EN VOY

Technologles

Envoy Connect XIPC Connector
Version 3.4.0

Envoy Connect XIPC
User Guide

Envoy Technologies Inc.

555 Route 1 South
Iselin, NJ 08830

http://www.envoytech.com

Copyright © 2004 Envoy Technologies Inc. All rights reserved

This document and the software supplied with this document are the property of Envoy Technologies Inc. and are furnished
under a licensing agreement. Neither the software nor this document may be copied or transferred by any means, electronic

or mechanical, except as provided in the licensing agreement. The information in this document is subject to change without
prior notice and does not represent a commitment by Envoy Technologies Inc. or it's representatives.

Printed in the United States of America.

Envoy XIPC, Envoy Connect XIPC are either trademarks or registered trademarks of Envoy Technologies Inc. Other
product and company names mentioned herein might be the trademarks of their respective owners.

Envoy Connect XIPC is represented throughout the documentation as X4PC.

11
1.2
1.3
1.4
15
151
152

2.1
211
21.2
2.13
2.2
221
2.2.2
223
2.2.4

3.1
32
321
33
331
3.3.2
3.3.3
34
341
34.2

X+IPC VERSION 3.4.0

USER GUIDE
TABLE OF CONTENTS
INTRODUCING X#IPC.... it e e e e e e et e e e e e e e e sttt e e s e e e e aeaaennnnas 1—1
00T TS = RSP 1—1
o 0] o = 2 O P 1—3
AVAIIADIIITY ... e a e 1—3
Documentation ROAAMAD........uuuuiiiiieiie s e e e e e e e e e e e e e e e ettt e e e e e e eeeesaaanas 1—3
1= 1] o TS = U 1= o [1—4
SYSTEM REQUIREMENTSoouitiiiieiiise st sss st sb bbbttt bbbt 1—4
INSTALLATION ...ttt sttt ss bbbt bbb sttt 1—4
| O @ N[0 1 I TP 2—1
Interprocess Communication (IPC)........ouuuiiiiiii e e e e 2—1
MULTITASKING — STAND-ALONE IPC....oviiiiiieeieissiseie sttt s st ettt ssesssssssssnsans 2—1
DISTRIBUTED COMPUTING - NETWORK IPCooeiiireireiiiteisesiseise st ssessss st st ssessssssessesssssssssssans 2—1
GUARANTEED MESSAGE DELIVERY ...ttt sttt ssessss s sssssssssesssssssssassssssessssanes 2—1
RTAT 0| o R 2—1
X+PC'S ADVANCED IPC SOFTWARE ENGINEERING TOOLS AND METHODS......c.cocovsineineierenseeeseseeens 2—2
X+PC'S ENHANCED IPC BASIC AND EXTENDED FUNCTIONALITY w..ovuevirieriseiesissssesssessesssssssesssssenns 2—2
X+PC'S IMMEDIATE INTER-OPERATING SYSTEM IPC SOFTWARE PORTABILITY ...covviniinrineinrernenenn. 2—3
XHPC'S NETWORK IPC TRANSPARENCY -..oocuuiiretreeetseeeeesseeessessesssesssesssssssesssasssesssssssessssessassssssesssasssessssssnns 2—3
THE X¢IPC PLATFORM ..ottt 3—1
Function of the X+IPC Platform Environment.............ccocoiiiiiiiiiiiiiiii e, 3—1
XoIPC Platform ConfigUrationcouuiiiiiiiii e e e e e 3—1
XHPC PLATFORM CLASSIFICATION ...ovuuiiiiieisctsessesssessssssessssssses s esssesssssssesssesssesssasssesssssssessssssesssasssssssssans 3—1
XoIPC Platform COmMMANTAS.......c.uuiiiiii e e e e e e e e e et e e e aaa s 3—4
THE XI PCROOT ENVIRONMENT VARIABLEovuiiiiteeiss sttt ss sttt esssassssssss s 3—4
THE Xi PCi Ni T COMMANDovvuiirctreis sttt esss sttt s st s bbbt 3—5
THE Xi PCt €F MCOMMAND ..ottt b et e et h et s bt b et b et s et st e b s e e e eb st e nas 3—6
= @ o T o T I 3—6
PLATFORM ENVIRONMENT LOGGING.......ccoviuiirrieistneisessnsssessessssssssssssssssesssssssssesssssssssassssssessssssessessssssssansans 3—6
INSTANCE LOGGINGovoriiriiieeitsestessessss st sssssss sttt s sttt s sttt sttt sss st st sssssnsssnssas 3—7

© Envoy Technologies Inc. I

Il XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

4.
4.1
4.2
4.3
4.4
4.5
4.6
4.6.1
4.7
4.8
4.9
4.10
4101
4.10.2
4.10.3
4.10.4
4.10.5
4.11
4111
4112
4113
4114
4115
4.12
4.12.1
4.12.2
4.12.3
4.12.4
4125
4.12.6
4.12.7
4.12.8
4.12.9
4.12.10
4.12.11
4.12.12
4.13

