITORING ..couuurvveessmmeeeeesssseeessessssseeessssssssssssssssssasssssssssssssssssssssssesssssssnns 6-6
INFOrmMation VErDS ... 6-6
UNDERSTANDING MOMSYS INFORMATION VERBScconmrriemmnesessinssssssssssesssesssns 6-6
CODING EXAMPLES OF MOMSYS INFORMATION VERBScccmmeeeeesinnneseesssneeseessss 6-7

ADVANCED MOMSYS CONFIGURATION CONCEPTS......ccocooi e 7-1
Accessing Multiple NameSPaCES........ccoiuiiiiiieiiiie e 7-1
Configuring X+IPC ‘s Platform Environment for Multiple Namespaces..7-2

Date: 9/20/2001 - Revision: 9

\Y

8.
8.1
8.1.1
8.1.2
8.1.3
8.1.4
8.1.5
8.2
8.2.1
8.2.2

9.1

9.1.1
9.1.2
9.1.3
9.2

9.2.1
9.2.2
9.2.3
9.2.4
9.2.5
9.3

9.3.1
9.3.2
9.3.3
9.34
9.35
9.3.6
9.4

9.4.1
9.4.2

10.

X+IPC Version 3.3.0: MomSys User Guide

ADVANCED MOMSYS ADMINISTRATION CONCEPTS.......cciiiiieiiieeeii e 8-1
MESSAGE REPOSITOIY .ttt e e e e e e e e eare e e e 8-1
COMPONENTSooooummieeeeessseesesesssss s seessss s 8-1
OPTIMIZATION ..ooooooeeeeeesssaeeeeeesssse s eeessss e sss s 8-2
MESSAGE EXPIRATIONcoourrreeessameeeeessssseeeessssssesesssssssssssessssssssssessssssssasssssssssssssssssssssssesssssssnns 8-2
MESSAGE RETIREMENT ...ooutreeettmmmeeesessssssessssssssssssssssssssesssssssss s sssssss s ssssssssssssssssssssssssesssnns 8-2
MR CLEANING.....oocoovoemeeeeessseeeeeessse e sesssss st 8-2
CommUNICAtION MANAGETcoiiiiiiiiiie et 8-4
COMMUNICATION SERVERS......orieeetmmereeessssseessessssessessssssssssessssssssssesssssssssesssssssssssesssesssnn 8-4
INSTANCE LINKS .ooootoieeeeessseeeeeessseseesesssss s esssss s sssssss sttt 8-5

APPENDICESot 9-1
Appendix A: Message Status and Tracking Levels.......cccccccoviiiiiiiennnnns 9-1
MESSAGE STATUS VALUES.......ooorreiiemmnesessssssssesssessss s ssssssssssssssssss s sssssssssssssssssssssesssesssns 9-1
MESSAGE STATE-DIAGRAM.........ceomrereeemmneeeeasssssesssessssssesss s ssssssss 9-2
MESSAGE TRACKING LEVELSooiveeeumneeeeessseseesseessssseessessssessssssssssssessssssssessssssssss s ssssssss 9-3
Appendix B: Message Priority Specification...........ccccocveiiiiiniiiiiieeiiieee 9-5
INTRODUCTION ..ooeouumeeeeeesssaeeeeeesssseseesesssss s esesss e eesss et 9-5
TWO STEPS IN A MESSAGE’S JOURNEYooiiirrvietimeeeseessmsesesssssssssssssssssssessssssssssssssssssseeees 9-5
WHY PRIORITIZATION MATTERS ...couiveeurmmneseessssseeessssssssssssssssssessssssssesssssssssssesssssssssssssssssos 9-6
SPECIFYING MESSAGE PRIORITY VALUESccciiiieeeeessseeeeeesssssessssssssseesssssssssesssesssns 9-6
CONCLUSION <. ceeettieeeeessseeeeeeesssss st s8R 9-8
Appendix C: Message Specification in MomReceive()c...cccovreviiveeennns 9-9
WHAT IS AN APP-QUEUE?oourrvetmmmereeeessssseesssssssssesssssssse s sssssss st sssssss s sssssssssssssesnns 9-9
TERMINOLOGY ..oooormiireveetiumeseeessssssessssssssesesssssssss s ssssssss s sssssss s sssss s ssssssssesssssssssssssssssssseees 9-9
POSSIBLE MSGSPECIFIER VALUEScouirveetmieeeeeesssseeesesssssesssssessssesssssssssssssessssssssssesssesss 9-10
THE TWO COMPONENTS OF A “MSGSPECIFIER”ccvveevieneeeesisneessessssssesssesssssssssssssssseeees 9-10
PULLING IT TOGETHER ...ooouireeeusmmmeeeeeesssssseesssssssssesssesssssssssssssss s sssssss s sssssssssssssssssssssssesssnns 9-11
MSGSPECIFIER SYNTAX ..ooorievvevrimmmieeeesssssessssssssssessssssssssesssessssssssnns 9-11
Appendix D: MomStatus() and MomStatusWait() Function Definitions...9-13
SAMPLE MOMSTATUS() DEFINITION ..oouuooiiveeuuseeeeeesssneeeeeessssseessssssssssessssssssssessssssssssessssssssns 9-13
SAMPLE MOMSTATUSWAIT() DEFINITION ..ccuuurereeesunereeeessssneeesesssssssessssssssssessssssssssesssesssnns 9-13

IN D X e e et et ettt ea e eaas 10-1

Date: 9/20/2001 - Revision: 9

Introduction 1-1

1. INTRODUCTION

X+JPCVersion 3, aMessage Oriented Middleware product from Envoy TechnologiesInc., is arguably the most
advanced application messaging middleware product in the industry. X+«IPCVersion 3 defines anew level of
Message Oriented Middleware technology.

The primary goal of X+«IPC Version 3 has been to provide features which address the new generation of large-scale

distributed and client/server applications. To that end, numerous capabilities have been incorporated in the product
for building large, highly-scalable, enterprise messaging applications.

XsIPCVersion 3isamulti-modal communications toolset that is comprised of subsystems for supporting avariety of
communication modes. Included are mechanisms for program-to-program messaging, memory-sharing and
semaphor e-synchroni zation.

The essential focus of X+«IPC Version 3 is application-to-application message communication (i.e., application
messaging). This class of technology is known in the industry asMessage Oriented Middleware. A new subsystem,
the Message Oriented Middleware Subsystem, or “MomSys,” isintroduced in X+IPC Version 3 asthe focal point of
the new release. With X+sIPC MomSys, it is possible to address a wide cross-section of messaging application
requirements, ranging from:

Small LAN-based applications, to large WAN Enterprise or Internet applications;
Synchronous, on-line, client/server applications, to asynchronous, disconnected mobile applications;

High-performance, memory -based messaging applications, to industrially-strong, store-and-forward, guaranteed
message delivery applications.

This document describes the X+IPC Version 3 MomSys subsystem, its programming model, functionality and
application programming interface (API). It outlines as well some of the more notable messaging features inherent
in the product for building, configuring and scaling the full range of messaging applications.

Date: 9/20/2001 - Revision: 9

MomSys Architecture and Programming Model 2-1

2. MOMSYS ARCHITECTURE AND PROGRAMMING MODEL

This section presents atop-down sketch of the architecture and programming components of X+IPC Verson 3's
MomSys subsystem.

2.1 The “30,000 Foot” View

At avery high-level, MomSys has the following appearance:

.

The model depicted israther simple: Application programs (circlesin the above diagram), send messages to other
programs by placing them onto “ Application Queues’ (open-rectanglesin the above diagram) from which they are
read by the targeted programs.

M essage movement between nodes follow a store-and-forward route (dashed-lines above) for providing guaranteed
and possibly deferred message delivery.

2.1.1 X+IPC NAMESPACE

Application gueue names and locations are managed globally within an X+«IPC namespace. An X+IPC namespace is
implemented viafault-tolerant namespace catalog servers. A program need not know the location of an application
gueue when sending it messages. It need only reference atargeted app-queue by its name. Mapping between app-
gueue name and app-gueue location is handled dynamically by X«PC.

Date: 9/20/2001 - Revision: 9

2-2 X+PC Version 3.3.0: MomSys User Guide

2.2 The “20,000 Foot” View

A closer look at the programming model reveal s the following additional detail:

[]

L X¢IPC Namespace “foo” J

2.2.1 “LOCAL INSTANCES”

A process wishing to perform work within an X+«IPC namespace must first log into an X+IPC instance that is affiliated
with the namespace. Thisinstance, which istypically local to the process (i.e., on the same network node), acts as
an access point into the X+IPC namespace. (For an introductory discussion on the topic of X+IPC Instances, refer to
“X+PC Instances” in the X+IPC User Guide.)

Consider the above diagram. Each network node (rectangle) contains an X+IPC instance (shaded ovals).These
instances act as access points for processes wishing to perform messaging operations within the depicted X+IPC
namespace named “foo” (the large rounded rectangle). Processes (circles) log into local instances for accessing the
X+IPC namespace. Once a process |0gs into to an instance it gains access to the X+IPC namespace with which that
instance is affiliated. That instance isreferred to as the process' “local instance” within the namespace.

(Aninstance has an affiliation with asingle X+IPC namespace. For situations where a process needs to work with a
second namespace, a second local instance, affiliated with the second namespace, may be accessed and the process
can then toggle between the two, as needed. Thisis an advanced topic that will be addressed later in this guide.)

Processes which plan to receive messages create application-queues (abbreviated as “app-queues’) that are
physically located within their local instance. The names of created app-queues may be known only within the
confines of thelocal instance, in which case they are only accessible by other processlogged into the local
instance, or they may be registered within an X«IPC namespace, so that they can be reached by processes spread over
the network.

Date: 9/20/2001 - Revision: 9

MomSys Architecture and Programming Model 2-3

A process (such as“a” in the above diagram) sending messages to an app-queue (“xyz") targets the app-queue by
specifying its name. X+IPC transmits the messages to the targeted app-queue, wherever it is within the namespace.
Enqueued messages are subsequently received from the app-queue by processes local to the app-queue (“b” and
“ CH) .

2.3 The “10,000 Foot” View

Working down to alevel of still greater detail, we see the following:

X¢IPC Namespace “foo”

A
~<. 4

-
%

Catalog Server I Catalog Server I Catalog Server I

Communications

I inlke

v

—
—

MM Acenann MM aceana

2.3.1 X+IPC CATALOG SERVERS

X+IPC namespaces are implemented within a set of (one or more) redundant X+IPC catalog servers. We will see that
these programs support the network-transparent app-queue discovery mechanism within MomSys.

Namespace information may be automatically replicated between the catalog servers for two possible purposes:

Fault Tolerance - Should any one of the catalog serversfail, access to the namespace datais unaffected. This
automatic fail-over is dynamic, and transparent to the user.

Locdlity - If anamespace isto transcend awide geographic region, it is possibleto strategically position multiple
catalog serversfor providing localized access to the single namespace viaits replicated namespace data. Here
again, if one of thelocal catalog serverswere to fail, the affected users would automatically start accessing one of
the other available servers.

2.3.2 MESSAGE REPOSITORY

Within each instance is a non-volatile message repository (indicated by the disk-drive, in the above diagram) This
is used by X«PC MomSys for storing and tracking message movement between instances as they travel from sender

Date: 9/20/2001 - Revision: 9

2-4 X+PC Version 3.3.0: MomSys User Guide

to receiver in astore-and-forward, asynchronous, guaranteed delivery manner. M essages being sent to a disk-based
app-queue are moved viathe local and then remote message repositories. This guarantees that messages are not lost
asthey go from sender to receiver.

A comprehensive set of message tracking-levelsis provided for directing X+IPC , per message, asto just how far
along the message path tracking is desired. Event-driven message tracking is provided as well.

A critical component of a store and forward, message-oriented middleware technology that isto be used in “real-
world” applicationsisits ability to provide message tracking tools for accessing immediate and up-to-date status
information about previously sent messages. It isimperative that the user be allowed to immediately ascertain
where any previously sent message currently resides. X+IPC MomSys provides facilities for supporting thisfunction.

Similarly, X«IPC provides afull set of options for defining message expiration periods, message repository clean-up
scheduling and message journaling.

2.3.3 COMMUNICATION MANAGER
2.3.3.1 Concept

Within each instance is a multi-threaded communication manager (indicated by the rounded rectangles, in the
above diagram). A communication manager supports an instance’ s affiliation with an X+lPC namespace as well asits
communication links with other instances.

The communication manager is responsible to take outgoing messages from the local message repository and send
them to a counterpart communication manager in a destination instance. The destination communication manager
stores the messages in its message repository. The degree of internal message acknowledgments that occurs
between communication managers depends on the message tracking level specified per each message sent.
(Message tracking levels are described in detail in Appendix A “Message Status Values and Tracking Levels’.)

The communication manager additionally maintains a local cache of app-queue names and locations. It uses
this data to route outbound messages. Accordingly, it obtains periodic data updates from the X+IPC catalog

with namespace updates and related data. These updates do not occur in a broadcast manner, but are rather
designed to take place only as necessary.

2.3.3.2 Design

The communication manager isimplemented as a set of process-pairs called communication servers. The
communication server programs control simplex communication lines- outgoing and incoming - with remote
instances. (Theterm “process” is used in its descriptive sense; operating system processes and “threads” are used
for actual implementation). This design allowsX+IPC to keep multiple messagesin flight over anetwork link at any
point in time. This asynchronous communication takes full advantage of the underlying network protocol
bandwidth.

Each communication manager handles multiple sessions, sending or receiving messages from multiple instances.
This architecture enables large-scal e client/server implementations to be handled without consuming inordinate
amounts of computer resources.

The communi cation manager is configurable with regard to the number of concurrent sessions to keep, timeout
periods, retry intervals, catal og search intervals, and so on. These parameters are defined in the MomSys Reference
Manual, and will be listed at alater point in this User Guide.

Date: 9/20/2001 - Revision: 9

MomSys Architecture and Programming Model

2.4 The Reliable Messaging Programming Model

TheX+IPC reliable messaging model is manifest in the MomSys subsystem of X«IPC . It comprisesan API, a
Subsystem Manager, a Message Repository Manager and a scalable Communication Manager working as a unit,

2-5

and communicating with the MomSys subsystems of the other remote instance. The basic MomSys architectureis

depicted below.

User Application
I

MomSys
M anager

Message

MM ananar

M essage Repository

Comm

Repository [Mm anager

Copies of sent messages are stored locally until they are known to have been successfully delivered.

User Application

MomSys
M anager

essage
epository

N ananor

M essage Repository

The MomSys Programming Model

2.5 MomSys Terminology

Thefollowing isabrief outline of the MomSys programming model components and the definitions that emerge.

Consider the following diagram:

Date: 9/20/2001 - Revision: 9

2-6 X+PC Version 3.3.0: MomSys User Guide

Namespace A

-

.

Namespace B

We see two X+IPC namespaces, A and B. Within namespace A are three instances. Three app-queues named “abc”,
“grs’ and “xyz” aresituated in the three instances. We similarly see two instances each containing an app-queue,
within namespace B. (An instance, of course, can support many app-queues. The above example has one app-queue
per instance for purposes of clarity.) The solid and dashed linesindicate user processes logged into X+IPC instances.
Solid lines are connected X+IPC logins; dashed lines are disconnected X+IPC logins.

We also see processes pl through p5 that have logged into the X+IPC instances as indicated. The dashed line
between process p1 and Inst-1 indicates that the process has disconnected from that login. Its current login isto
Inst-4. For a complete discussion of working with multiple X+IPC instances refer to “Working With X«IPC | nstances”
in the Advanced Topics section of the X+IPC User Guide.

The following definitions clarify the terms and their rel ationships:

X+IPC Namespace

An X+IPC namespace is a collection of X«IPC named entities. In MomSys these entities are typically named
application queues. As shown earlier, anamespace is managed by a set of catalog servers.

An Instance’ s Affiliated Namespace

An X«IPC instance may be affiliated with at most one namespace. Thisisreferred to as the instance’ s affiliated
namespace.

Local Instance
A process must log into an X+IPC instance that is affiliated with a namespace before performing MomSys operations
within that namespace. Thisinstanceisreferred to asthe process' local instance within that namespace. A process

wishing to work additionally within a second namespace may do so by logging into an instance within that second
namespace. Such a processis said to have two local instances, one per namespace.

Date: 9/20/2001 - Revision: 9

MomSys Architecture and Programming Model 2-7

Current L ocal Instance, Current Namespace

Theinstance that a processis currently connected to isthe process' Current Local Instance. The corresponding
namespace isthe process' Current Namespace.

In the preceding diagram, Process pl isworking within namespaces A and B, and has accordingly logged into I nst-
1 and Inst-4. These are pl’slocal instances. Note that pl’slogin to Inst-4 isits current login. Hence, Inst-4 ispl’'s
current local instance and namespace B isits current namespace.

Similarly, p2, p3 and p4 are working in namespace A. Both p2 and p3 are using Inst-2 as their local instance.
Process p4 is using Inst-3. Process p5, however, is working within namespace B. Itslocal instanceis Inst-5.

Remote | nstance

Asjust described, when a process works within a namespace, the instance that it logs into within that namespaceis
that process' local instance within that namespace. Remaining instances within that namespace, i.e., those not
logged into, are remote instances, relative toit. For example, Inst-2 and I nst-3 are p1' s remote instances within
namespace A. Inst-5 is aremote instance, relative to p1, within namespace B.

Local App-Queue

App-queues situated within aprocess’ local instance are referred to aslocal app-gqueues. For example, app-queue
“abc” in the above diagram islocal relative to process pl. Similarly, app-queue “grs” islocal relative to processes
p2 and p3.

A process may perform all forms of app-queue manipulation operations on local app-queues, such as: MomSend(),
MomReceive(), MomDelete(), MomDestroy(), MomlnfoA ppQueue(), etc.

Remote App-Queue

App-queues situated within a process' remote instances are referred to as remote app-queues. For example, app-
gueue“qrs’ isaremote app-queue relative to process pl. Similarly, app-queue “abc” is aremote app-queue relative
to processes p2 and p3.

The only operations which may be performed on remote app-queues are MomA ccess(), MomSend() and
MomlnfoAppQueue().

The above environment may deployed in avariety of scenarios without affecting the overall model. One possibility
involving four network nodes (depicted as dashed-line boxes) is the following:
Namesnare A

O\

Inst-4

\ lLnst-5

Namesnace R

Date: 9/20/2001 - Revision: 9

2-8 X+PC Version 3.3.0: MomSys User Guide
Note that one of the platforms supports more than one X+IPC instance. Specifically, Inst-1 and Inst-4 both reside on

asingle platform. Process p1 employs them for accessing the two namespaces A and B.

Obviously, other scenarios are possible without changing any aspects of X«IPC ‘s utilization.

Date: 9/20/2001 - Revision: 9

Building a Simple MomSys Application 3-1

3. BUILDING A SIMPLE MOMSYS APPLICATION

In this section we will program avery simple MomSys application in which a program will send one guaranteed
delivery message to a second program. The point of this exercise isto demonstrate, by example, the MomSys
programming model. Following this example, it should be possible to start “ connecting the dots” asto how
MomSys works, and how it will be useful for building mission-critical messaging applications.

3.1 The Environment

nl n2

©

Our environment for this exercise will assume two nodes on a TCP/IP network having names nl and n2. We will
further assume that the sending program “s” is running on n1 and will employ alocal X+IPC instance | 1; and that the
receiving program “r” is running on n2 and will employ local X+IPC instance 12.

The focus of our application is app-queue “xyz,” adisk-based app-queue created within instance |2 by receiver
program “r”. Sender program “s” will send its message to app-queue “xyz". Receiver program “r’ will receivethe
message. And with that, the application will end. (Note, of course, that the two programs may run in any sequence.)

3.2 Programming Steps

3.2.1 SENDER PSEUDO-CODE

Program “s” will be coded to perform the following steps:
Logintoinstancell.

Access ahandle for app-queue “xyz".

Send message to app-queue “xyz".

Log out of instance I 1.

3.2.2 RECEIVER PSEUDO-CODE

Program “r” will be coded to perform the following steps:
Loginto instance12.

Create app-queue “xyz".

Receive message from “xyz".

Log out of instance 12.

Date: 9/20/2001 - Revision: 9

3-2 X+PC Version 3.3.0: MomSys User Guide

3.2.3 SENDER PROGRAM

Thefollowing isthe program for “s”. Note: the datatypesVO D, XI NT and CHAR are X+IPC provided datatypes for
enhancing an application’ s portability between disparate machine architectures.

/*

* Sender program “s”. Note, error checking is omtted

* for enhancing programreadability.

*/

#i ncl ude “xipc. h”
va D

mai n(argc, argv)
XI'NT argc;

CHAR **ar gv,

{
XI'NT xyzAQ d;

Xi pcLogin(“@1", “s");

/

E I R I S I

~

to the program

MomAccess() accesses a handl e to app-queue “xyz”.
The NOVERIFY fl ag specifies to Xl PC that
MomAccess shoul d not verify whether the app-
queue al ready exists. In a case where

the app-queue is not yet known, MomAccess wil |

return a “virtual” AQd handle. This is invisible

xyzAQ d = MomAccess(MOM NOVER FY(“ @&yz"));

MonSend(
xyzAQ d,
“Hell o worl d”,
12L,

MOM PRI ORI TY_NORVAL,
MOM_TRACK_DEL| VERED,
MOM REPLY_NONE,

NULL,
MOM WA T
)

Xi pcLogout () ;

/*
/*
/*
/*
/*
/*
/*
/*

The AQ d handl e of app-queue “xyz” */
Message being sent */

Size (in bytes) of nessage */
Priority of sent nessage */

Track message until it is delivered */
No response expected */

No need to know nessage-id */

Block if systemis busy */

Date: 9/20/2001 - Revision: 9

Building a Simple MomSys Application 3-3

3.2.4 RECEIVER PROGRAM

The following is the program for “r”. Note: the datatypesVO D, XI NT and CHAR are X+IPC provided datatypes for
enhancing an application’s portability between disparate machine architectures.
/ *
* Receiver program“r”. Note, error checking is omtted

* for enhancing programreadability.
*/

#i ncl ude “xipc. h”

Va D

mai n(argc, argv)
XI'NT argc;

CHAR **ar gv,

{
XI'NT xyzAQ d;
XINT | nBufferLen = 12;
CHAR | nBuf fer[12];
Xi pcLogin(“@2", “r");

xyzAQ d = MonCreate(“xyz”, MOM APPQUEUE DI SK _REG STER);

MonRecei ve(
xyzAQ d, /* Handl e of app-queue “xyz" */
| nBuf f er /* \Where to read nessage */
| nBuf f er Len, /* Size (in bytes) of buffer */
MOM_MESSAGE_FI RST, /* Get first msg from app- queue */
NULL, /* (we don’t need ReplyAQ d) */
NULL, /* (we don’t need Msgld) */
NULL, /* (we don’t need detailed Msg Info) */
MOM VA T /* Block nmessage isn't there */
);
printf(“got nessage: %\n”, |nBuffer);

Xi pcLogout () ;

3.3 Summary

Upon reviewing the above programs its should be evident what is occurring. There are, however, afew important
points, that may not be obvious, and that are worthy of mention:

It does not matter which program is started first. If the sender program “s” runs before the receiver “r” has started,
the sent message will be held within the message repository of instance I 1 until “r” has started and created app-
gueue “xyz". Thismay occur a second later, aminute later or aweek later.

In fact, node n2 may be shut down and off the network entirely at thetimethat “s” runs. It has no effect on sender
program “s’.

The sender program may “fire and forget”. It compl etes as soon as the message has been submitted withinits local
instance. Once the message is sent, it isX+IPC ‘s responsibility to move the message forward as fast as possible,

independent of the sender.

The sent message may be tracked at any point in timeto determineits latest status.

Date: 9/20/2001 - Revision: 9

Basic MomSys Programming Functionality 4-1

4. BASIC MOMSYS PROGRAMMING FUNCTIONALITY

4.1 Creating an App-Queue

4.1.1 WHAT IS AN APP-QUEUE?

Before addressing the topic of app-queue manipulation, it isinstructive to first understand what an app-queue is. An
app-queueis a set of messages that are maintained according to a certain logical sequence. This sequenceis
known as the app-queue’ s “ natural” sequence.

4.1.1.1 Natural Sequence

Every app-queue that is created has, as one of its defining attributes, a natural sequencing of its messages. Thisis
referred to as the app-queue’ s natural message sequence. There are two possible natural sequences:

Time sequence

Priority sequence

By default, an app-queue’ s natural sequence is the time sequence in which the messages arrive and are placed on
the queug, i.e., FIFO sequence. We will seelater that the MomAttrSet() function can be used to override this
default to create an app-queue whose messages are sequenced by priority, i.e., highest priority at the front of the
app-queue.

An app-queue’ s natural sequence defines the order in which messages are presented to users performing
MomReceive() operations on that app-queue. The topic of message selection will be addressed | ater, in the
description of the MomReceive() function call.

4.1.2 BASIC APP-QUEUE ATTRIBUTES

An app-queue is defined by other attributes in addition to those that define its message sequencing. The
following are brief descriptions of the basic app-queue attributes. Advanced app-queue attributes are
described in a later section. The complete list of app-queue attributes, their descriptions and default settings
are defined in the MomAttrSet() function definition in the MomSys Reference Manual.

4.1.2.1 The Time Sequence Attribute

The MOM ATTR_SET_TI ME app-queue attribute indicates that the app-queue employs a natural message
seguencing that stores incoming messages in time order (i.e., oldest arriving message at the front).

4.1.2.2 The Priority Sequence Attribute

The MOM ATTR SET_ PRI ORI TY app-queue attribute indicates that the app-queue employs a natura
message sequencing that stores incoming messages in priority order (i.e., highest priority message at the
front).

The Time and Priority attributes are mutually exclusive.
4.1.2.3 The Disk-Based Communication Attribute

The MOM_ATTR_SET_DI SK app-queue attribute indicates that the communication of messages to the app-queue
occurs via store-and-forward disk-based mechanisms. This can support the asynchronous guaranteed message
delivery of sent messages.

4.1.2.4 The Automatic Namespace Registration Attribute

A related attribute, the MOM_ATTR_SET_AUTO_REG STER app-queue attribute, indicates that an app-queue is
automatically registered and deregistered within an X+«IPC namespace upon its creation and deletion from its local

Date: 9/20/2001 - Revision: 9

4-2 X+PC Version 3.3.0: MomSys User Guide

instance. Thisis useful for devel oping applications that need to automatically insert and delete X+IPC namespace
entries without requiring program intervention.

4.1.2.5 The Automatic Namespace Registration Update Attribute

MOM _ATTR_SET_AUTO _REGQ STER _UPDATE updates an app-queue's registration data. This attributeis

typically used to rel ocate an app-queue from its current location to a new location and to have all programs that are
currently sending messages to that app-queue have their messages subsequently be sent to the new location. (See
Section 4.1.6 for further details.)

4.1.3 THE MomCreate() FUNCTION

The MomCreate() API accepts two arguments: the name of the app-queue to be created, and a pointer to adata
structure of type MOM_ATTRBLOCK _APPQUEUE, asfollows:

The name argument is the name (i.e., character string) by which other programs will reference the app-queue,
once created. Alternatively, it is possible to create an app-queue having no name. Thisis called a “private”
app-queue, and it is created by specifying MOM_PRIVATE as the name argument to MomCreate(). Such an
app-queue is typically used in client/server communication settings, in which each client creates its own
private response app-queue, instead of having to invent a unique client-side app-queue name. This is
demonstrated later in this Guide in the section “ Client/Server Interaction.”

The second argument points to a MOM_ATTRBL OCK_APPQUEUE data block that describes the nature of the

app-queue to be created. Attribute values within the block may be set “manually” via the MomAttrSet() API,
in which case MomALttrSet() is called for setting each of the individual app-queue attributes; or alternatively
the programmer may employ one of the predefined attribute blocks provided by X+IPC . These are listed in the
next section. Examples of using both approaches are provided below.

MomCreate() will fail if an app-queue with the specified name (other than MOM_PRI VATE) already exists within
the caller’ s current X+IPC instance. Similarly, if the app-queue is being registered within an X+IPC namespace,
MomCreate() will fail if an app-queue with the specified name already exists within the caller’ s current namespace.

4.1.4 PREDEFINED MOM_ATTRBLOCK_APPQUEUE BLOCKS

The following predefined app-queue attribute blocks are provided by X+IPC for streamlining the coding necessary
for creating app-queues in many situations:

MOM_APPQUEUE_DI SK - is used for creating an app-queue that has all default attribute settings. Default
attribute settings are listed in the MomAttrSet() manual page definition.

MOM_APPQUEUE_DI SK_REG STER - isused for creating an app-queue that has default attribute settings,
with the exception that the created app-queue isautomatically registered within the caller’ s current namespace.
(Auto-registration isnot the default) Itisan error to register an app-queue name that is already registered.

MOM_APPQUEUE_DI SK_REG STER _UPDATE - isused for creating an app-queue that has default attribute
settings, with the exception that the created app-queue is automatically registered within the caller’s current
namespace. (Auto-registration is not the default) In case the app-queue already exists, its attributes are
updated with the attributes passed in the current call. It istypically used to relocate an app-queue from its
current location to a new location and to have all programs that are currently sending messages to that app-
gueue have their messages now be sent to the new location. (See Section 4.1.6 for further details.)

4.1.5 EXAMPLES OF CREATING AN APP-QUEUE

The following sample code segments demonstrate the creation of avariety of app-queues:

Date: 9/20/2001 - Revision: 9

Basic MomSys Programming Functionality 4-3

* (reate an app-queue nanmed “abc” that is not autonatically registered

* in the XIPC nanespace. Default attributes are applied to the created

* app-queue. This means that the “natural” sequencing of nessages on the
* app-queue will be by time of arrival, i.e., FIFO sequencing of messages.

Ret Code = MonCreate (“abc”, MOM APPQUEUE DI SK);

* Oreate an app-queue named “def” that is automatically registered

* in the XIPC nanmespace. Default attributes are applied to the created

* app-queue. This nmeans that the “natural” sequencing of nessages on the
* app-queue will be by tinme of arrival, i.e., FIFO sequencing of messages.

Ret Code = MonCreate (“def”, MOM APPQUEUE Dl SK_REGQ STER);

/*

* Create an app-queue named “ghi” that has a priority-based “natural”

* sequencing of nessages, but that is not autonatically registered in the
* cal l er’ s namespace.

*/

MOM ATTRBLOCK_APPQUEUE At tr Bl ock;

Ret Code = MomAttrSet (&AttrBl ock, MOM ATTR_SET_I NI Tl ALI ZE) ;
Ret Code = MomAttrSet(&AttrBl ock, MOM ATTR_SET_DI SK);

Ret Code = MomAttrSet(&AttrBl ock, MOM ATTR SET_PRI CRITY);
Ret Code = MontCreate (“ghi”, &AttrBl ock);

/*

* Oreate an app-queue named “jkl” that has a priority-based “natural”
* sequenci ng of nessages, but that is automatically registered in the
* caller’s nanespace.

*/

MOM ATTRBLOCK_APPQUEUE At tr Bl ock;

Ret Code = MomAttrSet (&AttrBl ock, MOM ATTR SET_I NI Tl ALI ZE) ;
Ret Code = MonmAttrSet (&AttrBl ock, MOM ATTR_SET_Dl SK);

Ret Code = MomAttrSet(&AttrBl ock, MOM ATTR SET_PRI ORI TY);

Ret Code = MomAttrSet (&AttrBl ock, MOM ATTR SET_AUTO REQ STER);
Ret Code = MonCreate (“jkl”, &AttrBl ock);

Date: 9/20/2001 - Revision: 9

4-4 X+PC Version 3.3.0: MomSys User Guide

4.1.6 RELOCATING APP-QUEUES

Itis possibleto relocate an app-queue from its current location to a new location and to have all programs that are
currently sending messages to that app-queue have their messages now be sent to the app-queue’ s new location.
This occurs “on-the-fly,” without the sending programs needing to make any rerouting provisionsin their code and
without them being aware of the targeted app-queu€e’ s new location.

Consider the following example in which three programs (e.g., clients) are sending messages to an app-queue that
they have accessed (e.g., for aserver to receive from), having the well-known app-queue name * X.'

Adgid=MomAccess(‘ X'...);

MomSend (Agid ...)
vomsenaaddy | e

MomSend (Agid...) | [T > :]

Aqid=MomAccess(‘ X'...); e

MomSend (Aqid ...)
MomSend (Agid ...)
MomSend (Agid ...)

MonCr eat e(' X', MOM APPQUEUE_Di SK_REG STER)

Adgid=MomAccess(‘ X'...);

MomSend (Aqid ...)
MomSend (Aqid ...)
MomSend (Aqid ...)

Now, consider what will happen if the server upon which ‘X’ islocated crashes, X+PC dlowstheuser tocresteanew
app-queue ‘ X' on anew server and, with that, X«IPC will cause all subsequent messagessent to‘ X’ to routeto the
new ‘X." The client programs themselves remain entirely unaware of this relocation of the app-queue.

By creating the second ‘X’ and specifying that itsregistration should update the prior registration of * X, the new
app-gueue becomes the target for all messages sent to * X

Even though the sending applications do not perform anew MomAccess(* X, ..) cdl, theinformation about
the new location of ‘X’ is automatically disemminated to those nodes on the network having registered a prior
interest in such an app-queue.

Date: 9/20/2001 - Revision: 9

Basic MomSys Programming Functionality 4-5

Messages are now sent to the new *X.’

Agid = MomAccess(* X .);
MonSend (Agid)
MomSend (Aqid ...)
MomSend (Aqid ...)

Aqgid = MomAccess(‘ X'...); \/ \I
MomsSend (Aqid ...)
MomsSend (Agid ...)
MomSend (Agid ...)

------------- AppQueue ‘X’
Agid=MomAccess(' X'...); | e

MomSend (Aqid ...)
MomSend (Aqid ...)
MomsSend (Aqgid ...)

MonCreate(’ X, MOM APPQUEUE DI SK_REG STER UPDATE) ;

4.2 Accessing an App-Queue - MomAccess()

The MomA ccess() function provides an AQid (i.e., App-Queue ID) handle to an application program wishing to
send messages to an app-queue “ somewhere” on the network. MomA ccess() takes a single string argument that
identifies the name of the targeted app-queue and returns the corresponding AQid..

The Name argument to MomA ccess() may be specified in avariety of formats for designating atarget app-queue.
In the following sections we will review some of the possibilities.

Date: 9/20/2001 - Revision: 9

4-6 X+PC Version 3.3.0: MomSys User Guide

4.2.1 LOCAL APP-QUEUE NAMES

A local app-queue is specified to MomA ccess() using the string originally passed to the MomCreate() function
when the app-queue was created within the calling process’ local instance. Thus, the AQid handle of an app-queue
that was created locally viaMomCreate(*abc”, ...) isaccessed via
/*
* Access an app-queue that is within the caller’s current instance.
*/

AQ d = MomAccess(“abc”);

A call to MomA ccess() specifying alocal app-queue will fail if the specified app-queue does not exist within the
caller’slocal instance at the time of the call.

4.2.2 REMOTE APP-QUEUE NAMES

A remote app-queue is specified to MomA ccess() using a string starting with the* @ character. A number of
variations are possible;
/*
* Access an app-queue that is within the caller’s current nanespace,

* havi ng the nanme “foo”.
*/

AQ d = MomAccess(“ @o00");

The“ @ 0o” argument indicates that the app-queue name “foo” islocated somewhere within the calling process’
current namespace. When such aname is passed to MomA ccess(), X+IPC resolves the location of the app-queuevia
the X+«IPC namespace catalog. This allows processes to send messages to app-queues without knowing where the
app-queues are located within the namespace.
/ *
* Access an app-queue by means of its fully-qualified identity: network node nane;

* instance nane within that node; app-queue name within that instance.
*/

AQ d = MomAccess(“ @oneNode: Sonel nst ance: f 00") ;

The above example directs MomA ccess() that app-queue “f 00” isto be found within instance

“Sonel nst ance”, where that instance is to be found on node “ SomeNode”. Such an app-queueis fully
qualified to X«IPC thus avoiding the need to query the X+«IPC namespace catalog to resolveits location. Thisis
desirable for applications in which the usage of an X+IPC namespace is not appropriate.

4.2.3 VIRTUAL AQID HANDLES

The normal behavior of MomA ccess(), when referencing a remote app-queue, isto fail when the specified remote
app-queue is not currently verified to exist at the time of the MomAccess() call. Inthe casethat” @ o0o0” was
specified thiswill occur because no app-queue having the name “f 00” was registered at the time of the
MomAccess() call. Inthe casethat” @onmeNode: Sonel nst ance: f 00” was specified, thiswill occur if no
app-queue “f 00” isfound withininstance“Sonel nst ance” on node “SoneNode” at the time of the
MomAccess() call.

By specifying the Name argument to MomAccess() as MOM_NOVERI FY(Nare) , you can force MomA ccess() to

succeed even if the named app-queue is not found at the time of the call. In such an event, the AQid handle
returned by MomAccess() isavirtual app-queue handle. Thus, continuing with our “f 00” example, messages sent
using that virtual handle are stored in the local message repository until an app-queueidentified as“f 00” is

Date: 9/20/2001 - Revision: 9

Basic MomSys Programming Functionality 4-7

subsequently created (and registered, in the case of “@ 00"). At that point, X+IPC forwards messages to that app-
queue.
/*
* Access an app-queue that is nowor will be registered within the caller’s

* current nanespace, having the name “foo”.
*/

AQ d = MomAccess(MOM NOVERI FY(“ @00"));

/*
* Access an app-queue that is nowor will be located wthin instance

* “Somel nstance” on node “SomeNode”, having the nane “foo”.
*/

AQ d = MomAccess(MOM NOVER! FY(“ @omneNode: Sonel nst ance: f00"));

We saw an additional example of thisin the simple MomSys application built in Chapter 3.

4.2.4 AQID SEMANTICS

The validity-time of AQid values returned by MomCreate() and/or MomA ccess() is defined as the period of time
during which the AQid can be used for referencing its intended app-queue. This period depends on whether the
AQid references alocal app-queue (i.e, itisalLocal AQid) or the AQid references aremote app-queue (i.e., itisa
RemoteAQid).

4.2.4.1 LocalAQid Semantics

An AQid of alocal app-queueis valid within an instance so long as the app-queue it was originally derived from,
viaMomCreate() or MomAccess(), still existswithin thelocal instance. Once the app-queue is deleted from the
local instance viaMomDelete() or MomDestroy(), the LocalAQid isinvalidated.

4.2.4.2 RemoteAQid Semantics

An AQid of aremote app-queue (i.e., a RemoteAQid) is valid within an instance so long as the AQid is still being
referenced by one or more users of theinstance (i.e., they have performed aMomA ccess() call referencing the
remote app-queue). Following the logout from the instance by the last such user, X+IPC invalidates that

RemoteAQid (unless there are messages that have not yet been delivered).
4.2.4.3 De-accessing an App-Queue — MomDeaccess()

The MomDeaccess() function frees the association of the user with aremote app-queue that had been previously
accessed. As stated above, MomSys keeps track of the number of local users accessing aremote app-queue. When
the count dropsto zero, MomSys frees the internal resources that supported the remote access. A user logging out
from an instance decrements this count. The MomDeaccess() verb enables a program to de-access an app-queue,
independent of logging out of theinstance. It isagood practice to de-access remote app-queues once they are no
longer needed.

AQid should reference aremote app-queue. If AQid represents alocal app-queue, MomDeaccess() returns
“success.” Thishas no effect, however, on MomSys resources.

Example:
/*
* De-access renote app-queue AQ d.
*/

Date: 9/20/2001 - Revision: 9

4-8 X+PC Version 3.3.0: MomSys User Guide

4.3 MombDeaccess(AQid); Message Sending - MomSend()

The MomSend() verb isused for sending a message. As demonstrated in the simple application presented in
Chapter 3, the basic utilization of MomSend() is straight-forward. We will now review the argumentsto
MomSend() by way of a second example.

Consider the following MomSend() call:

/*
* Send a nmessage to app-queue “abc”.
*/
XI NT Tar get AQ d;
MOM MBA D Ret Msgl d;
CHAR *MsgText = “hello world”;
XI NT MsgLen = 12;

Target AQ d = MomAccess(“ @bc”);

MonSend(
Tar get AQ d, /* Handl e of target AQd */
MsgText, /* Message being sent */
MsglLen, /* Size (in bytes) of message */
MOM_PRI ORI TY_NCRVAL, /* Priority of sent nessage */
MOM TRACK_DELI VERED, /* Track nessage till it is received */
MOM_REPLY_NONE, /* No reply expected */
&Ret Msgl d, /* Message-id assigned to sent nmessage */
MOM VAI T /* Block if systemis busy */
)

The MomSend() verb takes eight basic arguments and one optional argument. We will now review the basic
arguments in the context of the above example. A subseguent example, describing client/server communication,
will demonstrate the optional argument to MomSend().
Tar get AQ d definesthe AQid of the app-queue being targeted. Typically (asin the above case), the value
for Tar get AQ d isacquired viaaprior call to MomAccess().

MsgText isapointer to the message buffer being sent. Messages sent by MomSend() can bein any form —
text, structures, images, etc.— and are not interpreted by MomSend().

MsgLen isthe length of databytesto be sent by the MomSend() call.

MOM_PRI ORI TY_NORMAL directs X+IPC to send the message with a“normal” priority. There are awide range
of possible priority values that may be specified. In addition to normal priority, two of the other more common
valuesare: MOM_PRI ORI TY_HI GHand MOM_PRI CRI TY_LOW (Refer to Appendix B, Message Priority
Specification, for additional details on priority specification.)

MOM_TRACK_DELI VERED directs X+IPC to track the message being sent until it is dequeued from the target
AQid. Other tracking level values may be specified. (Refer to Appendix A, Message Status and Tracking
Levels, for additional details on message tracking levels.)

MOM_REPLY_NONE alerts X+IPC to the fact that no return message is expected in response to this message

being sent. We will seelater, in the discussion of client/server inquiry-response communication, that this
MomSend() argument may be used to correlate inquiry and response messages.

&Ret Msgl d isapointer to avariable of type MOM_MSG D. It is returned popul ated with message-id data
about the message sent. We will see that amessage-id is an important tool for message tracking and inquiry -
response correlation. Alternatively, NULL could have been specified.

MOM WA T isone of thesix X+IPC blocking options. It directs X+IPC to block, if necessary, when submitting the

message into the MomSys subsystem. Thiswill occur if the subsystem is momentarily congested at the time of
thecall.

Date: 9/20/2001 - Revision: 9

Basic MomSys Programming Functionality 4-9

4.3.1 OPTIONAL ARGUMENTS TO MOMSEND()

The Reference Manual pages for MomSend() lists anumber of optional arguments that may be specified as part of
acall to MomSend(). These optional arguments are useful for accomplishing various objectives when sending a
message. Note that these optional arguments are inserted in the argument list prior to the call's blocking option. See
the MOM_EXPI RE() example below.