XOIPC INSTANCES ... 4—1
What isS an XeIPC INSTANCE?.......u it e e e e e e e e e eaa e aees 4—1
Defining an XHIPC INSTANCEvvuiiiiii e e e et e e e e e e e e e e e e e e e eeeeeennnas 4—1
L07e] o1 1To 18T ¢= 1 ToT o N (i {0) TN i1 =T 4—1
Defining An Instance Having A NUll SUDSYStEMcoiiiiiiiiiiiee e 4—3
XIPCROOIT ...ttt 4—3
Starting an XeIPC INSTANCEccoiiieeiiiiee e e e e e e e e et ea e e e e e e eaeannanaeees 4—4
TEST STARTING AN INSTANCEeuiertumeereeseeesesseeeseesseeeseesseseseessesssesssesssasssesssesssessssssesssssssasssessasssassssssessans 4—4
StoppiNg an XHPC INSANCEcceiieeieiiiie e e e e e e e e e e e e e e e ees 4—4
User-Controlled Configuration..............ueoiiie i e e e 4—5
MUILIpIE X¢IPC INSLANCES ...ceevviiiie it e e e e e e ettt e e e e e e e e eaaba e e e e e e eeeeaennnnan 4—5
Stand-AloNe INSTANCEScooi i 4—6
INSTANCE NAMINGcotiereereeeneeeeesseeseesseessessseessesssesssessseessesssesssesssesssesssesssesssesssesssesssesssesssesssessesssesssesssessessnssns 4—6
CONFIGURATION ..o ceueeeeeseeeeeseesseesseessesssesssesssess et eesaessaees a8 a8 st e8 4582848848848 R84 E bRt 4—6
ENVIRONMENT ...cottretreeeseeeesesesssesssesssessseessesssesssesssess st ees st ess st ess st sees st ees st ess st ess st ess st s aent st entsessns 4—7
STAND-ALONE COMMANDS.oourititeiesessesssessassssssssssssssssssssssssessasssssssssssasssssssassssssasssssssssasssnsssasssassssssnssons 4—7
PROGRAMMING TO ACCESS A STAND-ALONE INSTANCEovvniinrinneirneensesesssssssssessssssssssssssssssssnsens 4—7
LOCAI INSTANCESvviiiii et e e e e e e e e e e e e e e et e e e e e e e e e eeraaaaas 4—8
INSTANCE NAMINGcorierreereeereeseeeseessesseessessseessesssesssessssessesssssssesssesssesssssssesssssssesssesssesssesssesssesssesssesssssssnssssssnsens 4—8
CONFIGURATION ...cooeeueeaeeeseeeeesseesseesseessessessseesessaesssessaesssessaessessaessssssessessaessessessessaessessessassssessanssaesssssessnns 4—9
ENVIRONMENT ... cotcereeereeeseeeeesseessessseessesseessessseessesseessessseessesssessessessesssesssesssesssesssesssesssesssesssesssesssessesssnssessnnssns 4—9
LOCAL COMMANDScoceueereeeneeeseesseessessseessesssesssessesssesssesssessssssesssesssesssesssesssesssesssesssesssesssesssesssesssessaessssssessnssns 4—9
PROGRAMMING TO ACCESS A LOCAL INSTANCEcctiurrereereeerseeseesseessesssessesssesssesssssssessssssesssessssssssssanes 4—10
NETWOIK INSTANCES ...ttt bbb bbb ebebenees 4—10
INSTANCE NAMINGcouveritreerieeeeeseesseesseessessseessessesssessessaees 4—11
CONFIGURATIONoovtriteeiseieestesssesssesssesssssssessssss st st ss st st ss st s a8 88888t 4—11
NETWORK INSTANCE LOCATION ...cuierieeeerreereeenesseessesssssssesssessesssssssssssesssssssssssssssssssssssssssssssssssnssssssnssnssanes 4—11
NETWORK INSTANCE SEARCH RANGEcoorireereereereeeneseseessesssssssssssssessssssesssssssssssssssssssssssnsssessnsssssanes 4—12
SPECIFYING A NODE NAME IN XIPCLOGIN() c.cuveureeueeeseeseeseesseesseesessessessessessesssesssssesssssessssssssassssees 4—12
THE XIPCHOST ENVIRONMENT VARIABLEcuuieiereeeeseeeeeeseeeeessessssessesssssssessssessesssssssesssssssessssssessssess 4—12
THE XIPCHOSTLIST ENVIRONMENT VARIABLEcotitturetreeieeeseeseeesesseesssessssessessesssssssessssssesssasssessseees 4—13
THE XIPCCAT ENVIRONMENT VARIABLEcotiuutiritreeeeeseesssessesessesseesssessessssssssssssesssssssesssssssessassssssassseees 4—13
THE XIPCCATLIST ENVIRONMENT VARIABLEccouttutertireieiieesesssessesssessse s sssssssesssssssessssssssssssssenes 4—13
INSTANCE SEARCH RANGE SPECIFICATION PRECEDENCEc.ooviiminrennisesississsissssssssssssssssssssssnns 4—13
NETWORK COMMANDScoriemieriereeeeesesssesssesssessssssesssssssssssssssesssssssssssssssessssssssssssssssssssssssssssssssssnsssssssssnssanes 4—13
PROGRAMMING TO ACCESS A NETWORK INSTANCEccorvurienreemeereeenesseeseessesssessessssssssssssssssssssssssanes 4—15
U] (TS ez T [T I Y o o] o= 14T L PPN 4—16

© Envoy Technologies Inc. Il

51
511
512
51.3
52
521
522
523
5.3

531
532
533
534
54
541
54.2
54.3
54.4
545
5.4.6
547
5438
549
5.4.10
55

6.
6.1
6.1.1
6.1.2
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6

XAIPC PROGRAMMING ...cooiiiiiiiiiii ittt 5—1
ACCESSING AN XATPC INSEANCEuuuitiiiiiiiiiiiiiieitiiiiiebebebebebebbbebebebebebebebebbbbbebebebebebeeererereeee 5—1
XipcLogin() - LOGGING INTO AN INSTANCEcrueureereeseeeeesseessesseesseessesssesssesssssssesssssssesssessesssasssasssessans 5—1
XipcLogout() - LOGGING OUT OF AN INSTANCEccuuieiureereeseeesesseesssesseessesssessssessesssssssesssssssesssssssesssessans 5—1
XipcAbort() - ABORTING AN INSTANCE USER - FORCING A LOGOUT...c.vvueerieeerineesessseessessseesenenes 5—2
DO | O = [Tt (1 T] 1 o] P 5—2
SYNCHRON OUS OPTIONS.couituetreereeeserssesssesssessesssesssesssessesssessassssesssssssessssssesssssssessssssessssssessassssesssssessans 5—2
ASYNCHRONOUS OPTIONScooiiiitritnitsesssssssesssssssesssssssesssssssesssssssssssesssesssssssesssssssesssssssssssssssssssssssesssssssesssnnss 5—3
BLOCKING OPTIONS SUMMARY ...coouuieriureesrisessssssesssssssessssssesssesssssssssssessnssns 5—4
USING XHIPC With TRICAUS ... 5—5
X IPC LOGIN PER THREADoosvtutitreiteeseseseessssssesess sttt ss sttt 5—5
PROGRAMMING RESTRICTIONS.cuieurieeeerreeeeseesseesseessesseessesssesssesssesssesssesssesssesssesssssssesssessesssssssesssnssessnsens 5—5
ASYNCHRONOUS OPERATIONS......couieitereeeeeeseeeseesseessessseessessseessesssesssesssesssesssssssesssssssesssesssesssssssssssssssasssnssssees 5—6
PROGRAM LINKING......ctutueeueeeueeeesseeseesseessesssesssessseessessseessesssesssesssessesssssssesssesssesssesssesssessaesssessesssesssssssesssessnssns 5—6
)N | = G @ o B T T= TR Y/ o V1 o [T P 5—6
STARTING THE XA IPC MONITORSeoctieretreerneeseesseeseessessesssessaesssesssessassssessasssssssasssessssssasssssssasssasssssssssans 5—7
MONITOR FUNCTIONS AND LAY OUT.....cotitriereeneeeeeeseessessseessesssesssesssesssesssesssesssesssesssesssesssesssesssssssesssessssssnsens 5—7
MONITOR MODES......coctueeueereeneeessseesessseessesssesssesssesssesssesssesssessesssesssesssesssesssesssesssesssesssesssesssessesssessessssssessssssns 5—8
BASIC COMMANDSoviiieeiieissesssesssessessse st sssessssssssssssssssssssss st st s st s st sess s s s s s s s bbbt 5—9
7410 11N PP 5—10
UN-ZOOMING. ..o vereerreeeeeseeseessesssessseessesssesssessseessessssessesssesssessssssesssesssesssesssesssesssssssesssssssssssnsssnsssssssnssssssnssnssanes 5—11
BROWSING ..o cereereeseeseesseeseesseessessseessessesssesseessesssessessseessesssesssessesssesssesssesssesssesssesssesssesssesssesssesssnssesssnsssssnnes 5—11
LT3 1111 I
PANNING ... ceeeereeeeeeseesseeeseesseeeseessesesees st esssees s a8 eesseee 84848458845 E 848 £ E eS8 eenE e es st nntees 5—12
EXITING THE MONITOR ...cocouiereereeeneeeeesseeseesseessessseessesssesssesssesssesssesssesssesssesssesssesssesssesssesssesssesssessssssssssessnssanes 5—12
XAIPC Function Return Codes - Using XipCEMOr()......uuvuieiieeiiiieeiiiiinieeeeeeeeeiiiineeeeeeeeeens 5—12
ADVANCED TOPICS ... ettttttttttttiiiteteiibebebebebeee bbb be e bebebebe e e b e b ebebebebsbebbbebbbesbbebbsbbebebenee 6—1
Advanced INstance CONfIQUIALIONuuuuuuuiiiiiiiiiiiiiiiiiiibiiibeeebebeb bbb eerereeee 6—1
CONFIGURING X*IPC FOR MULTIPLE-CPU (SMP) SYSTEMSovuntetmrerrerneereesneeseessessasssessasesaessasesssssnns 6—1
CONFIGURING AN INSTANCE’S MEMORY UTILIZATION ...cutureereereesneeseesseesesssessessessssssessessssesssssssssans 6—1
ASYNCHIONOUS OPEIALIONS.....eiiiiiiit e e e e ee et e et e e e e e e e et e e e e e e e e aaab e e e e e eeeeannnnnas 6—5
INTRODUGCTION w..couituieueeeseeseesseeseesseessessseessesssesssesssesssesssesssesssessesssesssesssesssesssesssesssesssesssesssesssessesssessesssessnsssnssns 6—5
THE ASYNCRESULT CONTROL BLOCK (ACB) w..coucereimeereaseesesseeesessessssessssssesssssssesssessssssssssessssssssssssssessans 6—5
ACB RETURN VALUESoovitiiitseisss sttt sttt sttt 6—9
THE CALLBACK OPTION w..coitiereirctsesessesesssesssesssesssesssesssesssesssesssesssesssesssesssasssesssesssessssssessssssassssssasssasssassssssans 6—9
THE POST OPTION ... ceuttuieueesetseeesseeseeesesssesssesssesssasssesssesssesssesssesssasssessssssesssaessasssasssasssaessesssessasssessassssssasssnnees 6—12
THE IGNORE OPTION ...eoieuitereeseeeseeseeeeeeseeeseessesssessseessesssesssesssesssasssesssasssesssasssessssssassssessesssaessasssessassssssassseees 6—13

© Envoy Technologies Inc. "

IVX+PC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

6.2.7
6.2.8
6.2.9
6.3
6.3.1
6.3.2
6.4
6.4.1
6.4.2
6.5
6.5.1
6.5.2
6.6
6.6.1
6.6.2
6.6.3
6.6.4
6.6.5
6.7
6.8
6.9
6.9.1
6.10
6.10.1
6.10.2
6.10.3
6.10.4
6.10.5
6.11
6.11.1