4.3.1.1 The MOM_REPLYTO() Option

One of the more important optional arguments to MomSend() isthe MOM_REPLYTO(Msgl d) argument. We will
see later, in the discussion of client/server inquiry -response communication, that this argument may be used for
correlating a response message back to its particular inquiry messages.

4.3.1.2 The MOM_EXPIRE() Option

Another optional argument isthe MOM_EXPI RE(Ti meLi m t) argument. Using this argument, a programmer
can establish an expiration time for the particular message being sent. The Ti nmeLi mi t valueistreated asan
integer number of seconds. This value overrides other instance-defined expiration time-limits.
/*
* Send a nmessage to app-queue “abc” having an expiration time-limt
* of one hour (3600 seconds).

*/
Xl NT Tar get AQ d;
MOM MSG D Ret Msgl d;
CHAR *MsgText = “hello world”;
XI NT MsgLen = 12;

Target AQ d = MomAccess(“ @bc”);

MonSend(
Target AQ d, /* Handl e of target AQd */
MsgText, /* Message being sent */
MsglLen, /* Size (in bytes) of message */
MOM PRI ORI TY_NORVAL, /* Priority of sent nessage */
MOM_TRACK_DEL| VERED, /* Track nessage till it is delivered */
MOM_REPLY_NONE, /* No reply expected */
&Ret Msgl d, /* Message-id assigned to sent nmessage */
MOM_EXPI RE(3600) , /* Msg expires in one hour (3600 secs) */
MOM VWA T /* Block if systemis busy */

)

Messages that do not reach their tracking-level state within their expiration time-limit are automatically expired.
Depending on instance configuration parameters, such messages are then either journaled or deleted from X«PC
without atrace. Refer to Appendix A, Message Status and Tracking Levels, for amore detailed discussion of
message tracking.

4.3.2 BLOCKING OPTIONS

The last argument in the MomSend() call isthe function’s “blocking option” argument. X+IPC blocking options
define what an API function doeswhen it can’t immediately complete at the time of the call. X+IPC providesarange

of six possible blocking options for all verbsthat have the potential to block. (For acomplete discussion of this
topic refer to the section on X+IPC Blocking Optionsin the X«IPC User Guide)

It isimportant to understand what the phrase “can’t immediately complete at the time of the call” meansin the
context of the MomSend() function call. Thisrequires abrief description of how messagesin general moveinthe
MomSys subsystem of X+IPC .

Date: 9/20/2001 - Revision: 9

4-10 X+PC Version 3.3.0: MomSys User Guide

A call to MomSend() dispatches amessage into the caller’ slocal instance. The message is then moved forward
towards its target app-queue as fast as possible. Of course, if the network is down or the remote node is down, or
the targeted app-queue is not around, then X+IPC is responsible to move the message forward as these impediments
become corrected.

The blocking option argument to MomSend() deals with the first part of the process: submitting the message into
thelocal instance environment. If the local instance is capable of accepting the message immediately, then
MomSend() is said to have been able to “ completeimmediately” at the time of its call. Hence, in such cases the
blocking option is not employed. This should be the typical behavior in aproperly configured local instance. In
such settings, callsto MomSend() should be forced to block only occasionally, if at all.

When the local instance is congested to the extent that its internal resources do not permit the local instance to
accept the message being submitted by MomSend(), then the MomSend() call will “block” as designated by the
specified blocking option until the local instance can accept the message.

The above example is coded with the MOM_WAI T blocking option, indicating that the caller wishesthe MomSend()
verb to block if necessary before submitting the message into the local instance and returning control to the user.

4.3.3 OPTIONAL FLAGS TO MOMSEND()

The Reference Manual definition of MomSend() describes the optional flags that may be specified as part of acall
to MomSend(). (The flags should be ORed to the left of the blocking option argument.)

4.3.3.1 The MOM_FASTPATH Option

The MOM_FASTPATH optional flag allows the user to specify to X+«IPC that the current MomSend() operation should
be completed (i.e., sending the specified message into X+IPC and returning control to the user) without

synchronizing the message's datato disk. This has the advantage of increasing the performance of such
MomSend() operations, but has the disadvantage that messages sent with such aflag are not recoverable following
asystem failure.

The following diagramsillustrate the difference between using MOM_FASTPATH and not.

Steps of execution when MonSend() is
called without MOM_FASTPATH:

. . Proaram callina MomSend(
L.User'smessageissubmittedtotheXaPC | /7 N\

instance. 1

2-Instanceinitiates the writing of message
datato the disk.

3.Instanceis notified that message is
safely on the disk.

47User_' sMonSend() call completes YolFC. instance N X
execution. 3

Date: 9/20/2001 - Revision: 9

Basic MomSys Programming Functionality 4-11

Steps of execution when MonSend() is
called with MOM_FASTPATH: Program calling

L.User'smessageissubmittedtotheXPC | /7 N\]
instance. "1

2-Instance writes message data to fast, but
volatile, memory.

3.User’'sMonSend() call completes
execution.

XeIPC instance

4.3.3.1.1 Performance Considerations

MOM_FASTPATH can be specified on a per-message basis. This allows the application developer to decide, at run-
time, which messages require synchronous disk updating and which do not. Synchronization of an instance's
Message Repository to disk occurs at the instance level. Aslong as MomSend() calls specify MOM_FASTPATH,
message datais stored in fast but volatile memory, either in RAM or on disk, depending on the operating system's
own needs. Issuing callsto MomSend() without MOM FASTPATH, by contrast, forces the operating system to
perform adisk flush of message data as part of each MomSend() call.

Mixing such calls within asingle instance will produce mixed results with regard to instance performance. The
greater the relative number of MomSend() operations specifying MOM_FASTPATH, the better the overall instance
performance. Theinverseistrue aswell.

4.3.3.2 The MOM_RETURN Option

The MOM_RETURN option, which isonly valid when accompanying one of the three asynchronous blocking
options, directs X+IPC to complete the operation synchronously if thereisno need to “block” (e.g., the desired

message is on the app-queue) and to “go asynchronous’ only if the operation cannot be completed immediately.
(Refer to the section on X+IPC Blocking Options in the X+IPC User Guide for adetailed discussion of this option.)

4.4 Message Receiving - MomReceive()

The MomReceive() verb is used for receiving a message from an app-queue. As demonstrated in the earlier simple
application, the basic utilization of MomReceive() is straight-forward. We now review the arguments to
MomReceive() by way of asecond example.

Consider the following call:

/*
* Recei ve message from app-queue “abc”.
*

XI'NT Sour ceAQ d, MsgLen;

Xl NT | nBuf Len = 16;

CHAR I nBuf [16] ;

MOM_MVSA D Ret Msgl d;
MOM NFOVBG Ret | nf oMsg;

SourceAQ d = MonCreate(“abc”, MOM APPQUEUE_DI SK_REG STER);

Date: 9/20/2001 - Revision: 9

4-12 X+PC Version 3.3.0: MomSys User Guide

MsgLen = MonRecei ve(

Sour ceAQ d, /* Handl e of source AQd */

| nBuf, /* Buffer for receiving message */

I nBuf Len, /* Size (in bytes) of receive buffer */
MOM_MESSACGE_FI RST, /* Request first (front) nmessage on app-queue */
&Ret Repl yAQ d, /* AQ d of app-queue to send response nsg */
&Ret Msgl d, /* Message-id of received nmessage */

&Ret | nf oMsg, /* Detailed info on received nessage */

MOM VWA T /* Block if systemis busy */

)

MonRecei ve(), when successful, returns the length (in bytes) of the nessage that is
recei ved. MonReceive() always accepts eight argunments. In the context of the above
exanpl e, they are:

Sour ceAQ d definesthe AQid of the app-queue being received from. This app-queue must be within the caller’s
local instance. Typically (asin the above case), the value for Sour ce AQ d isacquired viaaprior cal to
MomCreate().

| nBuf isapointer to the receiving message buffer.
I nBuf Len isthelength (in bytes) of the receiving buffer (i.e., | nBuf inthe above example)

MOM MESSAGE_FI RST directs X+IPC to retrieve the “first” message from app-queue “ abc”. When created, app-
gueue “abc” employs a default natural sequencing of messages that is based on message arrival time. Thus, the
specification of MOM_MESSAGE_FI RST returnsthefirst (i.e., oldest) messagein that sequence.
MOM_MESSAGE_FI RST is one of the message-specifiers (known asMsgSpecifier) that are predefined by X+IPC for
supporting different message-selection scenarios that can arise. These are listed below. Moreover, X+IPC allows a
user to define his own customized message specifiers (Refer to Appendix C for more detailed information on
Advanced Message Selection.)

&Ret Repl yAQ d isapointer to an integer variable. It isreturned populated with an AQid where aresponse
message should be sent. Alternatively, it may be returned populated with the value MOM_REPLY_NONE,
indicating that no reply-AQid was stipulated by the sender of the message. The NULL pointer may be passed if no
reply AQid isdesired.

&Ret Msgl d isapointer to avariable of type MOM_MSG D. It isreturned populated with message-id data about
the received message. The NULL pointer may be passed if no message-ID isdesired.

&Ret | nf oMs g isapointer to avariable of type MOM NFOMSG. This structureis returned populated with
extended data about the returned message (who sent it, when it was sent, where it was sent from, etc.). The NULL
pointer may be passed if no extended message datais desired.

MOM WAI T is one of X«IPC ‘s six blocking options. It directs X+IPC to block, if necessary, when retrieving the
message from the MomSys subsystem. Thiswill occur if the app-queueis empty or if the specified message is not
on the app-queue at the time of the call.

4.4.1 MESSAGE SELECTION

M essage specification is accomplished viathe MsgSpecifier argument to MomReceive(). MsgSpecifier identifies
which messageisto be retrieved from SourceAQid. Proper utilization of this argument requires abasic
understanding of how messages reside on an app-queue.

When an app-queue is created one of its defining attribute specifiesthe natural sequencing of messages on that
app-queue. (Refer to the MomAttrSet() function call for details on app-queue attribute specification.) An app-queue
has one of the following attributes: natural sequencing by Time or natural sequencing by Priority.

Date: 9/20/2001 - Revision: 9

Basic MomSys Programming Functionality 4-13

M essage specification semantics can differ depending on the natural sequencing of messages on an app-queue. For
example, specifying the “first” message on an app-queue means the “oldest” message if the natural sequencingis
by Time; it means the “highest” priority message if the natural sequencing is by Priority.

The following are the MsgSpecifier values that are provided:

MOM_MESSAGE_FIRST Retrieve the first message from natural sequence. If Time, the ol dest
message isreturned. If Priority, the highest priority message is returned.
MOM_MESSAGE_LAST Retrieve the last message from natural sequence. If Time, the newest

message isreturned. If Priority, the lowest priority message is returned.

MOM_MESSAGE_NEXT(Msgld) Retrieve the next message from within natural sequence following the
message identified by Msgld.* . If Time, the next oldest message is
returned. If Priority, the next highest priority message is returned.

MOM_MESSAGE_PREV(Msgld) Retrieve the previous message from within natural sequence following
the message identified by Msgld.* If Time, the previous ol dest message
isreturned. If Priority, the previous highest priority message is returned.

MOM_MESSAGE_DIRECT(Msgld) Retrieve the message identified by Msgld. *
MOM_MESSAGE _DIRECT_RMT Retrieve a message based on its Remote identification:
(RmtNode, RmtNode is name of sender node
RmtlInstance,

RmtM sgld) Rmtlnstance is name of sender instance

RmtMsgld isthe Msgld that was assigned to the message when it was
sent viathe sender instance

MOM_MESSAGE_REPLYTO(Msgld) Retrieve the response message to the request message that was
previously sent by MomSend() and identified asMsgld.

(* Note: The message represented by Msgld, where indicated with an asterisk, must still be on the app-queue at the
time of the MomReceive() call. Thisistypically accomplished by having performed an earlier call to

MomReceive() in which the MOM_NOREMOVE flag was set. The Msgld returned from that call can serve asthe
“cursor” for subsegquent MomReceive() calls.)

The above listed values for MsgSpecifier are actually macros that are based on a more general syntax of message
specification. Refer to Appendix C, Message Specification in MomReceive(), for details of this syntax.

4.4.2 OPTIONAL FLAGS TO MOMRECEIVE()

The Reference Manual definition of MomReceive() lists anumber of optional flags that may be specified as part of
acall to MomReceive(). MomReceive() takes the same blocking options as MomSend() (See section4.3.3); the
optional flags should be ORed to the | eft of the blocking option. Theseflags are:

MOM_NOREMOVE

MOM_RETURN

The following sections briefly describe theseflags. Refer to the MomSys Reference Manual definition for further
details.

4.4.2.1 The MOM_NOREMOVE Option

The MOM_NOREMOVE flag allows an application program to receive a“copy” of amessage from an app-queue, but
leaves the message remaining on the app-queue. Thisform of message previewing, when combined with the
“navigational” message-specifiers (e.g., next, previous, etc.) facilitates development of applications that can browse
and examine sequences of app-queue messages.

Example

Date: 9/20/2001 - Revision: 9

4-14 X+PC Version 3.3.0: MomSys User Guide

/*

* Recei ve message copy but |eave actual nessage still on app-queue.

*

MsgLen = MonRecei ve(
Sour ceAQ d, /* Handl e of source AQd */
| nBuf, /* Buffer for receiving nessage */
I nBuf Len, /* Size (in bytes) of receive buffer */
MOM_MESSACGE_FI RST, /* Request first message on app-queue */
&Ret Repl yAQ d, /* AQd of app-queue to send response nsg */
&Ret Msgl d, /* Message-id of received nessage */
&Ret | nf oMs(g, /* Detailed info on received nessage */
MOM NOREMOVE | MOM VAI'T /* Don’t renove nmsg. Block if necessary */

Refer to the MomSys Reference Manual definition for details on employing the MOM_NOREMOVE flag.

4.4.2.2 The MOM_RETURN Option

The MOM_RETURN option, which is only valid when accompanying one of the three asynchronous blocking
options, directs X+IPC to complete the operation synchronously if there is no need to “block” (e.g., the desired

message is on the app-queue) and to “go asynchronous” only if the operation cannot be completed immediately.
(Refer to the section on X«IPC Blocking Optionsin the X+IPC User Guide for a detailed discussion of this option.)

4.5 Message Tracking

As was shown in the above coding examples, the MomSend() function requiresthat a tracking-level argument
be defined for each message that is sent. This argument to MomSend() has a great influence on how far the
message is tracked by X«PC in the course of its trip.

A generad understanding of message movement within the X«JPC MomSys programming model is a
prerequisite to proper utilization of the subsystem.

Date: 9/20/2001 - Revision: 9

Basic MomSys Programming Functionality 4-15

Consider_the followina diaoram:

................ >
g R S

4.5.1 MESSAGE STATUS VALUES

An XJPC MomSys message goes through three well-defined, trackable stages as it moves from sender to

receiver program. These stages are identified numerically in the above diagram. The message status values
that correspond to these stages are:

MOM_STATUS HELD Message is currently in the sender’ s message repository, but has not yet
been shipped to the receiver node.

MOM_STATUS SHIPPED M essage has shipped to the receiver’ s message repository and has been
logically inserted within the targeted app-queue, but it has not been
received and removed by areceiving program.

MOM _STATUS DELIVERED M essage has been received and removed from the app-queue by a
receiving program.

Two additional pseudo-status values that are occasionally employed within MomSys are:

MOM_STATUS COMPLETE Message status has achieved the tracking-level that was specified for it
when the message was sent via MomSend().

MOM_STATUS INCOMPLETE M essage status has not yet achieved the tracking-level that was specified
for it when the message was sent via MomSend().

MomEvent() is an example of afunction that employsthe MOM_STATUS COMPLETE for creating an event that
occurs when a given message reaches the tracking-level that it was sent with. Refer to the description of
MomEvent()for details.

4.5.2 MESSAGE TRACKING LEVELS

Just how far a message is actually tracked by X«PC is afunction of the tracking-level that is specified within
the MomSend() verb when the message is sent. The two message tracking levels that may be specified are:

MOM_TRACK_SHIPPED Track the message being sent until it has attained the status of
MOM_STATUS_SHI PPED.
MOM_TRACK_DELIVERED Track the message being sent until it has attained the status of

MOM_STATUS_DELI VERED.

Note that a message status is updated in the sender’s message repository up to the level requested by the
tracking level argument of the MomSend() function - but no further.

Date: 9/20/2001 - Revision: 9

4-16 X+PC Version 3.3.0: MomSys User Guide

Thus, a message sent with a tracking-level of MOM TRACK_SHI PPED is tracked up to the point that the
message attains a status of MOM STATUS _SH PPED, after which point no further tracking is performed. A

more complete description of message tracking is presented in Appendix A, Message Status and Tracking
Levels.

4.6 Client/Server Interaction

Critical to utilizing a message-oriented mi ddleware technology for developing large scalable client/server
applicationsis the ability to support massive client popul ation deployments whose composition isin a continuous
state of flux, and to do so without requiring any server-side involvement (e.g., reconfiguration, table definitions,
etc.). Thisisreadily achievable using MomSys.

MomSys allows a server application to receive inquiry messages from alarge population of client programs and to
send response messages to each and every respective client without the need to know who, or where, the inquiring
clientsare.

4.6.1 REQUEST-RESPONSE PROGRAMMING STEPS

The following steps summarize what occurs during atypical client/server request-response exchange of messages.
A coding exampleis presented in the next section.

A client creates a private app-gqueue (i.e., created with name MOM_PRI VATE) withinitslocal instance for receiving
response messages. Thereisno need for each client to uniquely name its response application queue, nor istherea
need to register the app-queue in the catal og.

The client sends an inquiry message to a server viaacall to MomSend() in which it specifiesthe AQid of its
private app-queue as the reply-AQid where it expects to receive aresponse message.

The server receives the inquiry message viaacall to MomReceive() and with it is given the message-ID of the
received inquiry message, as well asthe reply-AQid of the response app-queue (i.e., the AQid of theclient’s

private app-queue).

The server processes the message and sends a response message to the client viaacall to MomSend() by specifying
the client’s private app-queue AQid as the target, and by specifyingthe MOM_REPLYTQO(Msgl d) option, where
Msgl Didentifiesthe received inquiry message. This option causes the response message being sent to correlate
with the client’ s original inquiry message.

The client issues aMomReceive() call on its private app-queue to receive the response message to itsinquiry
message. The MomReceive() call specifiesthe MOM_MESSAGE_REPLYTQO(Msgl d) message-specifier, where
Msgl Didentifiesthe client’ s originally sent message, so that it receives the response message sent by the server.

It isimportant to note that, in this manner, a client may issue multiple inquiry messages to multiple unrelated
servers where all response messages are directed to arrive on the client’ s single private app-queue. Using the
MOM_MESSAGE_REPLYTQ() MomReceive() message-specifier, the client can selectively retrieve the responses
toitsoutstanding inquiriesin the order that it wants them. (Thiswill be elaborated on later in section4.6.4 on
Inquiry-Response Correlation.)

Furthermore, client-sent messages that arrive at a server may be responded to by the server without any awareness
of the location or identification of the originating client.

4.6.2 CLIENT-SIDE PROGRAMMING EXAMPLE
/*
* dient program“client”. Note, error checking is omtted

* to enhance programreadability.
*/

#i ncl ude “xi pc. h”

va D
mai n(argc, argv)

Date: 9/20/2001 - Revision: 9

Basic MomSys Programming Functionality 4-17

XI'NT argc;
CHAR **ar gv;

{ XINT ServerQ AQ d, ReplyQ AQ d;
MOM _MSA D Request Msgl d;
CHAR I nBuffer[64];
XINT | nBuf ferLen = 64;

/*
* Logintoclient’s local instance I1,.. then ...
* Create client’s private app-queue, then ...
* Access handle to the server app-queue “Server@
*/

Xi pcLogin(“@1”, “client”);

Repl yQ AQ d = MnCreat e(MOM PRI VATE, MOM APPQUEUE_Di SK) ;

ServerQ AQ d = MomAccess(“ @erverQ');

/*

* Send request nessage to ServerQ Note that the returned nessage-id
* value (returned within RequestMsgld) will be used in the next

* step for requesting a response to original request.

/

MonSend(
Server Q AQ d, /* AQ d of app-queue “Server@ */
“hello world”, /* Message being sent */
12L, /* Size (in bytes) of message */
MOM PRI ORI TY_NORVAL, /* Priority of sent nessage */
MOM_TRACK_DELI VERED, /* Track msg until received by server */
Repl yQ AQ d, /* AQd of client’s reply app-queue */
&Request Msgi d, /* Message-id of inquiry nsg being sent */
MOM VWAI T /* Block if systemis busy */

);

/*

* Recei ve response nessage.

*/

MonRecei ve(
Repl yQ AQ d, /* AQd of client’s private app-queue */
| nBuf fer, /* Buffer to accept reply nessage */
| nBuf f er Len, /* Size (in bytes) if InBuffer */

MOM_MESSAGE_REPLYTQ(Request Msgl d) , /* Select to receive reply nmsg */
/* to sent request nsg */

NULL, /[* (we don’t expect a ReplyAQd) */
NULL, /* (we don’t need Msgld of reply) */
NULL, /* (we don’t need detailed Msg Info) */
MOM VWAI T /* Block until reply nessage arrives */
)

printf(“got reply message: %\n", InBuffer);

Xi pcLogout () ;

Date: 9/20/2001 - Revision: 9

4-18 X+PC Version 3.3.0: MomSys User Guide

4.6.3 SERVER-SIDE PROGRAMMING EXAMPLE

/*

* Server program “server”. Note, error checking is omtted
* to enhance programreadability.