ABORTING A PENDING ASYNCHRONOUS OPERATIONcovuiirriierereneesesssssesessssssesssssssesssssssesssssssessans 6—14
MIXING ASYNCHRONOUS AND SYNCHRONOUS OPERATIONS........corinreereeneeeresseeseesssessesssssssssnssnes 6—15
(070] N I L]] OO 6—15
NEtWOrk TIMEOUL DEECHIONuuuuiiiiiiiiiiiiiiiiiiiiiiiitbbbiiebbbbb bbb bbb bbebebebebebebebeeebeneeees 6—16
DESCRIPTION ...coceueeueeeseesseesseesseesessseessessesssessseessessssessesssesssesssesssessesssesssesssesssesssesssessesssesssesssesssesssnssesssessnssnnes 6—16
CHANGING DEFAULT BEHAVIORcotitieeiieeeneeseesaeesessseessesssessssssesssssasssassssesssessasssssssssssssessssssssasssnees 6—16
Working With XeIPC INSLANCEScieeiiieeeiii i e e e e e e aaaananas 6—17
X¢IPC INSTANCES: THE APPLICATION PERSPECTIVEetuuiuiieeireeeesneessessseessesseesssesssessssssesssssssessseees 6—17
X¢IPC INSTANCES: THE PROCESS PERSPECTIVEcotuieieeieeeiseesesseessessseessesssssssesssssssssssssssssssssseees 6—20
Starting and Stopping Instances Under Program Control...........ccovvvvviiinieeeievieiiiiineeen, 6—37
XipcStart() - STARTING AN INSTANCEc.tuuiereerieresseeeeesseesssesseesssesssesssessesssse st ssessesssessssssssssesssssssssssssenes 6—37
XipcStop() - STOPPING AN INSTANCE ..ot sses sttt sss st essssssesssnses 6—38
USING XAPC LIDIariES. ..o 6—39
INTRODUGCTION w..oitiiiiiseitesesssssessessse st sssssssesssessss st s sttt es 6—39
THE XAPC STAND-ALONE LIBRARYcuiririuitisietsesesssssessssssessssssesssssssesssssssesssssssesssssssesssasssessssssssssssasssnses 6—39
THE XAPC NETWORK LIBRARYcouiuitrereretseeessesseeesesssesssssssasssasssesssesssesssssssasssssssasssasssessssssassssssasssessasssnees 6—40
THE XAPC COMBINED LIBRARYoutuuteurereeseeesesseeesessseessasssasssaessesssaessesssssssasssssssesssssssessssssasssessassssssassssses 6—41
(070] N I L]] OO 6—43
B = T o I = U Lo | 1 o SN 6—44
XipcFreeze(), XipcUnfreeze() - Freezing and Unfreezing an Instance...................cceeee. 6—47
Extending XAIPC 's FUNCHONAILYcouvuiiiieiiiicece e 6—48
INCREMENT A SHARED MEMORY WORD ATOMICALLYvvoriireerreeeeennesseeseessessssessssssssssssesssssssssssssnes 6—48
Info Function List Manipulation...............uuuiiiiiiiiiice e 6—52
INTRODUGCTION ...ouioueeueeseeeeeeseessessseesseesseesseesseessessseessesssesssesssesssesssesssessseessesssesssesssesssesssessesssssssesssnssesssessnssnnes 6—52
INFORMATION VERBSctituetrieeeeneeeseetseeseesseessessseessesssesssesssesssesssesssesssesssesssesssesssesssesssssssesssessssssssssesssnsssssanes 6—52
UNDERSTANDING X{PC INFORMATION VERBScviuierieeereseeeseessessssessesssesssesssssssesssssssesssesssesssesssessnnes 6—53
CODING EXAMPLES OF MOMSYS INFORMATION VERBS.....c.oovimieiiniiessnssssssssessssssssssssssssssssssssssssssnses 6—53
SAMPLE QUESYS FUNCTION ...cuitriirieretrieessssssesssssssesssesssessssssssssssssssssssssssssasssssssssssasssssssssssssssssssssssssnnees 6—55
The XeJPC Command INtEIPreter........coouviiiiiiiiiiiiiee e 6—59
SAMPLE USAGE OF THE X4PC INTERACTIVE COMMAND INTERPRETER......coccomtimrinrineernsesneesnsesneees 6—59
INDEX .ottt et 7—1

© Envoy Technologies Inc. v

1. INTRODUCING X¢IPC

1.1 Purpose

Introducing X+IPC

This document presents User guidance for Version 3.4.0 of X«IPC, the Extended Interprocess Communication
Facilities product from Envoy Technologies Inc.

X«PC isatoolkit for developing software systems employing Interprocess Communication (IPC). X+IPC is comprised
of four |PC subsystems, each with alibrary of functions and support utilities:

O MomSys, the guaranteed disk-
based messaging subsystem

The XJdPC message oriented
middleware subsystem, MomSys,
is a highly scalable, dynamically
configurable, guaranteed message
delivery facility. Ided for

mission-critical, enterprisewide
applications, MomSys ensures the

constant trackability and
reliability of all messages.

O QueSys, the high-speed

memory-based messaging subsystem

User
pplication

MomSys
Manager

Message
Repository
Manaaer

Message Repository

Comm
Manager

Manager

Comm

Message Repository

Message
Repository

Manaoer

The X+«IPC message queue system, QueSys is a complete message queuing facility. Many advanced features
are included (e.g., individualized queue sizing, dynamic queue spooling, queue multiplexing, etc.) to facilitate
MOst necessary message queuing requirements.

O SemSys, the Semaphore System

The X«IPC semaphore subsystem is known as SemSys. SemSys includes a comprehensive implementation of
event and resource semaphores. Its wide range of operations and the various waiting and acquiring
alternatives ensures that almost every semaphore-related system requirement can be easily implemented.

O MemSys, the Shared Memory System

The X«PC shared memory system is known as MemSys MemSysis a complete shared-memory management
system. It includes memory allocation aswell as access control, synchronization, locking and protection at the

byte level.

This User Guide describes the X+IPC product without specific reference to the individual subsystems. It providesa
global presentation of X+IPC concepts—most importantly, instances—and usage; it is accompanied by a Reference
Manual. Separate documentation isavailable for the subsystems. Used together or individually, these subsystems
provide significant enhancementsto the native | PC facilities of the supported operating systems. X+PC additionally
providesits full functionality distributed over a network.

© Envoy Technologies Inc.

1-X8PC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

XePC isaset of libraries and support utilities that greatly simplifies software devel opment involving stand-alone or
network IPC. X+IPC provides the systems developer with a state-of-the-art |PC development environment, including:
on-line interactive |PC monitoring and debugging; extended basic and advanced functionality; immediate inter-
operating system | PC source-code portability; guaranteed message delivery; complete network transparency; and
dynamic configuration.

XJPC benefits are realized throughout all phases of the software development cycle:
O System design is simplified by the availability of X+«IPC 'srich set of basic and advanced IPC functions.
System design decisions are no longer constrained by non-existent or deficient |PC capabilities.

Distributed application design also benefits from X«IPC 's full functionality being transparently available
over anetwork.

Database Servers DBMS

Application and
Communication

Servers
UNIX, NT, VMS, LINUX

Workstation
Clients

Java, WinXP, WinNT, VMS, UNIX, LINUX ...

O The development phase is enhanced at the unit test level and, more sgnificantly, during system
integration. |PC problems resulting from programmer error or misinterpretation are identified and resolved
rapidly via X«IPC 's on-line monitoring and debugging facilities.

Network application developrrent is further simplified by the fact that all 1PC-related development can
occur in a stand-alone environment and subsequently be distributed over a network with virtually no
modification.

O System maintenance is similarly enhanced by the ability to remotely monitor live (stand-alone or network)
applicationsin thefield, if and when they exhibit problems.

O Porting IPC-laden systems between dissimilar operating systems is reduced to a recompile instead of a
total redesign.

O Spreading an application over a network requires no program modification. Distributed processes can
communicate using X«IPC functionality regardless of their network location.

© Envoy Technologies Inc. 1—2

Introducing X+IPC

X+IPC provides network-transparent connectivity

In short, X«IPC redefines how the IPC components of sophisticated multitasking, multi-platform and distributed
software systems are designed and devel oped.

1.2 Scope

This XJdPC User Guideisfor experienced software developers, who are familiar with the basic concepts of IPC as
well as with common software devel opment practices. These developers need the enhancements provided by X+IPC
for easing and expediting the devel opment of quality, portable applicationsin a multitasking or distributed
environment.

Thisvolume, the XJlPC User Guide, is put to best advantage if you first read Chapters 1 through 4 thoroughly to
become well acquainted with the X+IPC product and its key concepts. Chapter 5 addresses basic programming
techniques, while Chapter 6 presents more advanced topicsin greater detail. Technical Notes, which discuss special
issues and product enhancements, are provided in Chapter 7, the Appendix.

1.3 Availability

X+IPC isavailable on awide variety of operating system platforms and, when used in a networking environment,
includes support for awide range of protocol families. This platform and environmental independence is one of the
major benefits of working with X«IPC : It provides for immediate |PC source code portability. It additionally allows for
flexible configuration of a distributed application's processing components, since they are not bound to any
particular operating system platform.

Note that al platform-specific information, from installation and program compiling/linking to configuration and
administration guidance, isfound in theindividual Platform Notes documentation that is available for each supported
platform.

1.4 Documentation Roadmap
The following publications are avail able to support X«IPC Version 3.4.0:

O Getting Started is a brief introduction to X+«IPC . 1t givesthe user a"fast track” to select the relevant
documentation, install the software and rapidly begin using X+PC .

© Envoy Technologies Inc. 1—3

1-X4PC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

O XePcC Platform Notes provide platform-specific information regarding product installation, program
compilation, program linking and, where appropriate, configuration and administration guidance. The
supported environments are individually documented.

O XoIPC system level documentation:
The X+IPC User Guide describes in detail how to employ X+IPC for distributed application devel opment.
This document is generic in that it presents X+IPC without regard to any particular hardware platform,
operating system or network protocol. Theinformation is presented at an X+«IPC -system-level, i.e, it is
X+IPC -subsystem+-independent.
The XJPC Reference Manual provides X+IPC (system level) commands, functions and macros, as well
as function calling sequences and possible return codes. Included are code segments and sample
programs.

O Quesys/M emSys/SemSys documentation:
The QueSys/MemSys/SemSys User Guide describesin detail how to use these three X«IPC subsystems
for distributed application development. It includes API descriptions as well as topical presentations
on special subsystem features.
The QueSys/MemSys/SemSys Reference M anual provides subsystem-level functions and macros,
interactive commands and sample programs, as well function calling sequences and possible return
codes.

O M omSys documentation:
The MomSys User Guide describesin detail how to use the MomSys subsystem for distributed
application development. It includes API descriptions aswell astopical presentations on special
subsystem features.
The MomSys Reference Manual provides subsystem-level functions and macros, interactive commands
and sample programs, as well function calling sequences and possibl e return codes.

1.5 Getting Started

1.5.1 SYSTEM REQUIREMENTS

X«IPC utilizes certain native operating system resources when it is used. The quantities and sizes of these resources
arerelatively small and are usually available within the standard operating system configuration. Formulae for
calculating required native resources are operating-system dependent and are described in the Platform Notes
accompanying the product.

When using X+IPC in a networking environment, certain network resources are used. The nature and quantities of
these resources are network-dependent and are outlined as well in the Platform Notes.

1.5.2 INSTALLATION

Installation is operating system and network dependent. Consult the Platform Notes for details of the installation
procedure.

© Envoy Technologies Inc. 1—4

X+IPC Concepts

2. X+IPC CONCEPTS

2.1 Interprocess Communication (IPC)

2.1.1 MULTITASKING — STAND-ALONE IPC

With the emergence of powerful microprocessors, multitasking operating environments have become increasingly
popular, most recently at the micro-computer level. Thisisadirect result of the increased processing power provided
by these processors. Such power is a prerequisite for an operating system performing as a multitasking scheduler.

The popularity of UNIX systems, from workstations to super-micros, the increasing acceptance of Windows NT and
Windows 95, along with the continued popularity of OS/2 and VMS, are all indicative of the movement toward
employing sophisticated multitasking programming techniques for solving increasingly complex system
requirements.

The key to such systemsis Interprocess Communication. |PC is the mechanism by which multiple active tasks
dynamically synchronize and pass information between one another. |PC provides the tools for affecting process
synchronization, message passing and resource and memory sharing needed within the context of multitasking
systems.

2.1.2 DISTRIBUTED COMPUTING - NETWORK IPC

More recently, a second form of IPC requirement has grown in demand. While processing power has become less
expensive and increasingly diversified, network technol ogies have matured and become widespread. The
convergence of these factors has|ed to an upsurge in demand for distributed computing applications. Of particular
interest isthe growing need for guaranteed message delivery.

Such distributed applications often have the same kinds of | PC requirements as stand-alone multitasking |PC
applications: interprocess synchronization, message passing and resource and memory sharing. The differenceis
that the processes in a distributed application are not confined to one computing platform and may be spread across
anetwork.

2.1.3 GUARANTEED MESSAGE DELIVERY

IPC tools have facilitated the successful design and implementation of multitasking and distributed application
systems which can make possible the building of reliable, large-scale mission critical distributed applications which
demand guaranteed message delivery. The spread of these enterprise-wide applications has been accompanied by a
demand for guaranteed message delivery. As the technological environment increases in complexity, incorporating
disparate operating systems, platforms and applications, the risks associated with messaging among them has risen
dramatically. Only with guaranteed message delivery provided by IPC network tools can such environments by
operated and expanded with reliability, with the confidence that messages cannot be lost.

2.2 Why X+IPC?

A major shortcoming of earlier |PC approaches is that they reflect the state and limitations of software development
methods of a decade ago. Thisis most apparent in the areas of |PC software engineering techniques, IPC
functionality, IPC source code portability, network I PC transparency and system scalability.

X«IPC overcomes these problemsin a consistent and cohesive manner.