*/

#i ncl ude “xipc. h”

va D
mai n(argc, argv)
XI'NT argc;
CHAR **ar gv,
{
XINT ServerQ AQ d, ReplyQ AQ d;
MOM_MSA D Request Msgl d;
CHAR Buffer[64], *p;
XI'NT BufferlLen = 64;

/*

* Log in to server’'s local instance 12, then ...

* (reate server app-queue “Server@ . Note that the

* MOM_APPQUEUE_DI SK_REQ STER argunent to MnCreate()

* causes the created app-queue to be registered automatically.
*/

Xi pcLogi n(“@2", “server”);

ServerQ AQGd = MonCreate(“Server@, MOM APPQUEUE DI SK_REG STER);

/*

* Receive request nessage fromclient.

*/

MonRecei ve(
Server Q AQ d, /* Recv msg from ServerQ */
Buf f er, /* Buffer to accept request nessage */
Buf f er Len, /* Size (in bytes) of buffer */
MOM_MESSAGE_FI RST, /* Select to receive first msg on app-queue */
&Repl yQ AQ d, /* Set with AQd to send response to */
&Request Msgl d, /* Set with Msgld of request nessage */
NULL, /* (we don’t need detailed Msg Info) */
MOM VA T /* Block until reply nessage arrives */
)

/*

* Process the request nessage. Qur “fancy” server takes a null-termnated string

* sent by the client, changes all characters to upper case and returns the

* nodified string to the client.

*

/

p = Buffer;
while (*p++)

toupper (*p);
/*

* Send response nessage to originating client. Note that the request
* nsg’' s nmessage-id value (returned within RequestMsgld) is used

* for correlating response to original client requester.

*/

Date: 9/20/2001 - Revision: 9

MonSend(
Repl yQ _AQ d, [*
Buf fer, /*
strlen(Buffer)+1, /*
MOM PRI ORI TY_NORMAL, /*
MOM_TRACK_SHI PPED, /*
MOM_REPLY_NONE, /*
NULL, /*

MOM_REPLYTQ(Request Msgi d) ,

MOM WA T
)

Xi pcLogout () ;

Basic MomSys Programming Functionality 4-19

Handl e of client’s private app-queue */

Message being sent */

Size (in bytes) of response nessage */

Priority of sent nessage */

Track msg till shipped & stored in rnt node */
AQd of client’s reply app-queue */

(we don't need Msgld of reply) */

/* Direct XIPCto correlate this message */

/* as a response to the original request nsg.*/
/* Block if systemis busy */

4.6.4 REQUEST-RESPONSE CORRELATION

Theissue of inquiry-response message correlation becomes important in situations where a client wishes to send
multipleinquiries “in flight” simultaneously to multiple servers, and to subsequently receive the response messages
in a specific sequence. Because the client does not know the order in which response messages will arrive on its
private response queue, it cannot simply ask for the “next” message. In such asituation, the message specifier
MOM_MESSAGE_REPLYTQ(Request Msgl d) iscritical in selecting the specific response that is desired.

Thus, if the client performed three MomSend() calls that sent three request messages to three servers, it would save
the three message-ids returned from the MomSend() calls and subsequently specify them as part of the
MOM_MESSAGE_REPLYTQ() message-specifier in the MomReceive() calls that received the responses.

Consider the following client code segment:

main(...)

.{..
/*

* |ssue three requests to three servers.

* Returned nessage-ids are saved.

*/
MonBend (Serverl_AQd, ..., &RetMsgldl, ...);
MonSend (Server2_AQ d, ..., &RetMsgld2, ...);
MonSend (Server3 AQd, ..., &RetMsgld3, ...);

Recei ve the three response nessages in the
reverse order fromwhich the requests were sent.
Ret urned nmessage-ids are used for this purpose.
/

* X X Ok Ok

MonReceive (ReplyAQ d, ...,
MonRecei ve (ReplyAQ d, ...,
MonRecei ve (Repl yAQ d,

MOM MESSAGE_REPLYTQ(Ret Msgl d3),
MOM_MESSAGE_REPLYTQ(Ret Msgl d2)
MOM_MESSAGE_REPLYTQ(Ret Msgl d1),

—

Itsimportant to note that there is no special server-side logic needed to support thisform of client-side activity so
long as the servers are coded to handle inquiry and response messages in the general manner described in the prior

examples.

Date: 9/20/2001 - Revision: 9

Basic MomSys Configuration and Administration 5-1

5. BASIC MOMSYS CONFIGURATION AND ADMINISTRATION

5.1 The X¢IPC Platform Environment

Recall from the X+IPC User Guide that any platform supporting X«IPC activity must first initialize the “ X+IPC Platform
Environment” on that platform. Thistopic is described in detail in the X+PC User Guide.

Accordingly, application programs that employ the X+IPC MomSys subsystem (or any part of X+IPC for that matter)
cannot be run until the X+IPC platform environment has been started on that platform. As described in the X+PC User
Guide, the utility command for starting an X«IPC platform environment isxi pci ni t ; and for terminating the
environment, xi pct er m Thexi pci ni t command reads its configuration parameters from the X«IPC Platform
Environment File (i.e.,, xi pc. env). Thisfiledirectsxi pci ni t asto what form (i.e., capacity) the platform
environment will take; as well as what X+IPC namespaces are to be supported.

One of the primary functions of the xi pci ni t command in starting up a platform’ s X«IPC environment is to start
up the platform’ s X+IPC namespace catal og server. The next few sections examine the topic of catalog server
configuration. Refer to the X+IPC User Guide for a more general discussion of the X+IPC Environment Platform and
the means for invoking xi pci nit andxi pcterm

Before actually listing and defining the xi pc. env parametersthat are related to the catalog server, it is useful to
step back and review the general topic of X+«IPC namespaces from the catal og server perspective. Along the way we
will also see how X+IPC instances affiliate themselves with an existing namespace.

(Thefollowing discussion references certain configuration parametersthat are required for catalog and instance
configuration. These examples are presented for the purpose of describing configuration concepts. Tables
containing the complete list of parameters and their possible and default values are presented towards the end of the
section.)

5.2 Establishing a Namespace

We have thus far described X+IPC namespaces as being “ somehow” managed by X+IPC catalog server programs, but
we have not gone into detail asto how catalog servers are configured to perform this function.

Within atypical X+IPC environment a single catalog server program is present on each network node. The catalog
server programs active on anetwork perform arange of X+IPC namespace related work, including:

Support the abstraction of X+IPC namespace location transparency

Support actual namespace data (usually on asmall subset of the network’ s nodes)
Perform dynamic namespace discovery functions

Support catalog data redundancy for handling catalog fail-over and recoverability
5.2.1 NAMESPACE CONFIGURATION

The primary function of the X+IPC catal og server programs s to support the abstraction of X+«IPC namespaces “ goread
over the network” . Based on this abstraction, programs are abl e to access app-gueues network-wide, without
concern for their location.

In fact, beneath this abstraction, actual datafor each existing X+IPC namespace must physically reside on some set of
network nodes. These nodes are referred to as the “anchor nodes” for the namespace.

Date: 9/20/2001 - Revision: 9

5-2 X+PC Version 3.3.0: MomSys User Guide

5.2.1.1 Namespace Definition

A namespace is established by defining the set of nodes upon which the namespace’ s datawill physically reside,
i.e. itsanchor nodes. Thisset is specified withinthe xi pc. env files of the anchor nodes, as well as other nodes

that are to have access to the namespace, via the NAMESPACE statement, as follows:

Syntax:

[CATALCG pr ot ocol]
NAMESPACE nanespace- nane: node- | i st

where:

[CATALOG. prot ocol] is the section header for catalog parameters specific to a particular network
protocol. TCP/IPis currently the only supported protocol.

nanmespace- namne identifies the specific namespace being defined.
node- | i st identifiesthe network nodes that will serve as anchor nodes for the namespace.

Example:

[CATALOG TCPI P

NAMESPACE Xyz: Serverl, Server2 # Defines namespace “xyz”.
“xyz” will be anchored
#in replicated formon nodes
“Serverl” and “Server?2”

The above statements define namespace “xyz” as being anchored, in replicated form, on platformsSer ver 1 and
Ser ver 2. Other network nodes planning to reference the namespace must specify that intent by including the
namespace statement within their xi pc. env files, aswell:

5.2.1.2 Namespace Configuration Example

Consider the following five-node network (nodes are named: a, b, ¢, d,), on which we would like to define two
X+IPC namespaces “f 00" and “bar ”, where:

Namespace f 00 is to be anchored on nodes a and b, and is to be accessible from any of the nodes on
the network, and

Namespace bar isto be anchored on nodesc andd, but isto be only accessible from nodesc, d and e.

Date: 9/20/2001 - Revision: 9

Basic MomSys Configuration and Administration 5-3

The following diagram depicts our network, as well the NAMESPACE statements to be inserted within the
respective xi pc. env platform configuration files for creating the desired namespace environments.

Xi pc. env Xi pc. env / .

[NAMESPACE foo:ab] [NA'V'ESPACE foo:ab]

AN
.

Xi pc. env Xl pc. env Xi pc. env \

NAMESPACE foo:ab NAMESPACE foo:ab NAMESPACE foo:ab /
NAMESPACE bar:c,d NAMESPACE bar:c,d NAMESPACE barcd | L~

Namespacef 00 is anchored on nodesa and b, and is generally accessible from the entire network, Thisis
accomplished by inserting in each platform’sxi pc. env file the following NAMESPACE statement:

NAMESPACE foo:a,b
Namespace bar isanchored on nodesc andd, and is only accessible from nodesc, d and e. Thisis accomplished
by inserting within the platform’sxi pc. env fileson nodesc, d and e the following NAMESPACE statement:
NAMESPACE bar:c,d
By not including this statement inthe xi pc. env files of nodesa and b we have made namespace bar

inaccessible from instances on those nodes; that is, they cannot affiliate with namespace bar . Instance affiliation to
namespaces is described in the next section.

Date: 9/20/2001 - Revision: 9

5-4 X+PC Version 3.3.0: MomSys User Guide

5.3 X¢IPC Instance Namespace Affiliation

Once an X+IPC namespace has been defined over anetwork, it becomes possible for X+«IPC instancesto affiliate
themselves with the namespace. As described earlier, the access point for a program to reach an X+IPC namespace is
via an XsIPC instance. A program must first log into an X+«IPC instance (via the XipcL ogin() function call) in order to
access an X+IPC namespace. The namespace that it accesses is the namespace that the instance is “affiliated” with.

An X+PC instance can affiliate itself with at most one X+IPC namespace. An instance establishes its affiliation with a
namespace by declaring so within itsinstance configuration (.cfg) file, by including the following NAMESPACE
parameter statement within the [XI PC] section of that file, asfollows:

Syntax:

[XIPQ
NAMESPACE nanespace- namne

where, namespace-name identifies the specific X+IPC namespace with which the instance will be affiliated.

Example:

[XI PC]
NAMESPACE foo # Affiliate instance with namespace “fo0”

An instance configuration file that doesnot have a NAMESPACE statement will, when started by xi pcst art
create an instance that is not affiliated with any X+IPC namespace.

5.4 X¢IPC Configuration: A Client/Server Example

Wewill now apply these namespace configuration concepts to atypical client/server example; one in which
scalability and simplicity of configuration are critical. Consider an application, having the following requirements:

A TCP/IP network isto be set up as aclient/server environment.

Two nodes will support server programs. We will call these nodes S1 and S2. Server programs may execute on
either S1 or S2. Which server programs are running on which server platforms may change from day to day,
and should therefore be dynamically configured at run-time, without client awareness.

There will initially be three client nodes— C1, C2 and C3 — but the population of client nodeswill vary widely,
with new clients being added and old ones deleted on a continuous basis. The environment must be able to
support these changes dynamically.

S1)

C1 c2 G

Programs running — clients and servers— must be able to exchange asynchronous, guaranteed-delivery
messages in a network-transparent and scal able manner.

Date: 9/20/2001 - Revision: 9

Basic MomSys Configuration and Administration 5-5

5.4.1 AN X+IPC SOLUTION

We will now develop ahigh-level solution to the above set of requirements where X+IPC MomSysis employed as
the messaging infrastructure. The main focus of this exercise will be to study how platform and instance namespace
configuration is employed to address the application’ s scalability needs.

Applying X+IPC MomSys to the above requirements yields the following configuration components:

X+IPC. I\Iammlnnr\p “f.00”

St Catalog Svr. |.envfile] Catalog Svr. [.envfile]
Locd
Instance / | cfgfile g/ |.cigfile
| | |
I
Catalog [.env file | <2 Catalog [.env file] 3 Catalog [.envfile] Future
Clients
Local ocal Nodes
Instance / |.cfgfile o/ |.cigfile Instance / | cfg file

The following points describe the above set of platform catalog and instance configurations:

An X+IPC namespace “f 00” will be established on the network. Namespace “f 00" will be accessible from all
points on the network.

Namespace “f 00” datawill physically be maintained - anchored - on servers S1 and S2 in areplicated manner.

Thiswill provide a high-degree of availability of the namespace so that in the event that either server fails, the
namespace “f 00” will survive. Namespace redundancy and fail-over activity will be transparent to all clients (and
Servers).

Server programs will create app-queues that have well-known names and that will be registered in namespace
“f 00”. Clientswill send messages to these app-queues viatheir well-known names. Clients will receive response
messages on local private app-queues.

The X4IPC platform environment files (the xi pc. env filesreferredtoas“. env file” in the above diagram), to be
configured on servers and clients, will have the following statements:

[CATALOG TCPI P|
NAMESPACE f oo: S1, S2 # Namespace “fo0” anchored on Sl and S2

An X+PC instance will be started on all client and server nodes. These instances will all be affiliated with
namespace “f 00”. Thiswill be accomplished by coding all instance configuration files (referredtoas“. cf g file’
in the above diagram) as having the following [XIPC] sections:

[XIPQ
NAMESPACE f oo # Set instance affiliation with nanmespace “foo0”

Date: 9/20/2001 - Revision: 9

5-6 X+PC Version 3.3.0: MomSys User Guide

5.5 Platform Configuration Parameters

Having examined platform configuration, generally, from the X+IPC catal og namespace perspective, it is now time
to look more closely at the actual contents of the xi pc. env platform configuration file. As described, X«IPC
Version 3 introduces the concept of an X+IPC platform environment. This environment is the infrastructure used for
supporting al X+IPC activity on that platform. Included within the X«IPC platform environment are:

Aninternal (hidden) X«IPC instance for supporting internal interprocess communication
A number of X+«IPC daemon/service programs that operate in the background
The X4IPC catal og for supporting the X+PC namespaces

The X+IPC catal og server program, when started by xi pci ni t, receivesits configuration parameters, from within
the X+«IPC Environment Configuration File (i.e., Xi pc. env) that is set up on that node. The X+IPC platform
environment must be configured properly in order for X+IPC-based applications running on the platform to operate
properly.
The general layout of aplatform configuration (xi pc. env) file,inaTCP/IP environment, is asfollows:

[xipcinit]

. any xipcinit paraneters .

[xi pcl ad]
any xipclad paraneter .

[xi pci ad]
any Xxipciad paraneters .

[xi pci sd]
any Xxipcisd paraneters .

[xi pci cd]

any Xxipcicd paraneters .
[xi pci dl d]
.o any xipcidld parameters .

[xi pcreg]
.. any Xxipcreg parameters .

[xi pcdreg]
any Xxipcdreg paraneters .
[CATALOG
. general catalog paraneters - |isted bel ow .

[CATALOG. TCPI P
TCP/ I P specific catalog paraneters - |isted bel ow .

The completelist of xi pc. env file parameters are described in the X+IPC User Guide and Reference Manual. The
following sections describe the platform environment parameters that relate to the MomSys subsystem, and in
particular those parameters that deal with the X+IPC catalog server that isto run on the platform.

Date: 9/20/2001 - Revision: 9

Basic MomSys Configuration and Administration 5-7

5.5.1 GENERAL CATALOG PARAMETERS

The table below lists the general catal og configuration parameters. Each parameter is presented with its name,
description and default value. The order that parameters appear withinthe[CATALOG section of the

configuration is not significant.

Parameter Name Description Default
Vaue

[CATALOG] Catal 0g section header. - N/A -

MAX_NAMESPACES Maximum number of X+IPC namespaces that can be supported | 8
within the catal og.

MAX_NODES Maximum number of network nodes that can be registered 31
within the catal og.

MAX_INSTANCES Maximum number of instances that can be registered within 31
the catal og.

MAX_APPQUEUES Maximum number of app-queues that can be registered within | 128
the catalog.

5.5.2 PROTOCOL-SPECIFIC CATALOG PARAMETERS

Thetable below lists the protocol-specific catalog configuration parameters for the TCP/IP protocol. Each
parameter is presented with its name, description and a default value, where relevant.

Parameter Name Description Default Vaue
[CATALOG.TCPIF Catalog protocol header for TCP/IP. - N/A -
NAMESPACE Defines an X+IPC namespace. Thereisno default value.

Date: 9/20/2001 - Revision: 9

5-8 X+PC Version 3.3.0: MomSys User Guide

5.6 Platform Utility Commands

X+IPC provides two utility commands for starting and stopping the X«IPC environment on aplatform. These are the
Xi pci nit andxi pct er mutilities, respectively. These utilities refer to the platform’s environment configuration

file for determining the details of the platform environment being started.
5.6.1 PLATFORM STARTUP - XIPCINIT

Xi pci ni t isautility program that must be run on a platform before any other X+IPC work is performed on that
platform. The method for invokingxi pci ni t may be platform-specific. Refer to the X«IPC Platform Notes for the
respective platforms, for details.

Example:
Initialize XJIPC platform environnent

Xi pcinit

5.6.2 PLATFORM SHUTDOWN - XIPCTERM

Xi pct er misautility program that should be run on a platform when a platform is being shut down. The utility
shuts down all underlying X+IPC activity occurring on the platform in an orderly manner. The syntax for invoking
Xi pct er mmay be platform-specific. Refer to the X+IPC Platform Notes for the respective platforms, for details.

Example:
Shut down the X+PC pl at f or m envi r onment

xi pcterm
5.7 MomSys Subsystem - Instance Configuration Parameters

Aswe have seen, X+IPC instances play akey rolein the MomSys programming model. They are the entry pointsfor
programs to access an X+IPC namespace. Furthermore, within an instance, the MomSys subsystem provides the
infrastructure for supporting asynchronous store-and-forward application messaging activity.

Theinstance —and in particular the MomSys subsystem — must therefore be configured properly if the application
messaging needs of adistributed application are to be met.

Notethat if multiple MomSys instances are to be started on asingle platform, each instance must have its
configuration file in a separate directory because MomSys generates filesin that directory that will conflict with
one another.

This section describes the instance configuration parameters that relate to the MomSys subsystem. The parameters
will be presented in the following categories, each addressing a different aspect of MomSys:

Genera X+IPC parameters

General MomSys parameters

M essage Repository parameters
Communication Manager parameters

Protocol specific parameters

Date: 9/20/2001 - Revision: 9

Basic MomSys Configuration and Administration

5.7.1 GENERAL X+IPC PARAMETERS

Thetable below lists the general instance configuration parameters, i.e., parameters that go within the[XI PC]
section of the instance configuration file in support of the MomSys programming model. Each parameter is
presented with its name, description and default value. The order that parameters appear within the[Xl PC]

section of the configuration is not significant. The default values shown do not represent limits for the values that

any particular user may require.

none, meaning that theinstanceis not affiliated with any
namespace.

Parameter Name Description Default
Value
NAMESPACE The name of the X+IPC namespace to affiliate the instance with, or none

5.7.2 GENERAL MOMSYS PARAMETERS

Thetable below liststhe general MomSys configuration parameters. Each parameter is presented with its name,
description and default value. The order that parameters appear within the[MOMSYS] section of the configuration

is not significant. The default values shown do not represent limits for the values that any particular user may

require.

H

Note that when two instances are communicating,
MAX_MSG_LENGTH must be the same for both instances;
otherwise, resultswill be unpredictable.

Parameter Name Description Default
Vaue
MAX_USERS The maximum number of concurrent MomSys users (real users and 32
pending asynchronous operations) that can be supported by the
subsystem.
MAX_DISK_AQ The maximum number of disk-based app-queues. 16
MAX_REMOTE_AQ | The maximum number of remote app-queues to be accessed at any 31
onetime,
MAX_MSG_LENGT The maximum message size. 1024

Date: 9/20/2001 - Revision: 9

5-10 X+PC Version 3.3.0: MomSys User Guide

5.7.3 MESSAGE REPOSITORY PARAMETERS

The table below lists the message repository configuration parameters. They too are part of the[MOMSYS] section
within an instance configuration file. Each parameter is presented with its name, description and default value. The
order that parameters appear within the [MOMSYS] section of the configuration is not significant.

of messages to use MomSys.

If you changethe SLOT_SI ZE inthe .cf g file, and
then attempt to restart an instance xi pcst art may
fail. You must start afresh instanceif you plan to
changethe SLOT_SI ZE.

Parameter Name Description Default Value
TIMEOUT_EXPIRE_MRO The time that incomplete outbound messages are infinite
allowed to remain incomplete within the MRO. Time
is specified asastring such as“12h” or “30m”, etc.,
where the format is“nUNITS’ where UNITSis: s, m,
h,dorw;ori nfi nit e indicating that incomplete
messages are never made eligible for purging.
TIMEOUT_EXPIRE_MRI The time that inbound messages are allowed to remain | infinite
undelivered within the MRI. Timeis specified asa
string such as“12h” or “30m”, etc., where the format
iIs“NUNITS’ where UNITSis: s, m, h, d or w; or
i nfiniteindicating that undelivered messages are
never made eligiblefor purging.
TIMEOUT_RETIRE_MRO Thetimethat “completed” outbound messages are immediate
kept within the MRO after “completing”. Timeis
specified asastring such as“12h” or “30m”, etc.,
wheretheformat is“nUNITS’ where UNITSis: s, m,
h,dorw; ori mmedi at e indicating that completed
messages are immediately made eligible for purging.
TIMEOUT_RETIRE_MRI The time that delivered inbound messages are kept 60m
withinthe MRI after delivery. Timeis specified asa
string such as“12h” or “30m”, etc., where the format
iIs“NUNITS” where UNITSis: s, m, h,d or w; or
i medi at e indicating that delivered messages are
immediately made eligible for cleaning.
SCHED_MR_CLEAN A schedule-string defining when MomSys cleansMRI | 0,30 * * * *
and MRO of expired or retired messages, or the string
“ » T . - (Clean occurs
none”. (The syntax of aschedule-string is defined in every 30
“Scheduling Automatic MR Cleaning” later in this ey
: minutes)
Guide))
MODE_MR_CLEAN Some combination of the following three keywords: STARTUP
SCHEDULED
STARTUP — indicating that MR clean isto occur at CONTI NUOUS
instance start. (all three
SCHEDUL ED — indicating that MR clean isto occur expressed as a
based on value of SCHED _NMR_CLEAN single parameter,
CONTI NUOUS — indicating that a partial, but :eparated by
) paces)
incomplete, clean should occur on-the-fly.
SLOT_SIZE MRI Should be set to the 90%-tile message size (in bytes) 256

Date: 9/20/2001 - Revision: 9

Note that it isnot possible to have MRI databases
from two instances sharing asingle directory; naming
conflictswill occur. In such a case, set the two
instances' DATABASE_MRI parametersto point to

separate file-system directories.

Basic MomSys Configuration and Administration 5-11
Parameter Name Description Default Value
MAX_FILES MRI Maximum number of disk filesto be used by MRI 512
FILE SIZE MRI Initial size of MRI fileswhen created (in KBs). 1024
(=1MB)
MAX_MAPPED_MEMORY_M | Maximum bytes of MRI data mapped into system at 32768
RI any onetime (in KBs). (=32MB)
SLOT_SIZE MRO Should be set to the 90%-tile message size (in bytes) 256
of messages to use MomSys.
If you changethe SLOT_SI ZE inthe .cf g file, and
then attempt to restart aninstance xi pcst art may
fail. You must start afresh instanceif you planto
changethe SLOT_SI ZE.
MAX FILES MRO M aximum number of disk filesto be used by MRO 512
FILE SIZE MRO Initial size of MRO fileswhen created (in KBs). 1024
(=1MB)
MAX_MAPPED MEMORY_M | Maximum bytes of MRO data mapped into system at 32768
RO any onetime (in KBs). (=32 MB)
DATABASE_MRI Path of inbound message repository. Path of instance
. cf gfile

DATABASE_MRO

Path of outbound message repository.

Path of instance

MRO

messages areto bejournaled. It may be the same as
the above filename. (See note below.)

Note that it isnot possible to have MRO databases - cfgfile

from two instances sharing a single directory; naming

conflictswill occur. In such acase, set the two

instances’ DATABASE_MRO parameters to point to

separate file-system directories.
JOURNAL_EXPIRED MSGS The fully quaified filename in which expired MRI No default
MRI messages are to be journaled. (See note below.)
JOURNAL_RETIRED MSGS Thefully qualified filenamein which retired MRI No default
MRI messages are to be journaled. 1t may be the same as

the above filename. (See note below.)
JOURNAL_EXPIRED_MSGS The fully qualified filenamein which expired MRO No default
MRO messages are to be journaled. (See note below.)
JOURNAL_RETIRED_MSGS The fully qualified filename in which retired MRO No default

NOTE: If any journal parameter is not specified, no journaling occurs for that message class. Thetwo MRI
filenames may both refer to the samefile, as may the two MRO filenames, but no one file may be specified asthe

journa filefor both MRI and MRO messages. For example, JOURNAL _EXPI RED _MSGS_MRI

and

JOURNAL _EXPI RED_MSGS_MROmust be distinct if they are both specified. Thereisno default journal file.

Date: 9/20/2001 - Revision: 9

5-12

X+IPC Version 3.3.0: MomSys User Guide

5.7.4 COMMUNICATION MANAGER PARAMETERS

The table below lists the communication manager configuration parameters. They too are part of the [MOVEYS]
section within an instance configuration file. Each parameter is presented with its name, description and default
value. The order that parameters appear within the[MOVSYS] section of the configuration is not significant. The
current version supports a single communication manager parameter.

Parameter Name

Description

Default Vaue

MAX_INSTANCES LINKS

Maximum number of remote instances that can be 31
linked to thisinstance at any onetime.

5.7.5 PROTOCOL SPECIFIC PARAMETERS

Thetable below lists the protocol-specific MomSys configuration parameters for TCP/IP. Each parameter is
presented with its name, description and default value.

TERVAL

Parameter Name Description Default
Vaue
[MOMSYS.TCPIF] MomSys protocol header for TCPIP. -N/A-
LINK_RETRY_INTERVAL The time between retries of trying to create anew link. Time 60s
is specified asastring such as“12h” or “30m”, etc., where
theformat is“nUNITS” where UNITSis. s, m, h, d or w.
LINK_PING_INTERVAL The time between internal instance-ping messages sent to 120s
check if remote instances are still active. Timeis specified as
astring such as“12h” or “30m”, etc., wheretheformat is
“nUNITS’ where UNITSis: s, m, h, d or w.
LINK_PING_TIMEOUT The wait time for hearing aresponse to an instance-ping. If 60s
no response is received, the link to the remote instanceis
assumed down.
MSG_RESPONSE TIMEOUT The wait time for receiving an internal “ack” on an 60s
application message forwarded to aremote instance.
QUEUE_PROBE_TIMEOUT Thewait time for aresponse to an internal queue-probe 10s
message. If no response is received the queue probefails.
QUEUE_PROBE RETRY_IN The time between queue-probe attempts. 120s

5.8 Instance Utility Commands

Asdetailed in the X+IPC User Guide and Reference Manual, two utilities are provided by X«IPC for starting and

stopping an X«PC instance. They arethe xi pcst art and xi pcst op utilitiesrespectively. X+«IPC instances may
also be started and stopped under program control viathe XipcStart() and XipcStop() function calls. Thesetoo are
described in the X+IPC User Guide and Reference Manual documentation.

Thexi pcstart andxi pcst op utilities reference an X+IPC instance configuration file for determining the

configuration details for the instance being started or stopped. The general format for instance configuration filesis
described in the X+IPC User Guide and Reference Manual. The following sections discussxi pcst art and

Xi pcst op from the perspective of the MomSys subsystem.

Date: 9/20/2001 - Revision: 9

Basic MomSys Configuration and Administration 5-13

5.8.1 INSTANCE STARTUP - XIPCSTART

Recall that in the MomSys programming model the role of the X+IPC instance is to act as an entry point for local
processes to access an X+«IPC namespace. Accordingly, the name assigned to the instance at create time may be
flagged asbeing “local”, sinceit will, typically, only belogged into by local processes.
Example:

Start XIPC instance using config file /usr/harvey/applic.cfg

Instance is assigned (local) nane “abc”

xi pcstart -1 abc /usr/harvey/applic

Once the above instance has started, user programs can begin accessing it via calls to the XipcL ogin() function,
such as the following:
/ *
* Log in to instance “abc”
*/

Xi pcLogi n (“@bc”, “SoneUser”);
5.8.1.1 Instance Recovery

Xi pcst art isinstrumental in performing the recovery of aninstance (i.e., its disk-based MomSys message data)
following a“disorderly” system termination such as a hardware failure. Whenxi pcst art executes, it recovers
the state of the non-volatile MomSys subsystem to the state that it was in the last time the instance was active.

The effect of thisisthat if the instance being started wasnot stopped in an orderly manner during itslast episode,
Xi pcst art performs the necessary datarecovery steps before bringing the instance up. This step can take afew
moments, depending on the volume of MomSys message data resident within the instance.

5.8.1.2 Starting a Clean Instance

Occasionally, it isuseful to start an instance without recovering any of the instance’ s prior data. In such acase, the
“initialize” flag is specified as part of thexi pcst art operation. Whenxi pcst art executes, it ignores and
deletes any state information about the instance’ s prior activity. The started instanceis given aclean slate asiif it
never had been started and used in the past.

Refer to the description of the xi pcst ar t utility and the XipcStart() API found in the X+IPC User Guide and
Reference Manual for additional details.

5.8.2 INSTANCE SHUTDOWN - XIPCSTOP

Xi pcst op isemployed for stopping an instance. The syntax for invokingxi pcst op is platform-specific and is
described in the X+IPC User Guide and Reference Manual.

Date: 9/20/2001 - Revision: 9

5-14 X+PC Version 3.3.0: MomSys User Guide

5.9 Interactive Command Interpreter - “Xi pc>"

The X+IPC interactive programis an additional tool that may be used to develop, test and later support MomSys-
based applications. All MomSys verbs are accessible interactively using this utility. The syntax for executing X+«IPC
interactive commands s defined individually per API definition in the MomSys Reference Manual.

It isthus possible to perform numerous tasks without having to write‘C’ programs. Examples include:
Cresting, Deleting an app-queue

Sending messages to an app-queue

Receiving messages from an app-queue

Defining MomSys events

Getting statistics on: users, app-queues, instance communication links, etc.

5.9.1 SAMPLE USAGE OF MOMSYS INTERACTIVE COMMANDS

This section presents a selection of sample sessions with the X+IPC Command Interpreter for performing MomSys
operations. The examples demonstrate the types of situations where using the interactive tool can provide important
time-saving devel opment assistance. [Note: the xi pcl ogi n and xi pcl ogout verbs are described in the X«PC
User Guide and Reference Manual.

Sample 1: Access AQid handle to app-queue “xyz” and then send a message to app-queue.
xi pc> xi pcl ogi n @oneLocal | nst ance SomeUser
ud =14

xi pc> r.mr-m(.:cess @yz
AQd =1.3

xi pc> fmr.rsénd 1.3 “hello worl d” normal shipped a wait
Ret Code = 0

Xi pc> >.<i bcll ogout
Ret Code = 0

Sample 2: Create app-queue “xyz” then receive the first message fromiit.
Xi pc> xi pcl ogi n @onelLocal | nst ance SoneUser
ud=3

xi pc> r.mr.rcr'eate Xyz
AQd =1.0

xi pc> ﬁofrréceive 1.0 first a wait
Text = "hello world", Length = 11

xi pc> Xi bcll ogout

Ret Code = 0

Refer to the X+IPC User Guide and Reference Manual for a detailed description of the interactive command
processor, in general, and to the MomSys Reference Manual for MomSys-specific syntax definitions.

Date: 9/20/2001 - Revision: 9

Basic MomSys Configuration and Administration 5-15

5.10 Monitoring MomSys Activity

Aswith the other X+IPC subsystems, MomSys supports a monitoring tool for program debugging, application
monitoring and system administration.

5.10.1 MOMVIEW MONITOR AND DEBUGGER

X+IPC includes full-screen interactive monitors that provide continuous real-time views of the activities occurring
within an instance’s MomSys subsystem.

The monvi ew utility supports the monitoring of MomSys activity within an instance. The following types
of information are provided:

Application queue data - number of messages sent / received, activity counters
Users - activity counters, blockage information details

Messages - contents browsing, contents searching

Communication manager - instance-link status and activity counters

The monitoring facility does not require that applications be specially prepared for monitoring (e.g. "debug" mode).
The facility can be invoked for any active X+IPC instance, including those of production systems out in the field,

without any extra provisions, and without incurring performance overhead in the application when monitoring is
not in use.

5.10.2 STARTING MOMVIEW
nonvi ew takes the following (optional) arguments, in any segquence :

The initial "interval" snapshot setting: This argument defines, in milliseconds, the initial update
frequency of the monitor. The default value is 1000 milliseconds.

The instance name to be monitored: The default value is the string value of the "XIPC" environment.

Example:

monvi ew 2000 @sonel nst ance

The above command starts the monmvi ewmonitor for the " @Somel nstance” instance. Theinitial update interval is
set to 2000 milliseconds.

5.10.3 MOMVIEW LAYOUT

nmonmvi ew smain display is matrix-like in appearance. Users logged into the subsystem and existing MomSys app-
gueues form the axes of the matrix. Interaction between users and app-queuesis displayed in the body of the
“interaction matrix.”

MomSys operations that block asynchronously are treated as pseudo-users of MomSys. These Asynchronous Users
are displayed in the same manner as ordinary users, thus providing a consistent visual display of all pending
MomSys asynchronous operations.

Date: 9/20/2001 - Revision: 9

5-16 X+PC Version 3.3.0: MomSys User Guide

The following schematic diagram describes the various regions of monmvi ew smain display window:

Status
Interval App-Queuss...
Users User - Queue
Interaction
Matrix
Command Statistics Capacity

Monitor status and interval setting is shown at the top left portion of the screen. MomSys statistics and capacity
dataisdisplayed at the lower portion of the screen. The command entry window is at the lower left of the screen.

Thefollowing is asnapshot of atypical nomvi ewdisplay:

"4 Command Prompt - momyiew

Version: 3.0.0 33

Instance: c:
APP-QUEUES H 1.0
1000

!ﬂueryﬂue
USERS
01 Homlliew

Fdisk

0/disk

S R O

03 Replicat
04 Serverl H
05 Server? RCUD 29

i
i
+
02 Gateway H -
!
[
1

RIPC MomSys Monitor e
“dannyiproduceritestp [Testfipp]
1.2
TransQue
0/disk
Drdisk

nat-first

Disk(s:
Hem (s:
Bmt 0s:

Hov 11 142162389

2410
0/10
0/10

Notice that the registered name of the instance being monitored is“Test App”. Note, aswell, that thisinstanceis
based onthe“c: \ danny\ producer\t est p. cf g” Instance Configuration File. There are two app-queues
within theinstance; they are“Quer yQue” and“Tr ansQue”. There are aso four user currently logged into the
instance. User and app-queue display elementswill be described below.

5.10.3.1 User Entries

Userslogged into the instance are listed on the left side of the interaction matrix, one line per user.

Each user entry includes:
The user's MomSys user ID.
The user's login name.

The user's blocking status (if any).

The blocking timeout value (if any).

Date: 9/20/2001 - Revision: 9

Basic MomSys Configuration and Administration 5-17

In the above example, notice that User 5, logged inas" Ser ver 2," is blocked on aMomReceive() operation and
has atimeout pending. 29 seconds remain until the operation times out.

5.10.3.2 App-Queue Entries
The instance's app-queues are identified across the top of the interaction matrix.

Each app-queue entry includes:

The AQid of the queue. [Note that an AQid is presented as a two-integer value, e.g., 1. 0 . The second
integer (the 0) is an index into a table of app-queues. The first integer (the 1) is the episode that this
index has been used. Thus, dter deleting AQid 1. 0, and creating another app-queue that is given
index 0O, the AQid of that newly created app-queue will be 2. 0]

The user-assigned name of the queue.

The app-queue's message count.

The app-queue's byte count.
5.10.3.3 Interaction Matrix Cells

Each cell onthe nonvi ewinteraction matrix describes the current relationship between an instance user and an
app-queue. In the above example, notice that the intersection cell between “Ser ver 2” and “Tr ansQue”, has
“nat - first” displayed, indicating that the user iswaiting to receive the first message from the app-queue’ s
natural sequencing of messages.

5.10.4 MOMVIEW ZOOM WINDOWS

nonvi ew provide the user with avariety of zoom windows for acquiring extended information about some aspect
of the MomSys subsystem..

5.10.4.1 Zooming in on a User

Thenomvi ew user zoom window creates a detailed display of the status of a particular MomSys user. The
command string for user zooming is"zuN" where N is the Uid to be zoomed on.

Example:
The command for opening a zoom window on the user having Uid of 5is:
Command> zu5

Thefollowing display is produced:

Date: 9/20/2001 - Revision: 9

5-18 X+PC Version 3.3.0: MomSys User Guide

mmand Prompt - momvyiew

Version: 3.0.0 % HIPC MomSys Monitor e Hov 11 1#:18:25"
Instance: c:hdannviproduceritestp [Testipp] 1

APP-QUEUES » 1 1.0 1.2

1000 1QueryQue Trans{Que
USERS 27/disk 0/disk
01 Homliew 0fdisk

SN N S

02 Gateway - -
03 Replicat - _—
04 Serverl H - _—
0% Server?

i Status: Hot Blocked Hame ,Uid: Server?,h
Pid,Tid - 167,0
Sent: 2 JSs: 0.0 n.o Login : How 11 14:0%

List:

o ————

420 : Disk(s: 210]
0/31 & Mem (s: 010«
Rt (s: 010 ¢

2

A zoomwindow is opened on User " Ser ver 2". Init, on the left side of the window, we see that the user is:
currently “Not Bl ocked”; has sent two messages and received none since logging in; and has no outstanding
asynchronous operations pending. On the right side we see more static information about the user.

Notice aswell the“/s’ (i.e., “ per-second”) values provided for sent and received messages. These values track the
rate that messages are sent and received by the zoomed user.

5.10.4.2 Zooming in on a Queue

The queue zoom window provides a compl ete report of a queue's current status. The command string for zooming
onaqueueis"zgN" where N isthe Qid to be zoomed on.

Example:

The command for opening a zoom window on message app-queue 1.2 is:
Command> zql. 2

5.10.4.3 Zooming in on the Message Repository

A zoom window is provided for providing a complete report of an instance’ s message repository status. The
command string for the message repository zoomwindow is:

Command> znr

5.10.4.4 Zooming in on Instance Links

The link zoom window provides a complete report of a particular instance-link. The command string for zooming
on an instance-link is"zI N' where Nisthe Link-Id to be zoomed on.

Date: 9/20/2001 - Revision: 9

Basic MomSys Configuration and Administration 5-19

Example:

The command for opening a spool zoom window on message queue 6 is.
Command> zl| 6

Refer to the “Instance Links’ window section below for a description of the full-screen instance-links
window.

5.10.4.5 Zooming in on MomSys Subsystem Status

A zoom window is provided for providing a complete report of an instance’ s general status. The command string
for the subsystem zoomwindow is:

Command> zs

5.10.5 GENERAL MOMVIEW COMMANDS

The following are the general commands that are supported from the mainnmonvi ewwindow:

in Set timeinterval ton milliseconds. Example: i 100.

zun Zoominonusern. Example zu5.

zgn Zoominon app-queuen. Example zql. 2.

zln Zoominoninstance-link n. Example zI . 3

Zs Zoom in on general subsystem status information. Example: zs

znr Zoom in on Message Repository (MR) status information. Example: znr

znri Zoom in on detailed Message Repository input (MRI) information. Example: znt i
znr o Zoom in on detailed Message Repository output (MRO) information. Example: znr o
u Un-zoom, close the zoom window.

I q View local app-queues (Thisisthe startup mode.)

rq View remote app-queues

pun Pan view to user n. Example: pu3

pgn Pan view to queue n. Example: pql. 4

po Pan view to “origin”, (i.e., first app-queue, first user)

| Open the “Links” window to view the status of instance-links. Refer to the Links Window
Commands below for the list of commands that can be performed from within the Links window.

bn Open the “Browse” window to browse the contents messages on queue n, following the natural
sequence. (Example: b2. 4 opens the browse window on app-queue 2.4) . Refer to the Browse
Window Commands below for the list of commands that can be performed from within the Browse
window.

q Quit. Exit the monitor

Date: 9/20/2001 - Revision: 9

5-20 X+PC Version 3.3.0: MomSys User Guide

5.10.6 BROWSING MESSAGES WITH MOMVIEW

Queue and message browsing is an important feature of X+«IPC MomSys. Using this capability, a programmer can

verify amessage's format or search for specific Hex or ASCII message patterns. The browse facility usesafull
screen window for displaying message data. Browsing isinitiated using the command string "bN", where Nisthe

AQid to be browsed.

Example:
The command to initiate browsing of AQid 2. 0 within an instance is:
Conmand> b2.0

Thefollowing is a sample display from the browse window:

ommand Prompt - momview 1250
1 1.0.0 #x% RIPC MomSys Monitor e

d: Z.0l Messages: 2 bBytest |
Length = 127 Priority = 32768 TimeSent = Dec 09 10:44:57

I
|
I
I
|
I
I
I
I
|
|
|
|
I
I
I
I
|
I
|
|
I
I
I
I
|
|
|
|
|
I
I
I
|
|
|
|
|
I
I
I
|
|
|
|
|
+
I
I
|
|
|
|
|
I
I
I
|
|
|
|
|
I
I
I
|
I
|
|

LO636RTI 20697320 61207361 6d706ch5 206d6573 | This is a sample mes
13616765 206F6e20 6162061 70702471 75657565 Sage on an app-queue
2e20betf 7H696365 2063677 20746865 2062726F - Hotice how the bro
TII3652d 776%6ebdy GF772061 bobebf77 73207068 | wse-window allows th
65206d65 73736167 6520706F 20626520 T6696577 | e message to be view
6LER2069 6e204885 SB206F72 204815343 49492066 | ed in HER or ASCII F
6f726d61 74732e ormats.