© Envoy Technologies Inc. 2—1

2-X%3APC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

2.2.1 X+IPC'S ADVANCED IPC SOFTWARE ENGINEERING TOOLS AND
METHODS

X«PC provides the systems devel oper with a set of 1PC tools and techniques that support the latest programming
methods. For instance:

O On-line monitoring and interactive debugging at the IPC level of a system's execution is not possible with
current IPC tools. X«IPC provides the developer with the ability to view, in real-time, al of hisIPC
resources as they are created, manipulated and deleted—irrespective of whether the IPC activity is
occurring on a stand-alone platform or dispersed over a network.

Thisfacility reduces time spent in testing and integration phases of a system'sdevelopment. In addition, it
enhances product support efforts by providing the ability to remotely monitor live production systemsin the
field if and when they exhibit problems.

O XJPC makesit possible to develop a distributed application using a stand-alone | PC environment, and to
subsequently disperse the application's component processes to positions on a network with virtually no
IPC code modifications.

O X«PC moves all aspects of IPC configuration and parameterization out of the kernel. Most current IPC
tools place any possible |PC parameterization together with other kernel-related parameter values. This, in
effect, forces all applications to share in the parameterization decisions and in the resulting | PC resource
alocation pools, regardless of differing and sometimes conflicting needs. And when changes are agreed
upon, they can only be affected after the kernel has been brought down, thus interrupting everyone
using the system.

The setting and tuning of IPC parameter valuesis done at the application level, each application according to
its own specific requirements. Concurrently active X+IPC intensive applications have no relationship with one
another and can be configured and fine-tuned individually. X«IPC monitoring and debugging is performed
and segregated on an application-dependent basis as well.

2.2.2 X+IPC'S ENHANCED IPC BASIC AND EXTENDED FUNCTIONALITY

The native | PC facilities of the various operating systems are frequently inadequate. X«IPC affords the developer a
more complete set of 1PC functionality. New basic and advanced IPC features are provided. A few examplesfollow.

X¢«IPC provides guaranteed message delivery—assuring that no message can be |ost— to support the demands
of today’ s large-scale, mission-critical, globally distributed applications.

The queue system provides individualized queue sizing in terms of bytes and/or messages, thus allowing for
throttling of message-producing tasks. Automatic spooling for overflowing queuesis also provided as an option
in order to avoid losing peak-period messages.

Atomic operations involving multiple queues provide the multiplexing functionality often needed for building
complex systems such as transaction processing monitors. Messages designated "oldest,” "youngest,”
"highest-priority,” etc., can be retrieved atomically from groups of queues.

X«dPC'sfully functional queue system eliminates the shortcomings of some of the underlying native IPC facilities.
For example, queue ownership restrictionsinherent in OS/2 are removed.

Additiona X+IPC functions include a comprehensive implementation of event and resource semaphores. Multiple
semaphores can be operated on in single X+IPC operations thus allowing for avariety of waiting and acquiring
aternatives ("any,” "all-atomic,” "al-cumulative").

X+IPC's shared memory system provides for memory read-and-write locking and protection at the byte level. This
too is unique to X+IPC.

© Envoy Technologies Inc. 2—2

X+IPC Concepts

X«IPC additionally supports synchronous and asynchronous operations. X+IPC al so supports asynchronous triggers
that monitor specific aspects of an application's |PC environment (e.g., queue "Xxyz" rises above 90% capacity).

Many more enhancements exist and are described in their appropriate sections below.

Thewide array of additional X«IPC functional capabilities elevates the task of system design to a higher and more
abstract level. The difficult job of reducing complex system requirements to meet the low-level realities of native IPC
functionality issignificantly alleviated.

2.2.3 X+IPC'S IMMEDIATE INTER-OPERATING SYSTEM IPC SOFTWARE
PORTABILITY

The API used to access X+IPC isindependent of the host operating system. Thus, the |PC components of a system
written using X+IPC areimmediately portable from one operating system to another.

The most difficult part of porting an application between operating systems is often the IPC portion. Thisis dueto
the gross dissimilaritiesin functionality, calling sequences and underlying |PC methodol ogies employed by the
operating systems involved. Bridging these differences frequently requires extensive modifications to the code and
sometimes atotal redesign. In such cases, multiple versions of source code have to be maintained and kept in sync.

In contrast, portable IPC code is an immediate by-product of using X+IPC. . The benefits are manifold:

O Thereis no need to maintain multiple versions of a multi-platform application's source code, or to edit the
source code for porting. The cost of version control is significantly reduced.

O System architects can design multiple-platform applications based on the application's requirements, rather
than according to the lowest common denominator |PC constraints of the specific platformsinvolved.

O In-house expertise of the native IPC facilities for each operating system is no longer necessary. Training
new programmersin IPC coding is performed once, regardless of the operating system to be used.

2.2.4 X+IPC'S NETWORK IPC TRANSPARENCY

X+PC presents a uniform approach for handling both stand-alone and distributed forms of IPC. Processes
synchronize, communicate and share data with one another using the same set of function calls whether they are on a
single multitasking platform or distributed over a network of heterogeneous platforms.

The resulting benefits for the devel oper are:
O Full X«IPC functionality is extended transparently across a network.
O The need for network programming expertise is eliminated.
O Operating system differences are no longer an IPC concern.
O Network protocols are no longer an IPC concern.

O Stand-alone multitasking IPC applications can be distributed over a network with virtually no code
modifications.

© Envoy Technologies Inc. 2—3

The X+IPC Platform Environment and its Configuration

3. THE X+IPC PLATFORM

Before acomputer platform can be used for supporting X+IPC activity, the appropriate underlying X+IPC environment
must first be established on that platform. This environment isreferred to asthe “ X+JlPC Platform Environment.” This
section discusses the following aspects of the X«PC Platform Environment:

Function of the X+IPC Platform Environment
XdPC Platform Environment Configuration
X¢IPC Platform Environment Commands

3.1 Function of the X¢IPC Platform Environment

As stated above, a computer platform that isto support any form of X«IPC activity must first have itsX+IPC platform
environment started. A platform’sX«IPC environment encompasses a number of background processes aswell as
underlying system data structures.