The top line identifies the app-queue being browsed, in the above example “updat eQ’. The next line identifies
the message within the app-queue currently being viewed. In the above example, the second message on the natural
(FI FO #2) sequence is being shown. The message is 127 bytesin length, has a priority of 32768 (thisisNORMAL

X¢PC priority), and was sent Dec. 9 at 10:44:57. Note that momview can browse messages up to 10k bytes.

The body of the screen presents the message text in hex and ASCII formats. Offsets into the message are posted
along the left margin.

5.10.6.1 Browse Facility Commands

Navigating in and about app-gqueues and individual messages is accomplished using the browsefacility commands.

Date: 9/20/2001 - Revision: 9

Basic MomSys Configuration and Administration 5-21

5.10.6.1.1 MOVING AROUND ON AN APP-QUEUE

Moving from message to message on a given app-queue can be done in a variety of ways:
Command Effect

P (right arrow) Move to the next message on the current sequence.

U (leftarrow) Moveto the previous message on the current sequence.

n Move to the nth message on the current sequence
+n Move forward n messages.

-n Move backward n messages.

f Move to the first message on the current sequence.

I Move to the last message on the current sequence.

Move commands work only where they make sense. Otherwise the command isignored.
5.10.6.1.2 MOVING AROUND WITHIN A MESSAGE

Moving about within a message is accomplished using the following commands:
Command Effect

Y (up arrow) Scroll the current message up one line.

3 (down arrow) Scrollsthe current message down oneline.

PAGE- UP Scroll the current message one page up.

PAGE- DOAN Scroll the current message one page down.

HOVE Scroll the current message to its top.

END Scroll the current message to its bottom.

Scrolling only works where it makes sense. Otherwise the command isignored. Searching for a pattern within a
message will cause the message to scroll to the offset where the pattern is found.

5.10.6.1.3 STRING PATTERN SEARCHING

Forward ASCI| pattern searching is executed by specifying a pattern between two '/* characters and hitting return.
Backward searches are specified using two '\' characters. Pattern searches can be kept confined within asingle
message (local), or they can cover all the messagesin the current queue (global). Global search commandsusea'g’
prefix. Loca searches require no prefix.

The second bracket character is not always necessary, as will be demonstrated in the following examples.
Repeat patterns are remembered. The following examples demonstrate these points:

Command Effect

/ ABC/ Search forward in the current message for the string " ABC".

/1 Repeat the search.

/ Same,

\ABC\ Search backwardsin the current message for the string " ABC".
\\ Repeat the search.

\ Same,

o/ABC/ Searchforward for " ABC" through all messages to the end of the queue.

Date: 9/20/2001 - Revision: 9

5-22 X+PC Version 3.3.0: MomSys User Guide

al/ Repeat the search.

g/ Same.

g\ABC\ Search backwardsfor " ABC" through all messages to the start of the queue.
g\ Repeat the search.

g\ Same.

5.10.6.1.4 HEXADECIMAL PATTERN SEARCHING

Searching for Hexadecimal patterns is very similar to ASCII pattern searching. The only differences are that the
pattern specified isaHex string, and that an 'x' is appended to the end of the search command.

Command Effect

14£37/x Search forward for the hex pattern " 4f37" within the current message.
g/4f37/x Same search, but forward through all messages on the queue.

g/l x Same

\4f37\x Searches backwards for the hex pattern " 437" within the current message.
g\4f37\x Same search, but backwards through all messages on the queue.

g\\x Same

5.10.6.1.5 SWITCHING TO ANOTHER APP-QUEUE

Switching to browse another app-queue is accomplished using the "bN" command as described above.

5.10.6.2 Exiting the Browse Facility

The browse facility is exited using the "q" command. Once browsing is terminated, the QueSysinstanceis
unfrozen.

Example:
Command: g

5.10.7 MONITORING INSTANCE LINKS - THE “LINKS” WINDOW

nmonvi ewalso provides awindow for monitoring the details of instance-links activity occurring within MomSys.
Thiswindow isthe Instance-Links (“links”) Window. The links window provides adetailed picture of al the links
that exist within MomSys, including asummary of those that are active, inactive, etc.

A links window is opened using the command string " | " . The links window uses the top 3/4 of the monitor
screen. The system statistics and command windows remain visible at the bottom of the screen.

Date: 9/20/2001 - Revision: 9

Basic MomSys Configuration and Administration 5-23

Thefollowing isasample display from an “instance-links” window:

"4 Command Prompt - momview
Version: 3.0.0 3% JIPC HomSys Monitor eex

Linksz 3 7 31 ¢ %) Sent:
1Protocol} Instance 15tat]] l1Backlog]
TCPSIP

TGP/ IP
TCPAIP

1
|
1
|
|
1
|
1
1
|
1
1
|
1
1
|
1
1
-
:
|
1

12709 10:43
12709 11:33
12709 14243

titan-consumer
phoebe:test
juno-test1

+
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

o e e e e e e e e
e e e e e e e o
e e e e e e e o

Each row in the table reports another instance-link existing within the monitored instance. Various dataitems are
provided per instance-link.

5.10.7.1 Links Window Commands

nonvi ew commands can be used from within the links window in the same manner that they are used from
the main monitor window. Examples:

Command Effect

in Set theinterval ton milliseconds flow mode
bn Browse the contents of app-queue n

q Exit the links window

Additional commands are available that are specific to the links window. They provide a means for scrolling
within the links data. These commands are:

Command Effect
pn Pan view to instance-link n. Example: p5
po Pan view to ‘origin’, (i.e., first instance-link)

Scrolling only works where it makes sense. Otherwise, the command isignored.
5.10.8 LOCAL AND REMOTE APP-QUEUE DISPLAY MODES

Themomvi ewmonitor’ s main window, when first brought up, presents app-queue data regarding local app-
gueues, within the monitored instance.

It is possible to change the monitor mode so that it display data regarding the remote app-queues known to the
instance, asfollows:

Example:
Comrand> rq

Date: 9/20/2001 - Revision: 9

5-24 X+PC Version 3.3.0: MomSys User Guide

The above command causes the monitor’ s main window to display remote app-queue data. Returning to the local
app-queue display mode is accomplished as follows:

Example:
Comrand> | g
5.10.9 PANNING WITHIN MOMVIEW’'S MAIN WINDOW

Panning withinmonmvi ew s main window lets the devel oper observe different sections of the interaction matrix.
Thisis useful when azoom window is open and parts of the matrix are not visible.

All "panning" commands start with 'p".
Vertical panning (up and down) to observe other usersis done by specifying a'u' (for user) and aUid to pan to.
Example:

Command> pu8

The above command scrolls the interaction matrix so that Uid 8 is at the top of the display.

Horizontal panning (right and | eft) to monitor other queues is accomplished specifying a'q’ (for app-queue) and a
AQid to panto.

Example:

Comrand> pql. 4
The above command scrolls the interaction matrix so that AQid 1.4 isthefirst displayed (Ieft-most).
Example:

Commrand> po

The command "po*" returns the display to the origin of the activity matrix.
5.10.10 STOPPING MOMVIEW

nonvi ew monitoring isterminated viathe 'q' command.

Example:

Comrand> g

Bringing down nonvi ew has no effect on the underlying MomSys activities. It continues to function unaffected.
Any overhead incurred by monitoring is eliminated.

Date: 9/20/2001 - Revision: 9

Advanced MomSys Programming Functionality 6-1

6. ADVANCED MOMSYS PROGRAMMING FUNCTIONALITY

6.1 Message Prioritization

The MomSend()function call defines a means for assigning prioritization to the message being dispatched relative
to other messages in the system. The Priority argument to MomSend() is arelative value. It provides a means for
indicating what urgency should be assigned a given message as the message progresses through the system
relative to other messages al so moving within the system. The term “as the message progresses through the
systent isageneral statement that actually can be seen as having two discrete phases: The tripto the targeted app-
gueue; and the trip through the targeted app-queue.

6.1.1 TWO STEPS IN A MESSAGE'S TRIP
From aprioritization perspective, MomSys messages complete their assigned trip in two steps. They are:
The trip to the targeted app-queue

The trip through the targeted app-queue.
This can be visualized asinthe following diagram where amessage is sent from process A to process B.

N 4

v

j -

To the app-queue Through the app-

The Trip of aMessage

6.1.1.1 The Trip To the Targeted App-Queue

Thefirst phase of a MomSys message’ s movement to itstargeted app-queue is referred to as “the trip to the app-
queue.” As depicted in the above diagram, this phase starts from the point that the message is handed off to X«IPC

MomSys (viaacall to MomSend()) and continues until the message has been safely placed on the targeted app-
gueue. During this phase a message is continuously pushed forward towards its target.

6.1.1.2 The Trip Through the Targeted App-Queue

The second phase of aMomSys message’ s movement is referred to as “the trip through the app-queue.” As shown
in the above diagram, this phase starts from the point that the message has been safely placed on the targeted app-
gueue and continues until the message is received from the app-queue.

During this phase, messages are competing with other messages on the app-queue. Thus, messages with higher
priorities are pushed to the front of the app-queue’ s priority sequencing.

Aswe will see shortly, X+IPC provides the semantics for specifying a message' s priority asasingle valuethat is
applied to both legs of itstrip, or astwo discrete values for fine-tuning each leg separately.

Date: 9/20/2001 - Revision: 9

6-2 X+PC Version 3.3.0: MomSys User Guide

6.1.2 SPECIFYING MESSAGE PRIORITY VALUES

X+IPC MomSys employs a continuous scale of integers for expressing valid priority values. The lowest possible
priority valueis 1. The highest possible valueis 65,535. The mid-way value, 32,767, is considered a“normal”
priority. X+«IPC provides predefined definitions for these values. They are:

MOM_PRIORITY_LOWEST 1
MOM_PRIORITY_NORMAL 30767
MOM_PRIORITY_HIGHEST 65535

In fact, apriority value may be expressed asany integer between 1 and 65535. X+IPC views them relative to one
another: the higher the value, the greater the urgency.

Consider the following example:

/*

* Send a message having a NORVAL priority for its entire trip.

* The NORVAL priority value will apply to both legs of the trip.
*/

Mnsend (. . ., MOMPRIORITY NORVAL, . . .);

One could have similarly called MomSend() as follows to send a message having aslightly higher priority:
/*
* Send a message having a slightly higher than NORVMAL priority for its entire

* trip. The priority value will apply to both legs of the trip.
*
/

Mnsend (. . ., MMMPRORTY NORVAL + 1, . . .);

In the next example, we will send amessage that will have ahigh priority for getting through the system to the
target app-queue, but it will be assigned anormal priority relative to other messages once on the app-queue.
/*
* Send a message having HHGH priority for the trip to the app-queue.

* Message priority through the app-queue shoul d be NORVAL.
*/

MontSend (. . ., MOM PRI ORI TY(MOM PRI ORI TY_HI GHEST, [* Trip to app-queue */
MOM_PRI ORI TY_NORVAL /* Once on app-queue */

)
)

The ability to expresstwo separate priority values for each leg of amessage’ s movement is provided by the
MOM_PRI ORI TY() macro. Thismacro is specified asthe priority argument to MomSend(). The macro takes two

valid priority values as its two arguments. The first value isthe “trip to the app-queue priority” while the second
value is the “trip through the app-queue priority.”

Refer to Appendix B “Message Priority Specification” for additional information about thistopic.

Date: 9/20/2001 - Revision: 9

Advanced MomSys Programming Functionality 6-3

6.2 Application Message Load Management

6.2.1 LOAD SHARING

The MomSys programming model makes it natural for multiple server programsto serve requests arriving on a
common application-queue.

By building the server programs so that they receive the next request off the common app-queue, it is quite easy to
build application server architectures that can scale to handle awide-range of traffic loads without having to make
any special coding provisionsin either the server or client programs.

6.3 MomSys Events

MomSys provides a means of monitoring the subsystem and notifying the application when certain user- defined
events occur. This allows the application to take the appropriate action to handle the event.

6.3.1 THE MomEvent() FUNCTION

The MomEvent() function takes two arguments:
EventDescr Description of MomSys event to be monitored
Notification Notification option for announcing the occurrence of the event

These are now described.
6.3.2 SUPPORTED MOMSYS EVENTS

The following table defines the events that can be tracked. (The current version supports one MomSys event.)

MOM_EV_MSG_STATUS(Msgld, Status) This event occurs when a previously sent message,
identified by Msgld, attains a message status of Status.
Refer to the MomSys User Guide, Appendix A,
Message Status and Tracking Levels, for details on the
various stages of a message’ s movement from sender
to receiver process.

MOM_EV_APPQUE_MSGS HI(Agid, NumMsgs) This event occurs when the number of messages on a
local appqueue is greater than NumMsgs.

MOM_EV_APPQUE_MSGS LOW(AQid, NumMsgs) This event occurs when the number of messages on a
local appqueue is less than NumMsgs.

Date: 9/20/2001 - Revision: 9

6-4 X+PC Version 3.3.0: MomSys User Guide

6.3.3 MomEvent() “NOTIFICATION” OPTION

Thefollowing table briefly lists the possible notification optionsthat may be specified when calling MomEvent().
More detailed descriptions may be found in the MomEvent() manual page in the MomSys Reference Manual.

MOM_WAIT The calling process blocks synchronously until the event occurs.

MOM_TIMEOUT(t) The calling process blocks synchronously for up tot seconds until the
event occurs.

MOM_NOWAIT The calling process synchronously checks the status of the event and
returnsimmediately. This Notification argument can be used for polling
an event, where such an approach is appropriate.

MOM_CALLBACK(Func, & Acb) MomEvent() returnsimmediately after registering the event. The
specified callback function isinvoked when the specified event occurs.

MOM_POST(Sd, & Ach) MomEvent() returns immediately after registering the event. The X+IPC
semaphore identified by Si d is set when the event occurs.

MOM_IGNORE(& Achb) MomEvent() returnsimmediately after registering the event. The Acb’ s
completion flag is set when the event occurs.

MOM _SPAWN(Command, &Acb) | MomEvent() returnsimmediately after registering the event. The program
specified by the Command string is started when the event occurs, and
the Acb’scompletion flag is set aswell. (Notethat the Acb pointer can
be NULL.)

Command must be the path of an executable program. The Contrand
string should not include any command arguments. It isnot possibleto
pass parameters to the started command.

Consider the following example:

/*

* Set event to automatically start program“HeGotlt” when a sent message achi eves
* the status of MOM STATUS DELI VERED.

*/

MOM MSG D Ret Msgl d;
ASYNCRESULT Acb;

Ret Code = MonBend(SonmeAQ d,
“hell o worl d”,
12L,
MOM PRI ORI TY_NORMAL,
MOM_TRACK_DEL| VERED,
MOM_REPLY_NONE,
&Ret Msgl d,
MOM VAI T) ;

Ret Code = MonEvent (
MOM EV_MSG STATUS(Ret Msgl d,
MOM_TRACK_DELI VERED) , /* Set nsg event */
MOM_SPAWN(“ HeGot It ", &Acb)) ; /* Programto spawn */

An optional MOM_RETURN flag may be specified as part of the MomEvent() call. Thisis done by ORing it to the
operation’s Notification argument, asin the following example:

MonEvent (. . ., MOM RETURN | MOM CALLBACK(User Cal | Back, &UserAch,));

Date: 9/20/2001 - Revision: 9

Advanced MomSys Programming Functionality 6-5

The MOM_RETURN flag (which is only valid when accompanying one of the three asynchronousblocking options,
MOM_CALLBACK, MOM_POST or MOM_| GNORE) directs X+IPC to complete the operation synchronously if thereis
no need to block, and to “go asynchronous” only if the operation cannot be completed immediately. Thisflag
allows a user to issue aMomEvent() call for creating an asynchronous event handler only if the event state has not
occurred. Otherwise the function call returns synchronously with areturn code of 0 indicating that the event state
has occurred.

Events created by MomEvent() are by default attached to the creating X+IPC user. This means that, when the user
logs out, the event is deleted from the system. The user may override this by logically ORing the
MOM_EV_DETACHED flag to the left of the Notification option, in which case the event isnot associated with the
creating user.

In such a case, the user may create the event and then log out and even terminate, and still, when the event occurs,
the requested action will take place.

Example:

/*
* Set event to automatically start program“HeGotlt” when a sent nessage achi eves
* the status of MOM STATUS DELI VERED.

MOM EV_DETACHED flag all ows user to log out and exit after sending the nessage
and creating the event.

/

* %k X %

ASYNCRESULT Acb
MOM MSGA D Ret Msgl d;

Ret Code = MonBend(SomeAQ d,
“hello worl d”,
12L,
MOM_PRI ORI TY_NORVAL,
MOM TRACK _DEL| VERED,
MOM _REPLY_NONE,

&Ret Msgl d,
MOM WAI T) ;
Ret Code = MonEvent (
MOM EV_MSG STATUS(Ret Msgl d,
MOM_TRACK_DEL| VERED) , /* Set nmsg event */
MOM EV_DETACHED | MOM SPAWN(“HeGot It”, &Acb)) ; /* Detach fromcaller */
/* Specify pgmto spawn */
Ret Code = Xi pcLogout ();
exit();

By specifying the MOM_EV_DETACHED option, the user is able to log out and exit after creating the event, without
the event being deleted. This option is only applicable when it is ORed to the | eft of a Notification option that does
not require the caller’s continued presence. Accordingly, the MOM_EV_DETACHED flag is only valid with the
MOM_SPAWN Notification option since it deals with an executable program which may exist independently of its
creator process.

By contrast, it would be an error to specify MOM_EV_DETACHED with any other Notification option. Thisis
because it doesn’t make sense, for example, to specify a user callback function as the Notification option and
expect it to be invoked after the process has terminated.

When MOM_EV_DETACHED is specified with MOM_SPAWN, the user's Acb will not be updated with completion

information, even if the event occurs while the user is still logged in. Upon successful return from MomEvent(),
the Acb will show an AsyncStatusof XI PC_ASYNC DETACHED and the AUid of the associated event; the status

Date: 9/20/2001 - Revision: 9

6-6 X+PC Version 3.3.0: MomSys User Guide

will never show up as"completed.” The only notification that the event occurred will be the execution of the
program specified to MOM_SPAWN.

6.3.4 MomEvent() EVENT SEMANTICS

A MomSys event is defined to have occurred whenever the monitored entity isin the awaited state. Depending on
the Notification argument specified, MomEvent() can be used to poll the current state of a MomSys entity, or to
wait (synchronously or asynchronously) for the entity to enter a future state.

When MomEvent() is called to create anew event, and the specified target isalready in the awaited state,
MomEvent() considers the event to have just occurred and the prescribed notification happens, with the
qualification that the MOM_RETURN option can cause asynchronous notifications to return synchronously, as
described above.

6.3.5 MOMSYS EVENT MONITORING

Pending MomSys events are treated as ordinary asynchronous MomSys operations in that they are assigned an
Asynchronous User ID (AUid) while they are pending. The major advantage of thisisthat all pending
asynchronous MomEvent() operations may be monitored via MomlnfoUser() function calls or onthe momvi ew
monitor. Similarly, aMomSys event may be removed from the subsystem viaa call to the MomAbortAsync()
function. Descriptions on employing MomSys information verbs followsin the next section.

6.4 Information Verbs
MomSys provides a number of verbs that allow a user to extract information regarding MomSys activity
within an instance. The major information verbs are:
MominfoSys() - Provides general, message repository and communication manager information
MominfoAppQueue() - Provides application queue information

MominfoUser() - Provides user information; also used for providing information about pending
asynchronous operations and MomSys events

MominfoMessage() - Provides the latest information regarding a message

MominfoLink() - Provides information about links to other X+PC instances

Other secondary information verbs are provided as well for reporting less significant information occurring within
the MomSys subsystem.

Using these verbsit is possible to build customized monitor processes within an application that oversee the
internal operations of the application. It is additionally possible to build customized GUI-based application
monitors that display dataretrieved from these functionsin a customized display format.

6.4.1 UNDERSTANDING MOMSYS INFORMATION VERBS

Within the Mominfo family of verbsthere are two groups that can be employed to obtain information about a series
of MomSys dataitems. The first group -- the MominfoXxx() verbs-- consists of the verbs MomlnfoA ppQueue(),
MominfoUser(), MominfoLink(), and MomlnfoM essage().

The programming method for looping through the series of itemsin thisgroupiis:
Initially, call MominfoXxx(MOM_INFO _FIRST, &...) .

Subsequently call MomInfoXxx(MOM_INFO_NEXT(...), &...) .

Stop when the return codeisMOM_ER_NOMORE .

The second group -- the Mo nf oXxxXLi st () verbs-- consists of MomlnfoAppQueueWList() and
MominfoUserAlist().

The programming method |ooping through the series of itemsin thisgroup is:

Date: 9/20/2001 - Revision: 9

Advanced MomSys Programming Functionality 6-7

Initialy, call the corresponding Mom nf oXxx () verb, and useits output parameter both to initialize a cursor
variable (e.g., MyCur sor) to the position of thefirst element of the XList, and also to obtain information about

that element

Subsequently, call Mom nf oXxxXLi st (..., &WCursor, & ..). ThisadvancesMyCur sor tothe
position of the next element of the XList, and then obtains information about that element.

Stop when the return codeisMOM_ER_NOMORE .
6.4.2 CODING EXAMPLES OF MOMSYS INFORMATION VERBS

The following two code templatesillustrate the two styles of information-gathering loops (including error
checking).