The X«IPC platform environment is the infrastructure used to support all X+IPC activity on that platform.
Components within the X+IPC platform environment include:

aninternal X«IPC instance that is used by XJPC for supporting internal interprocess communication within the
platform

anumber of X«IPC daemon/service programs that operate in the background for supporting various X+IPC -
related functions, such as: catalog and namespace services, asynchronous operation services, idle-user
detection services, etc.

3.2 X+IPC Platform Configuration

The XJPC platform environment must be properly configured in order for X+IPC -based applications running on the
platform to operate properly. This configuration is based on a single configuration file, calledxi pc. env. The

Xi pc. env fileisread by an X+IPC utility command, xi pci ni t, to start the X«IlPC platform envuironment. The
Xi pci ni t command reads the parameter definitions contained withinthe xi pc. env filefor setting up the X«IPC
platform environment. (The location and contents of the xi pc. env filewill be discussed below.)

Thexi pc. env file supports a set of parameter definitions that describe the nature of the X+IPC platform
environment that will be started. Some of these parameters will be described in the following sections. The complete
list of parameter sections, parameter names and possible parameter values are listed on the X«IPC Reference M anual
page for the xi pci ni t command.

3.2.1 X¢IPC PLATFORM CLASSIFICATION

There are two general forms of X«IPC platform configurations: “ X«IPC Server Platform Configuration” and “X«PC
Client Platform Configuration”. These are now described.

3.2.1.1 X¢IPC Server Platform Configuration

A computer platform which will be used for supporting one or more X+IPC instancesis referred to as an “ X+IPC
Server Platform.”

© Envoy Technologies Inc. 3—1

3-X%APC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

Thetwo typical situations where server platform configuration isrequired are asfollows:

In configuring an X«JPC platform that will host an X+IPC instance that is to be accessed by local and/or
remote QueSys/ MemSys/ SemSys users, as depicted in the following diagram:

Local

User

Proora ™~
Remote
Usel o]
Progra

P o X+IPC Instance

Remote -
User .-
Progra

In configuring an X«IPC platform that will be used as part of a MomSys application, as depicted
in the following diagram:

X+IPC Instance

X+IPC Instance

MomSys MomSys
User -——____/ X | 1 / N__.--- User
Proaram - - Proaram

Note that programs employing the MomSys subsystem require alocal X+«IPC instance to be active for supporting
the MomSys activity. Hence, MomSys users must configure all involved computer platforms asX+IPC server
platforms.

Thexi pc. env filefor suchaconfiguration requires that all X«IPC services/daemons be started on that platform.
Thisisthe default behavior for anxi pc. env file that doesnot specify the START parameter within thefile's
[xi pci ni t] section. A defaultxi pc. env file for an X«IPC server configuration has the following contents:

Default X¢IPC Server Platform Configuration (xi pc. env)

[xi pcinit]
[cat al og]

[cat al na t eni Nl

© Envoy Technologies Inc.

The X+IPC Platform Environment and its Configuration

3.2.1.2 X+IPC Client Platform Configuration

A computer platform that will not support any X«IPC instancesisreferred to asan “ X«IlPC Client Platform.” Thus, for
example, aplatform that isto be used for supporting QueSys/ MemSys/ SemSys programs that accessremote X+IPC
instances exclusively may be configured as an X+IPC client platform.