Example 1:

/*

* Sanpl e of Mom nf oXxx()verb usage - e.g. for Mnl nfoAppQueue().
* Loop through all the app-queues in the current instance,

* retrieving and processing the status data of each app-queue.
*/

MOM NFQAPPQUEUE MyI nf oAppQueus;
XI NT RC, M/AQ d;

for (RC = Mm nfoAppQueue(MOM | NFO FI RST, &WI nf oAppQueue);
RC ! = MOM _ER_NOVCRE;
RC = Mo nf oAppQueue(MOM I NFO NEXT(MYAQ d), &WI nf oAppQueue))
if (RC<D0)

/* Take appropriate error action for M/ nfoAppQueue */
br eak;

}

M/AQ d = Myl nf oAppQueue. AQ d;

/* Process Myl nfoAppQueue data for MYAQd */

} /* for */

Date: 9/20/2001 - Revision: 9

6-8 X+PC Version 3.3.0: MomSys User Guide

Example 2:

Sanpl e of Moml nf oXxxXLi st() verb usage - e.g. for Ml nf oAppQueueW.i st ().
Loop through the entire wait-list for the specific app-queue

identified by MAQ d, retrieving and processing the status

* data of each wait-list elenent.

* X X F

*/
XI'NT RC, MVAQ d, M/Cursor;
MOM NFQAPPQUEUE M/ nf oAppQueue;

MOM_APPQUEUEW.| STI TEM M/W.i stltem

MAQd =...; /* AQd of app-queue whose wait-list is to be traversed */
if ((RC = M nfoAppQueue(MAgid, &WInfoAppQueue)) < 0) /
{
if (RC!= MOM_ER_NOVORE)
{
/* Take appropriate error action for Mmn nf oAppQueue() */
}
}
el se /* we have at |east one element in the wait-list */
for (MyCursor = Myl nf oAppQueue. W.i st nitial Cursor,
M/W.i stltem = Myl nf oAppQueue. Wi stFirstltem
RC ! = MOM_ER_NOMORE;
RC = Mom nf oAppQueueW.i st (MYAQ d, &WCursor, &WW.istltem))
{
if (RC!= MOV ER _NOVORE)
{
/* Take appropriate error action for Mm nfoAppQueueW.i st */
br eak;
}
/* Process MyYW.istltemdata */
Yy /* for */

} /* else */
If onewanted to loop through all the app-queues wait-lists, then the second code segment above would be nested

in the first segment, so that the processing of each app-queue would entail traversing its wait-list.

Refer to the respective Reference Manual pages for additional details on the usage of these verbs.

Date: 9/20/2001 - Revision: 9

Advanced MomSys Configuration Concepts 7-1

7. ADVANCED MOMSYS CONFIGURATION CONCEPTS

7.1 Accessing Multiple Namespaces

As pointed out earlier, X+IPC supports the possibility of multiple namespaces being active in an environment for
building applications that require such aform of partitioning. Consider the following diagram:

-

Namespace A

Inst-2

Namespace B

Two X+IPC namespaces are active: namespace A and namespace B. Of all the processes accessing the two

namespaces, only plisaccessing both: It access namespace A viaitsloginto Inst-1 and it accesses namespace B
viaitsloginto Inst-4. Herein liesthe approach for accessing multiple namespaces.

A process wishing to access multiple namespaces does so by logging into multiple instances, one per namespace.
As generally isthe case with X+IPC , a process may log into multiple instances, but at any point in time only one

login is considered itscurrent login. The toggling between logins is accomplished via the XipcConnect() and
XipcDisconnect() function calls. Refer to the X+IPC User Guide and Reference M anual for discussions on how and

when to use XipcConnect() and XipcDisconnect() for toggling between multiple logins.

Heretoo, a process such as p1 can have only one current login, either itslogin to Inst-1 or itslogin to Inst-4. In the
above diagram, the solid line indicates a current login, while the broken line indicates alogin which is not currently
connected. Process p1’scurrent loginisitslogin to I nst-4.

Because pl'scurrent loginisto Inst-4 , p1’s current namespace is namespace B. If and when p1 will wish to access
namespace A it will need to makeitsloginto Inst-1 current. Thisis accomplished via callsto XipcConnect() and
XipcDisconnect().

Date: 9/20/2001 - Revision: 9

7-2 X+IPC Version 3.3.0: MomSys User Guide

7.2 Configuring X¢IPC ‘s Platform Environment for Multiple Namespaces

It ispossible for aplatform to support instances that are affiliated with different namespaces.. Consider the prior
example:

Namespace A

NAda n1 /

pQ \ o

Namespace B

Process pl is accessing the two namespaces via instances Inst-1 and Inst-4, al of which reside on asingle platform,
as depicted by the dashed box. The X+IPC platform environment for that platform will require that both namespaces

A and B areidentified within the xi pc. env file SNAMESPACE statements as hamespaces to which instances will
become affiliated when started. .

Assuming that the two namespaces are anchored within the catalog server onn1, thexi pc. env filefor n1 would
contain the following statements:

[CATALOG TCPI P
NAVESPACE A nl
NAVESPACE B: nl

Similarly, theinstance configuration filesfor Inst-1 and I nst-4 would have the following NAMESPACE statements:

Statement within configuration file for instance “lInst-1"

[XIPQ
NAMESPACE A

Statement within configuration file for instance “lInst-4"

[XI PC]
NAVESPACE B

Date: 9/20/2001 - Revision: 9

Advanced MomSys Administration Concepts 8-1

8. ADVANCED MOMSYS ADMINISTRATION CONCEPTS

8.1 Message Repository

The MomSys message repository (MR) is one of the more complex components of the MomSys subsystem. It
supports all aspects of MomSys message manipulation that are non-volatile and recoverable. Basic utilization of
MomSys does not require detailed knowledge of how the message repository is built and operates. Such
knowledge, however, can become useful to users who are interested in achieving optimizations and performing
advanced operations within the message repository. This section introduces some of these advanced concepts.

8.1.1 COMPONENTS

We saw above that there is one message repository per X+IPC instance. While conceptually correct, thisisnot
technically accurate. An instance’ s message repository isin fact divided into two parts: an MRO (Message
Repository Outbound) subcomponent, and an MRI (Message Repository Inbound) subcomponent. These are now
described.

Consider the following diagram:
MRO Subcomponent

MRO MRO Outbound messages
Database Process

MRI Subcomponent

MRI MRI Inbound messages
Database Process <

Aninstance’ s message repository is comprised of an MRI and an MRO subcomponent. These subcomponents are
each comprised a process and a database for supporting inbound and outbound messages, respectively. Sent
messages, in the course of being moved out of the local instance to a disk-based app-queue within aremote
instance, are moved through the MRO. Inbound messages, received from remote instances, are received through
the MRI.

v

The MRI and the MRO operate asynchronously with respect to one another. This leads to enhanced performancein
general (compared to a single component architecture), aswell asto the potential for certain configuration
optimizations.

Date: 9/20/2001 - Revision: 9

8-2 X+PC Version 3.3.0: MomSys User Guide

8.1.2 OPTIMIZATION

One potential benefit of the message repository’s split architecture isthat it provides the potential to physically
locate the two subcomponent databases on separate disks, where that is supported by the underlying hardware and
operating system. Doing so enhances overall MR performance because of the inherent parallelism that is leveraged
in such aconfiguration.

The location of the MR database filesis defined within the [MOMSYS] section of an instance’s configuration file
viathe DATABASE_MRI and DATABASE _MRO parameters.

Whileitis possible to have two instances coexisting in a single operating system directory, it isnot possible to
have MR databases from two instances sharing a single directory. Naming conflicts will occur. In such a case the
DATABASE_MRI and DATABASE_MROparameters of the two instances should be set to point to separate file-
system directories.

8.1.3 MESSAGE EXPIRATION

Messages that are sent to an app-queue, and that do not reach their destination within a certain period of time have
the potential to become expired. Expired messages are eventually removed from the MomSys message repository.
When removed from the MR, an expired message may be entirely deleted (no remaining record kept), or it may be
logged to ajournal of expired messages. All aspectsof this process are configurable by the user.

Messages by default are never expired. This means that, by default, all MomSys messages are assigned an
“i nfinite” expiration timeout period. This can be overridden viaainstance configuration MR expiration

timeout parameters. Refer to the discussion on MomSys configuration for areview of these MR parameters.
8.1.4 MESSAGE RETIREMENT

M essages that successfully reach their objectives may, aswell, become subject to eventual removal by X+sIPC ‘sMR

clean-up processing. The governing factor hereisreferred to as the message’ sretirement time-out period. The
event that causes a message to become classified asretired is different per MRI and MRO.

An outbound message, within an MRO, starts atimed count-down to retirement as soon as it has becomes
“complete”. The messageis “complete” when the message has achieved the tracking-level that was specified at the
time that the message was sent. (Refer to MomSend() and Appendix A for details about tracking levels.)

An inbound message, within an MRI, starts atimed count-down to retirement when the message is successfully
delivered to a process.

The message retirement time-out period within an MRO is by default “i rmedi at e.” Thismeansthat, by default,

al outbound MomSys messages that are “ completed” areimmediately retired and become candidates for cleaning.
This default MRO retirement time-out period can be overridden viainstance configuration parameters.

The message retirement time-out period within an MRI is by default set to 60 minutes (60m). This means that, by
default, all inbound MomSys messages that are successfully delivered are kept for one hour before they are retired.
This 60 minute-deep cache of received messagesisretained by the MRI in order to detect duplicate messages that
might be sent in the event of, for instance, aline crashing before the MRI can send areceipt acknowledgement
back to the MRO. In such acircumstance, the MRO might resend a message that had in fact been received; this
MRI cache of recently received messages ensures that a duplicate message is not delivered to the instance. (As
with other instance configuration parameters, the TI MEOUT _RETI RE_MRI parameter can be overridden. See

section 0.)

Retired messages are eventually removed from MRs within MomSys. When removed from its MR, aretired
message may be entirely deleted (no remaining record kept), or it may be logged to ajournal of retired messages.
Aswith expired messages, aspects of this process are configurable by the user in the instance configuration file.

8.1.5 MR CLEANING

MR cleaning is an important administrative function in XslPC MomSys. It is by means of this facility that the size of
an MR database can be kept under control over long periods of ongoing operation.

Date: 9/20/2001 - Revision: 9

Advanced MomSys Administration Concepts 8-3

The purpose of MR cleaning isto remove from the MR those messages that have either expired or retired since the
last time MR cleaning was performed. Message expiration and retirement are terms that have precise meanings that
werereviewed in the prior sections.

MR cleaning may be caused to occur either automatically or manually. Note that there is a default setting of every
30 minutes (represented as0, 30 * * * * : seethe explanation below).

8.1.5.1 Scheduling Automatic MR Cleaning

The MR-clean processing of an X+IPC instance can be scheduled to occur at a designated set of times. Aslong asthe
instance is active at those time, the MR cleaning will occur automatically, and without the need to stop any
supported applications. Configuring the schedule of when MR clean isto occur isdone viathe
SCHED_MR_CLEAN instance configuration parameter.

The SCHED_MR_CLEAN configuration parameter is a string value indicating when MR cleaning will take place.
The default value of this parameter is“none” meaning that no automatic cleaning is desired.

Where scheduled cleaning is desired a schedul e-string having five discrete fieldsis specified as the parameter
value. Thefivefields providefive levels of granularity over the definition of a schedule. These fields, and their
basic definitions are now listed. More advanced possibilities are described below.

Minutes - Defines at what five-minute intervals within each hour to perform the MR clean.
Vaidvauesare0, 5, 10, . . ., 55;0r*,where* indicatesall the
values.

Hours - Defines at what hour intervalsto run the MR clean.

Vaidvauesare0, 1, 2, . . ., 23;or*,where* indicatesall values.

Month-day - Defineswhat day within each month to run MR clean.

Vaidvauesarel, 2, 3, . . ., 31;or*,where* indicatesall values.

Month - Defines what monthsto run MR clean
Vaidvauesarel, 2, 3, . . ., 12;or*,where* indicatesall values.

Week-day - Defines what days of the week to run MR clean
VaidvauesareO, 1, 2, . . ., 6;o0r*,where0Q isSunday and*

indicatesall values.
Understanding this syntax is best accomplished by examples:

Example:

SCHED MR CLEAN 0 0 * * * # defines a schedul e that occurs once each day,
at m dni ght

Example:

SCHED MR CLEAN 0 0 * * 1 # defines a schedul e that occurs every Monday,
at m dni ght

A field valueis defined as acomma-delimited list of one or more elements. An element is either avalid number, or
two valid numbers separated by a hyphen indicating an inclusive range. Note that the specification of days may be
made in two fields (month-days and week-days). If both are specified asalist of elements, both are adhered to.

Example:

SCHED MR CLEAN 0 0 1,15 * 1 # defines a schedule that occurs on the first
and fifteenth of each nonth, as well as on
every Monday, at midnight

To specify only one of the day fields, the other day field should be set to *.
Example:

Date: 9/20/2001 - Revision: 9

8-4 X+PC Version 3.3.0: MomSys User Guide

SCHED MR CLEAN 0 0 1,15 * * # defines a schedul e that occurs on the first
and fifteenth of each nmonth, at m dnight

8.1.5.2 The “mrclean” Utility Program

A utility program called” nr cl ean” isprovided, aswell, for manually executing the MomSys clean operation on
an instance’ s message repository.

Thenr cl ean utility takes one optional argument when executed:

InstName: The instance file name of the instance, or the registered name of the instance - prepended withan‘ @’ -
to be MR cleaned. The default value is the value of the XI PC environment variable.

Example:

Run nrclean utility on |ocal instance having registered nane “foo0”.

nrclean @ oo

8.2 Communication Manager

An instance' s communication manager (CM) supports all message communication between the instance and other
instances. Basic utilization of MomSys doesnot require detailed knowledge of how the communication manager is
built and operates. Such knowledge, however, can be useful to users who are interested in achieving optimizations.
This section introduces some of these advanced concepts.

8.2.1 COMMUNICATION SERVERS

Actual protocol-level communication activity in an instance is handled by one or more Communication Servers
(CS). Each communication server is comprised of aCSl (inbound) and a CSO (outbound) pair of subcomponents.

Consider the following diagram:
Communication. Senver ((CS.)

s Anithannd . To remote
rOCessS 1ithniind eacainng >
Communication y |nstances
Manager >
(O
'OCESS . From remote
L, I nhniind caccinne .
K < instances

These CSI and CSO processes support inbound and outbound messages, respectively. In the course of being moved
out of the current instance to aremote instance, messages are moved through the CSO. Inbound messages, received
from other instances, are moved through the CSI.

CSl and CSO operate asynchronously with respect to one another. This leads to enhanced performance in general
(compared to a single component architecture).

Date: 9/20/2001 - Revision: 9

Advanced MomSys Administration Concepts 8-5

8.2.2 INSTANCE LINKS

Aninstance-link is defined as atwo-way communication connection between two instances. In the following
diagram, instance | A hasthreelinkswith| B, | Cand | Drespectively.

A
A

Instance-links may be up or down at any point in time, depending on the current state of the underlying protocol
connectivity. Thelinksl A- | Band| A- | Careup intheabovediagram. Link | A- | Dis currently down

The current state of instance-links in an instance can be found viathe nonmvi ewmonitor’s "instance-links’
window, or viathe MominfoLink() function call. The second approach is most useful when invoked using the X«PC
interactive command monitor. Refer to that function’s definition in the MomSys Reference M anual for details.

Example:

xipc> mominfolink first
Linkld: [1]
Remote Node: ‘ helios Remote Instance: *test’
Network Protocol: TCPIP Link Status: DOWN
CountMsgSent: 29880 CountMsgReceived: 102 NumBacklogMsg: 24
StartupTime: Wed Sep 30 19:05:10 1996

xipc> mominfolink all

Id Instance Protocol Status Messages

1 helios:test TCP/IP DOWN 24
2 titan:test1 TCPIP UP 14
3 juno:product TCP/IP UP 0

4 moon:test2 TCPIP DOWN 1040

X+IPC s management of links (timeout intervals, retry times, etc.) are all configurable in the instance configuration
file. Aswas described earlier in this guide, configuration of TCP/IP parameters are set within the [MOMSYS] and

[MOMSYS. TCPI P] sections of the instance configuration file

Date: 9/20/2001 - Revision: 9

8-6 X+PC Version 3.3.0: MomSys User Guide

For example, it is possible to define the maximum number of remote instances accessible by an instance. Thisis
defined viathe MAX_I NSTANCE_LI NKS MomSys configuration parameter. Its default value is 31, meaning that
an instance, by default, may communicate with up to 31 other instances. This may be overridden to a higher value.

Other link-related configuration, particul arly those dealing with protocol-specific parameterization, are possible as
well. These parameters were listed earlier in this document. Refer to the MomSys Reference Manual for additional

details.

Date: 9/20/2001 - Revision: 9

Appendices 9-1

9. APPENDICES

9.1 Appendix A: Message Status and Tracking Levels

An understanding of message movement in the X¢+IPC MomSys programming model is central to proper utilization
of the subsystem. Consider the following diagram:

................ >
g R

9.1.1 MESSAGE STATUS VALUES

An X¢IPC MomSys message goes through three well-defined, trackable stages as it moves from sender to receiver
program. These stages are identified numerically in the above diagram. The message status val ues that correspond
to these stages are:

MOM_STATUS HELD Messageis currently held in the sender’ slocal message repository,
but has not yet been shipped to the receiver node.

MOM_STATUS SHIPPED M essage has shipped to receiver’ s message repository and has
been logically inserted in the targeted app-queue, but has not been
received and removed by areceiving program.

MOM_STATUS DELIVERED M essage has been received and removed by areceiving program.
Two additional pseudo-status values that are occasionally employed in MomSys are:
MOM_STATUS COMPLETE M essage status has achieved the tracking level that was specified

for it when the message was sent via MomSend().

MOM_STATUS INCOMPLETE Message status has not yet achieved the tracking level that was
specified for it when the message was sent viaMomSend().

MomEvent() is an example of afunction that employsthe MOM_STATUS_ COVPLETE pseudo-status value for
creating an event that occurs when a given message reaches the tracking level that it was sent with.

Refer to the description under MomEvent() for details.

Date: 9/20/2001 - Revision: 9

9-2 X+PC Version 3.3.0: MomSys User Guide

9.1.2 MESSAGE STATE-DIAGRAM

Sender Program Receiver Program

ge not).
Sender calls Receiver cdls
Monsend() MormRecei ve()
MomRec
eive
Sender Fie' ver
Instance I\?e ancee
Message Expira Retire ! . SSag
. ; Expira Retirem Repositor
tion ment €p y
Repository v T~ ¥ v tion ent
Sender Instance Receiver Instance
MR Cleanup runs MR Cleanup runs
\ 4 \ 4
""""" Journaled Journaled Journaled Journaled
Deleted © ithin within Deleted within Deleted within
sender sender receiver receiver
Sender’s Receiver's
X¢+IPC Instance X¢+IPC Instance

Date: 9/20/2001 - Revision: 9

Appendices 9-3

9.1.3 MESSAGE TRACKING LEVELS

Just how far a message is actually tracked by X¢IPC is a function of the tracking-level that is specified in the
MomSend() verb when the message is sent. The two message tracking levels that may be specified are:

MOM_TRACK_SHIPPED Track message being sent until it has attained status of
MOM_STATUS_SHI PPED.

MOM_TRACK_DELIVERED Track message being sent until it has attained status of
MOM_STATUS_DELI| VERED.

Note that a message status is updated in the sender’s message repository up to the level requested by the tracking
level argument of the MomSend() function, but no further. Thus, a message sent with a tracking level of
MOM_TRACK_SHI PPED is tracked up to the point that the message attains a status of MOM_STATUS_SHI PPED,

from which point no further tracking is performed.

Date: 9/20/2001 - Revision: 9

9-4 X+PC Version 3.3.0: MomSys User Guide

Date: 9/20/2001 - Revision: 9

Appendices 9-5

9.2 Appendix B: Message Priority Specification

9.2.1 INTRODUCTION

The MomSend() function call defines a means for assigning prioritization to the message being dispatched relative
to other messagesin the system. Thisis defined in the Reference Manual pages as the Priority argument to the two
functions.

The Priority argument isarelative value. It provides a means for indicating what urgency should be assigned a
given message, as the message progresses through the system, relative to other messages, also moving within the
system. Theterm “as the message progresses through the system’ is a general statement that actually can be seen
as having two discrete phases: The tripto the targeted app-queue and the trip through the targeted app-queue.

This Appendix describes these two phases as they relate to message prioritization. In it we will review the
following topics:

The two phasesin amessage’ sjourney.

Why prioritization matters.

Specifying message priority values.

9.2.2 TWO STEPS IN A MESSAGE'S JOURNEY

From aprioritization perspective, MomSys messages compl ete their assigned trip in two steps. They are:
The tripto the targeted app-queue

The trip through the targeted app-queue

This can be visualized asin the following diagram where amessage is sent from process A to process B.

v

To the app-queue Through the app-

The Trip of aMessage

Date: 9/20/2001 - Revision: 9

9-6 X+PC Version 3.3.0: MomSys User Guide

9.2.3 WHY PRIORITIZATION MATTERS

9.2.3.1 The Trip To the Targeted App-Queue

Thefirst phase of a MomSys message’ s movement to itstargeted app-queue is referred to as“the trip to the app-
queue.” Asisdepicted in the above diagram, this phase starts from the point that the message is handed off to X«PC
MomSys (viaacall to MomSend()), and continues until the message has been safely placed on the targeted app-
gueue. During this phase a message is continuously pushed forward toward its target.

During this phase as well, a message competes with other messages in the system for attention in affecting its
forward movement. The more messages flowing within the system the more the competition. It isfor this reason
that message prioritization isimportant during this phase. Suppose an application isto be written in which there
will be numerous processes co-resident with the above process ‘A’ in the above diagram, all of which are sending
messages out to the world at abusy clip. Assume further that the messages being sent are not of equal urgency. It
would be useful to be allowed to assign relative levels of urgency for the messages as they push towards their
targeted app-queues. We will see shortly that X+IPC provides such a mechanism.

9.2.3.2 The Trip Through the Targeted App-Queue

The second phase of aMomSys message’ s movement is referred to as “the trip through the app-queue.” As shown
in the above diagram, this phase starts fromthe point that the message has been safely placed on the targeted app-
gueue and continues until the message is received from the app-queue.

During this phase, messages are competing with other messages on the app-queue. Thus, messages with higher
priorities are pushed to the front of the app-queue’ s priority sequencing.

Thisform of prioritization is useful if an application is being written in which multiple process are to send
messages to acommon app-queue, where it isimportant that certain messages be served ahead of othersin the app-
gueue, regardiess of the arrival time. It would be useful, in such a case, to be allowed to assign relative levels of
urgency to the messages as they are placed on the app-queue. We will see shortly that X+IPC provides such a

mechanism, aswell.
9.2.3.3 Two Priority Values or One?

In many situations the urgency for the two phases of a message’ strip isthe same. As an example, a message may
be a high-priority message. Period. In such a case the sender isinterested in having the message move to the
targeted app-queue and through the targeted app-queue as fast as possible. For such situations, X+IPC dlowstheuser

to specify asingle priority value that is then applied to both phases of its movement.

Aswe will see shortly, X+IPC provides the semantics for specifying a message’ s priority asasingle valuethat is
applied to both legs of itstrip, or astwo discrete values for fine-tuning each leg separately.

9.2.4 SPECIFYING MESSAGE PRIORITY VALUES
9.2.4.1 Range of Priority Values

X+IPC MomSys employs a continuous scal e of integers for expressing valid priority values. The lowest possible
priority valueis 1. The highest possible value is 65,535. The mid-way value 32,767 is considered a“normal”
priority.

X+IPC provides predefined definitions for these values. They are:

MOM_PRIORITY_LOWEST 1
MOM_PRIORITY_NORMAL 30767
MOM_PRIORITY_HIGHEST 65535

In fact, apriority value may be expressed asany integer between 1 and 65,535. X+IPC viewsthem relativeto one
another: the higher the value, the greater the urgency.

Date: 9/20/2001 - Revision: 9

Appendices 9-7

9.2.4.2 Semantics for Expressing Priorities

As described earlier, X«lPC MomSys supports two forms of message prioritization: asingle priority that is assigned

to both phases of a message’ strip, or a pair of priority values, one for governing the tripto the app-queue and one
for the trip through the app-queue. We will now examine examples of both.

Consider the following example:
/*
* Send a message having a NORVAL priority for its entire trip.

* The NORVAL priority value will apply to both |legs of the trip.
*/

MonSend (. . ., MOMPR ORI TY_NORVAL, . . .);

Notice that there is nothing very unusual about the above call to MomSend(). The priority argument to the function
has been expressed asMOM PRI ORI TY_NORMAL . By default, X«IPC MomSys will assign the specified priority to
both legs of the message’ strip.

The same would be true for any valid priority value. Just to make the point clear, consider the following example:
/*
* Send a message having a slightly higher than nornal priority for
* jts entire trip. This priority value will apply to both legs of the trinp.
*
/

Mrsend (. . ., MMMPRORTY NORVAL + 1, . . .);

Here, too, the prescribed priority value MOM PRI ORI TY_NORMAL + 1 (i.e, 32,769) will be assigned to both
legs of the trip. Priorities need not be expressed as offsets from the three pre-defined values (although it is often
useful to do so). Itisjust asvalid to express the above MomSend() call asfollows:
/*
* Send a message having a slightly higher than nornal priority for
* jts entire trip. This priority value will apply to both legs of the trinp.

* (Same as previous exanple, except that integer value is used directly.)
*/

Monsend (. . ., 32769, . . .);

In the next example, we will send a message that will have a high priority for getting through the system to the
target app-queue, but will be assigned a normal priority relative to other messages once on the app-queue.
/*
* Send a message having HIGH priority for the trip to the app-queue.
* Message priority on the app-queue should be NORVAL.
*/

MonSend (. . ., MOM PR ORI TY(MOM_PRI

ORI TY_H GHEST, /[* Trip to app-queue */
MOM PRI ORI T
)

Y_NORMAL /* Once on app-queue */
)

The ability to expresstwo separate priority values for each leg of amessage’ s movement is provided by the
MOM_PRI ORI TY() macro. Thismacro is specified as the priority argument to MomSend(). The macro takes two

valid priority values asits two arguments. Thefirst value is the “trip to the app-queue priority” while the second
value is the “trip through the app-queue priority”.

Note, that the above example could have equally been coded as:

Date: 9/20/2001 - Revision: 9

9-8 X+PC Version 3.3.0: MomSys User Guide

/*

* Send a message having HIGH priority for the trip to the app-queue.
* Message priority on the app-queue should be NORVAL.

*/

Mnsend (. . ., MOMPR ORI TY(65536, 32768), . . .):

9.2.4.3 An Important Caveat

The above discussions regarding prioritization of messageson an app-queue all assume that the targeted app-queue
was created having the attribute MOM_ATTR_SET_PRI ORI TY set when the app-queue was created. This attribute
creates app-gqueues which have message prioritization as the app-queues’ natural message sequence. If, however,
the app-queueis created with the MOM_ATTR_SET_TI ME attribute set (thisisthe default value), then such an app-
gueue has a FIFO natural sequencing of its messages and does not support any prioritization sequencing of its
messages. Accordingly, any “on-queug” priority value expressed for a sent message does not advance the message
ahead of previously inserted messages.

This caveat only affects the second phase (i.e., on app-queue) priority value. Thefirst phase value (i.e., that which
defines amessage’ s urgency relative to other message moving through the system to the app-queue) continues to
have its effect regardless of the natural sequencing of messages on the targeted app-queue.

9.2.5 CONCLUSION

X«IPCMomSys provides agreat deal of user control over message prioritization. Priorities may be assigned on a per-
message basis and may range from 1 to 65,536. Furthermore, X+IPC optionally allows the user to assign discrete
priority values for the different phases of message’ s trip to its destination application. With these mechanismsitis
possible to build distributed applications that are flexible and adaptive to the realities of traffic-flow contention so

often found in real-world application messaging-based systems.

Date: 9/20/2001 - Revision: 9

Appendices 9-9

9.3 Appendix C: Message Specification in MomReceive()
9.3.1 WHAT IS AN APP-QUEUE?

Before addressing the topic of message specification from an app-queue, it isinstructive to first understand what is
an app-queue. An app-queueis a set of messages that are maintained according to certain logical sequences. This
sequencesis known as the app-queue’ s “ natural” sequence.

9.3.1.1 “Natural” Sequence

Every app-queue that is created has, as one of its defining attributes, a natural sequencing of its messages. Thisis
referred to the app-queue’ s natural message sequence. There are two possible natural sequences:

Time sequence
Priority sequence

By default, an app-queue’ s natural sequence is the time sequence in which the messages arrive and are placed on
the queue, i.e., the FIFO sequence. MomAttrSet() can be used to override thus default to create an app-queue
whose messages are sequenced in priority sequence, i.e., highest priority at front of app-queue.

An app-queue’s “natural” sequence defines the order by which messages are presented to users performing
MomReceive() operations on that app-queue.

9.3.2 TERMINOLOGY

Correct message specification is dependent on aclear set of terms for defining the different messages on an app-
queue.

The time sequence is the order that the app-queue’ s messages entered the app-queue, from oldest to newest.

Firct

— T S T -

The front (or first) message of thetime sequené%'ﬁﬁ%ferred to asthe oldest message in the sequeﬁt%f"?ﬂe back (or
last) message in the sequence is the newest message. Each message arriving on an app-queue has a time stamp of
when the message was enqueued. No two messages have the same time stamp.

The priority sequence orders messages from highest priority to lowest priority value.

Circt I act
Priority Sequence: EI D EI EI D
Highest Lowest

Thefront (or first) message of the priority sequenceisreferred to as the highest-priority message in the sequence.
The back (or last) message in the sequence is the lowest-priority message. Each message arriving on an app-queue
has apriority assigned to it from the time it was sent. This priority governs the urgency of the message relative to
other messages on the app-queue. Messages having the same priority are sequenced in FIFO order within that
priority value.

Date: 9/20/2001 - Revision: 9

9-10 X+PC Version 3.3.0: MomSys User Guide

9.3.3 POSSIBLE MsgSpecifier VALUES

The MsgSpecifier argument defined as part of the MomReceive() function plays an important role in the operation
of that function. It tells MomReceive() which messageisto be returned from the specified app-queue. The
MomReceive() function description offers an extensive list of pre-defined values that may be used as the
MsgSpecifier arguments to MomReceive(). These predefined values cover most typical message selection
requirements. They are:

MOM_MESSAGE_FIRST Retrieve the first message from natural sequence. If Time, the
oldest messageis returned. If Priority, the highest priority
message is returned.

MOM_MESSAGE_LAST Retrieve the last message from natural sequence. If Time, the
newest message isreturned. If Priority, the lowest priority
message is returned.

MOM_MESSAGE_NEXT(Msgld) Retrieve the next message from within natural sequence following
the message identified by Msgld.*. If Time, the next oldest
message isreturned. If Priority, the next highest priority message
isreturned

MOM_MESSAGE_PREV(Msgld) Retrieve the previous message from within natural sequence
following the message identified by Msgld.* . If Time, the previous
oldest message isreturned. If Priority, the previous highest
priority message is returned.

MOM_MESSAGE REPLYTO(Msgld) Retrieve the response message to the request message that was
previously sent by MomSend() and identified asMsgld. *
MOM_MESSAGE_DIRECT(Msgld) Retrieve the message identified by Msgld. *
MOM_MESSAGE DIRECT RMT Retrieve a message based on its Remote identification:
(RmtNode, .
Rmtinstance, RmtNode is name of sender node
RmtMsgld) Rmtlnstance is name of sender instance

RmtMsgld isthe Msgld assigned to the message when it was sent
viathe sender instance

(* Note: The message represented by Msgld must still be on the app-queue at the time of the MomReceive() call.
Thisistypically accomplished by having performed an earlier call to MomReceive() in which the
MOM_NOREMOVE flag was set. The Msgld returned from that call can serve as the “cursor” for subsequent
MomReceive() calls)

In fact, these predefined values hide a flexible message sel ection mechanism that can be used as a programming
device by application programmers.

9.3.4 THE TWO COMPONENTS OF A “MsgSpecifier”

Selecting a message from an app-queue entail s the specification of two pieces of information. They are:

The Sequence - The sequence defines what logical sequence of app-queue messages isto be used as part of the
selection. The possible values are:

Natural - defined asMOM_SEQUENCE_NATURAL

Any - defined asMOM_SEQUENCE_ANY (any sequence will do; see DIRECT example below)
The Selected Message - This specifies which message, within the given sequence, isto be returned.
1. First Message - defined asMOM_SELECT_FI RST

The first message of the Time sequence is the oldest message.

Date: 9/20/2001 - Revision: 9

Appendices 9-11

The first message of the Priority sequenceis the highest priority message.

2. Last Message - defined asMOM _SELECT_LAST

The last message of the Time sequence is the newest message.

The last message of the Priority sequenceisthe lowest priority message.

3. Next Message - defined asMOM_SELECT_NEXT(Msgl d)

The next message after Msgld, moving from first to last, within the Time sequence

The next message after Msgld, moving from first to last, within the Priority sequence

4. Previous Message - defined asMOM SELECT _PREV(Msgl d)

The previous message before Msgld, moving from last to first, within the Time sequence

The previous message before Msgld, moving from last to first, within the Priority sequence

5. Direct Message - defined asMOM SELECT_DI RECT(Msgl d)

Returns the message identified by Msgld regardless as to what natural sequence that app-queue has
6. Direct Remote Message - definedasMOM_SELECT DIRECT _RMT(RmtNode, Rmtinst, RmtMsgld)
Same asMOM_SELECT_DI RECT, but uses remote information about message

7. Response Message - defined asMOM SELECT _REPLYTQO(Msgl d)

Returns a“response” message regarding a previously sent “request” message. Recall that the MomSend() and
MomReceive() functions allow client and server programs to communicate with one another in an inquiry-response
fashion, without the server having to know the identity of the client. (Refer to the “ Client/Server Interaction”
section of this guide for detailed examples of this.)

A client sends a request message to an app-gqueue being served by aserver program. The server, after receiving the
request message, sends a response message back. The client, in the mean time, issues a MomReceive() call
specifying the MOM_MESSAGE_REPLYTO(Msgl d) asthe MsgSpecifier argument where Msgld identifiesthe
originally sent request message.

9.3.5 PULLING IT TOGETHER

The MsgSpecifier argument to MomReceive() is actually the aggregate of two sub-arguments, namely the two
ingredients just described:

Sequence

M essage Selector

To understand how they come together, consider some of the MsgSpecifiers predefined by X«IPC.
MOM_MESSAGE_FIRST = {MOM_SEQUENCE_NATURAL, MOM_SELECT_FIRST}
MOM_MESSAGE_DIRECT(m):: = {MOM_SEQUENCE_ANY, MOM_SELECT_DIRECT(m)}

The remaining predefined MsgSpecifier values are similar in nature. Y ou may examine them, asthey are included
inthe“ xi pc. h” includefiles.

9.3.6 MSGSPECIFIER SYNTAX

It should be evident by now that the MsgSpecifier argument to MomReceive() isin fact a cover for two sub-
arguments: { Sequence, Message Selector}.

Methods for defining one’s own MsgSpecifier to MomReceive() are to define anew 2-value macro or simply to
call MomReceive() with the two sub-arguments explicitly spelled out in the location of the MsgSpecifier argument.
The syntax for the call to MomReceive() then becomes:

Date: 9/20/2001 - Revision: 9

9-12 X+PC Version 3.3.0: MomSys User Guide

XI NT

MonRecei ve(
XI'NT *Sour ceAQ d,
XANY *MsgBuf ,

XI NT MsgBuf Len,

/* The next two argunents define MsgSpecifier */

XI NT Sequence, /* One of MOM SEQUENCE ... */
XI NT Sel ect or, /* One of MOM SELECT ... */
)

Date: 9/20/2001 - Revision: 9

Appendices 9-13

9.4 Appendix D: MomStatus() and MomStatusWait() Function Definitions

The MomStatus() and MomStatusWait() functions are defined on top of other MomSys API functions. This
appendix presents simplified forms of these definitions for demonstration purposes to provide a sense of how you
can further extend the MomSys “verb-set” in asimilar manner.

9.4.1 SAMPLE MomStatus() DEFINITION

MomStatus() calls MominfoMessage() for getting data on a particular message-id. It then returns the status value
within the RetStatusvariable. The following isasimplified version of how MomStatus() isimplemented:

XI NT
Montt at us(MOM_MSG D Msgl d, XI NT *Ret St at us)
MOM NFOVESSAGE m

Moml nf oMessage (Msgld, &m;
*Ret Stat us = m Lat est St at us;

9.4.2 SAMPLE MomStatusWait() DEFINITION
MomStatuswWait() calls MomEvent() for tracking a message up to a particular status. The following isa simplified
version of how MomStatusWait() isimplemented as a macro:

#defi ne \
Mot at usWai t (Msgl d, Status, Bl ockOpt) \
MonEvent (MOM EV_MSG_STATUS((Msgld), (Status)), (BlockOpt))

Date: 9/20/2001 - Revision: 9

10. INDEX

Affiliated namespace, 2-6, 5-4
Anchor nodes, 5-1
Application queue. See App-queue
App-queue, 2-1, 2-2, 2-6, 5-17
Attribute blocks, 4-2
Attributes, 4-1
Creation, 4-1
Examples, 4-2
Local, 2-7, 4-6, 4-7
Natural sequence, 4-1, 9-9
Relocation, 4-4
Remote, 2-7, 4-6, 4-7
App-queue ID. See AQid
AQid, 45,517
Semantics, 4-7
Virtual handle, 4-6
Bandwidth, 2-4
Browsing, 5-20
Catalog server, 2-3,5- 1
Client/server, 4-4
Request-response exchange, 4-16
Communication manager, 2-4, 8-4
Communication server, 2-4
Configuration parameters
Instance, 5-8
Communication manager, 5-12
General, 59
M essage repository, 5-10
MomSys, 59
Protocol-specific, 5-12
Patform
General catalog, 5-7
Protocol-specific catalog, 5-7

Index

Debugging, 515

Definitions, 2-6

Events, 6-3

Fault tolerance, 2-3

Glossary. See Definitions

Information verbs, 6-6

Inquiry -response messaging, 4-19. See Request-
response messaging

Instance, 2-2, 2-6,5- 1
Starting aclean, 513

I nstance namespace affiliation. See Affiliated
namespace

Instance recovery, 513
Instance-link, 5-18, 5-22, 8-5
Interactive command interpreter, 5-14
LAN, 1-1
L oad sharing, 6-3
Local instance, 2-2
Current, 2-7
Definition, 2-6
Locality, 2-3
Message expiration, 8-2
Message prioritization, 6-1, 9-5
Priority semantics, 9-7
Priority values, 9-6
M essage repository, 2-3,4- 6,518, 81
MR cleaning, 8-2
Optimization, 8-2
M essage repository parameters, 5-10
M essage retirement, 8-2
M essage specification, 4-12, 9-9
Message tracking, 2-4,4- 14, 9-1
Status values, 4-15, 9-1
Tracking levels, 4-15, 9-3

Date: 9/20/2001 - Revision: 9

10-1

M essaging model. See Programming model
MOM_APPQUEUE_DI SK, 4- 2
MOM_APPQUEUE_DI SK_REG STER, 4- 2

MOM_APPQUEUE_DI SK_REG STER_UPDATE,
4-2

MOM ATTR_SET_AUTO REG STER, 4- 1

MOM ATTR_SET_AUTO_REG STER_UPDATE,
4-2

MOM_ATTR_SET_DI SK,4-1
MOM_ATTR_SET_PRI ORI TY,4-1
MOM ATTR_SET_TI ME, 4- 1
MOM_ATTRBLOCK_APPQUEUE, 4- 2
MOM_EXPI RE, 4- 9
MOM_FASTPATH, 4- 10
MOM_MESSAGE_REPLYTO, 4- 19
MOM_NOREMOVE, 4- 13
MOM_NOVERI FY, 4- 6
MOM_PRIVATE, 4-2
MOM REPLYTO, 4- 9
MOM_RETURN, 4- 11,4- 14
MOM_SPAWN, 6-4
MOM_STATUS_COVPLETE, 4- 15
MomAccess(), 2-7, 4-5, 4-6, 4-7
MomAttrSet(), 4-1, 4-2, 4-12
MomCreate(), 4-2, 4-6, 4-7
MomDeaccess(), 4-7
MomDédete(), 2-7, 4-7
MombDestroy(), 2-7, 4-7
MomEvent(), 4-15, 6-3, 9-1, 9-13

Arguments, 6-3

Event monitoring, 6-6

Event semantics, 6-6

Notification option, 6-4
MomlnfoAppQueue(), 2-7, 6-6
MomlnfoAppQueueWList(), 6-6
MominfoLink(), 6-6, 8-5
MomlnfoMessage(), 6-6, 9-13

MominfoSys(), 6-6
MomlnfoUser(), 6-6
MominfoUserAlist()., 6-6
MomlnfoXxx(), 6-6
Mom nf oXxxXLi st(),6-6
MomReceive(), 2-7, 4-1,4- 11, 4-16,4- 19, 5-17
Arguments, 4-12
Blocking options, 4-13
M essage specification, 9-9
Optional flags, 4-13
MomSend(), 2-7, 4-8, 4- 14, 4-16, 4-19, 6-1, 9-5
Arguments, 4-8
Blocking options, 4-9
Optional arguments, 4-9
Optional flags, 4-10
MomStatus(), 9-13
MomStatuswait(), 9-13
nonvi ew,5- 15
Monitoring, 515
MR cleaning, 8-2
MsgSpecifier syntax, 9-11
MsgSpecifier values, 4-13, 9-10
Namespace, 2-1, 2-2, 2-3,2-6,5- 1
Configuration, 5-1
Current, 2-7
Definition, 2-6
Multiple, 7-1
Panning, 5-24

Platform configuration. See Configuration
parameters

Platform environment, 5-1
Priority values, 6-2
Process-pairs. See Communication servers
Programming model, 2-1, 5-8, 6-3
Example, 3-1
Pseudo-users, 5-15

Remote instance, 2-7

Date: 9/20/2001 - Revision: 9

Request-response messaging, 4-16, 4-19
Scalahility, 54, 5-5, 6-3
Store-and-forward delivery, 2-1, 2-4
TCP/IP, 52, 54,512
Testing, 5-14
Threads, 2-4
Utility commands

Instance, 5-12

Platform, 5-8
WAN, 1-1
Xi pc. env,5-1,5253 55,56

Index

XipcConnect(), 7-1
XipcDisconnect(), 7-1
Xipcinit,5-1,58

xi pcl ogi n,5-14
XipcLogin(), 513

Xi pcl ogout ,5-14

Xi pcstart,5-4,512 5-13
Xi pcst op,5-12,513

Xi pctermb5-1,58
Zooming, 5-17

Date: 9/20/2001 - Revision: 9

Date: 9/20/2001 - Revision: 9