Login to remote " 7 Loglnt-oremote
X+IPC instance AShanee— —~User User 7~ XtIPC Instance
Proara Progra
User
Progra T ==l __
~~~~~~~~ N Login to remote

X+PC instance

Thexi pc. env filefor such aconfiguration requires that alimited subset of X«IPC daemon/service programs be
started on that platform. Thisis specified viathe START parameter withinthexi pc. env fil€s[ xi pci ni t ]
section. An example of such afileisasfollows:

Typical X+PC Client Platform Configuration (xi pc. env) File

[xi pcinit]
START xipciad # Only starts this program

[ cat al og]

[ catal og. tcpi p]

Where the platform will not employ any of X«IPC s asynchronous functionality, the xi pci ad name can be deleted
from the START parameter. In such a case, the START parameter should appear with no values assigned to it, as
follows:

X¢IPC Client Platform Configuration (xi pc. env) File supporting no asynchronous
functionality or catalog access.

[xi pcinit]
START # Has no paraneters. Starts no background prograrms.

[ catal og]

[catal og. tcpip]

© Envoy Technologies Inc. 33



3-X%4PC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

3.3 X¢IPC Platform Commands

The two X«IPC commands that initialize and terminate a platform’s X«IPC platform environment arexi pci ni t and
Xi pct er m respectively. These commands make particular use of the XI PCROOT environment variable that must be
defined in order for them to function.

3.3.1 THE XI PCROOT ENVIRONMENT VARIABLE

When X«PC is started on aplatform--viathe xi pci ni t command--X+IPC sets up itsinternal platform environment
for supporting all subsequent X+«IPC activity on that platform. Aspart of thisinitialization, xi pci nit readsthe

Xi pc. env platform configuration file to ascertain which platform-wide resources need to be set up. The location of
thexi pc. env fileisdefined by the XI PCROOT environment variable. If XI PCROOT is not set, or if it isset, but
points to adirectory/folder having noxi pc.env file thexi pci ni t command will fail.

Xl PCROOT

X¢PC Installation
Directory/Folder

.XI pc. env

..scratch-pad
files

.bin/
... ncl ude/
Lib/

..sampl es/
..l oa/

Xi pci ni t 'swork includes the creation of anumber of scratch-pad fileswithin the XI PCROOT directory. As such,
the XI PCROOT directory must be situated within awriteable area of the file-system.

The XI PCROOT environment variable typically has a second function: defining for xi pci ni t whereto find the
installed X+IPC product. Thus, xi pci ni t usesthe value of XI PCROOT to find the product'sbi n directory for
starting internal processes that are installed therein.

Typically, these two roles of XI PCROOT:

identifying the directory in whichxi pci ni t will findthexi pc.env fileand in which it will create scratch- pad
files, and

identifying the location of theinstalled X+IPC product

are addressed in aunified manner. In such acase, XI PCROOT is set pointing to the installation directory in which
thexi pc.env fileis positioned and in whichxi pci ni t creates scratch-pad files. Thisis depicted in the above
diagram.

© Envoy Technologies Inc. 3—4



The X+IPC Platform Environment and its Configuration

Occasionally, it isdesired to havethe XJlPC product installedin an area of the file system that isread-only. In this
case, itisundesirable (and, in fact, impossible) for xi pci ni t to usetheinstallation directory for its scratch-pad
files.

The prescribed approach, therefore, isto movethexi pc. env fileand thel og directory to awriteable directory and
set XI PCROOT pointing there. xi pci ni t now knowswhereto findxi pc. env and where to do scratch-pad file
work, when invoked. xi pci ni t must still, however, be guided to the X«IPC installation directory, which is
elsewhere (in aread-only directory); thisisaccomplished by adding, withinthe[ xi pci ni t] section of the

Xi pc. env file, the XI PCPATH parameter set with the directory path of theinstalled X«IPC product. Thisis
depicted in the following diagram:

Xl PCROOT

X*PC Installation
Directory/Folder

.Xi pc. env

.bin/

.iLnclude/ ..scratch-pad files
Lib/ .Log/
..sanmpl es/

Platform Configuration (xi pc. env) File

[xi pcinit]
XI PCPATH # set this paranmeter to point to the
# X PC installation directory/folder

[ cat al og]

[ catal og.tcpip]

3.3.2 THE Xi pci ni t COMMAND

Thexi pci ni t command isused for initializing the XsIPC platform environment. xi pci ni t must be the first
X«IPC command issued on the platform when the platformis started. xi pci ni t readsthexi pc. env fileand sets
up all internal structures and background processes needed for supporting X«IPC activity on the platform, based on
thefile’ s parameter settings.

Xi pci ni t requiresthe setting of the XI PCROOT environment variable as described above. It takes no arguments.
Seethe X4PC Reference Manual for parameter guidelines.

© Envoy Technologies Inc. 35



3-%dPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

3.3.3 THE Xi pct er mMCOMMAND

A bracketing command, xi pct er misused to terminate the X+«IPC environment on agiven platform. xi pct erm
should be the last X«IPC command issued when the platform is stopped. xi pct er mcloses all internal structures and
background processes needed for supporting X«IPC activity on the platform.

Xi pct er mtakes no argunents, but it too requires the XI PCROOT environment variable to be set.

Refer to the X+IPC Reference Manual for detailsonxi pci ni t, xi pct er m and for information about the
parameters that may be defined withinthe xi pc. env file. The XI PCROOT environment variableis defined as well
in the same Reference Manual.

3.4 X+IPC Logging

There are two types of logging relevant to X«IPC : Platform Environment Logging and Instance Logging.
Descriptions follow.

3.4.1 PLATFORM ENVIRONMENT LOGGING

X¢IPC ‘s platform environment generates a set of log files containing information about the activities occurring within
the XJPC platform environment. These log files are generated within the X+«IPC platform’slog directory (i.e., thel og
directory/folder within the directory/folder pointed at by the XI PCROOT environment variable. Refer to the diagrams
earlier in this section.)

Theselog files are actually divided into two groups:
The single X«IPC system summary log file- xi pcsys. | og

Individual log filesfor each of the platform-level background service/daemon programs

3.4.1.1 X¢IPC System Summary Log File — xi pcsys. | og

Thexi pcsys. | og file provides a high-level running summary of X+«IPC activity occurring on a platform. Included
within thisfile are entries such as:

“Xi pci ni t hasinitialized the platform environment”
“Xi pct er mhasterminated the platform environment”
“User xipc instance ... was started”

“User xipc instance ... was stopped”

Thexi pcsys. | og filewill also include reports of high-level warnings or errors occurring within other X«IPC
components. As such, thexi pcsys. | og fileisthe central repository of overall X«IPC activity occurring on a
platform; it should be examined first when tracking down suspected problems.

3.4.1.2 Background Service/Daemon Logging

Each background service/daemon program may log errors and warnings specific to its function within alog file
specifictoit. Aswiththexi pcsys. | og file, theselog files are generated within the platform'sl og directory.
These files follow the naming convention<Pr ogr anName>. | og. For example, thexi pci sd background program
generatesthexi pci sd. | og file.

© Envoy Technologies Inc. 3—6



The X+IPC Platform Environment and its Configuration

3.4.2 INSTANCE LOGGING

A second form of logging occurs at the X+IPC instance level and, then, only within instances running the MomSys
subsystem. In this case, a series of log files, specific to the MomSys subsystem of that instance, are generated in the
instance’' s anchor directory/folder (i.e., the directory/folder in which the instance’ s configuration file is situated).

Assuming that the instance’s configuration file was namedt est . cf g, then the generated MomSys|log files will

havenamessuchas: t est . SSS,t est. MRl ,t est. MRO,t est . CSI ,t est . CSOandt est . CLK,
corresponding to the internal components of the instance’s M omSys subsystem.

© Envoy Technologies Inc. 3—7



X+IPC Instances

4. X+¢IPC INSTANCES

4.1 What is an X¢IPC Instance?

An important X+IPC concept is that of aninstance. An X«PC instance is an environment for doing X«IPC work. An
X¢PC instance is comprised of one or more of X+IPC ‘s subsystems. MomSys, QueSys, SemSys and MemSys.

In the case of QueSys, SemSys and MemSys, an X«IPC instance is the true hub of XJPC activity; it isin this context
that instances are discussed here.

Inthe case of MomSys, instances serve asgateways to route messaging activity; MomSys' utilization of instances
isdiscussed at greater length in the MomSys documentation.

In general, the reader should refer to the respective subsystem manuals for further information on the establishment
and use of instances and for all other subsystem-specific details.

X«PC instances are typically utilized on an application-by-application basis, with instances defined to meet the
specific | PC requirements of a given application and configured to optimize | PC performance of the application.

In short, an X«IPC instanceis an | PC environment tailored to the specific needs of an application and its programs
that will useit.

4.2 Defining an X¢IPC Instance

An X«IPC instance is defined via an X+IPC instance configuration file. An instance configuration fileisaflat ASCII file
containing the parameterization definitions that describe the X«IPC instance. X+IPC instance configuration file names
have the form:

<l nst anceFi | eNane>. cf g

Examplesfor various platforms:

frontend. cfg stress.cfg userdi sk: [ emai | ] production. cfg
[ usr/ deno. cfg t psys.cfg
/tnp/test.cfg c:\appls\transact.cfg

The maximum length of InstanceFileName depends on the host operating system's file naming rules.

4.3 Configuration (.cfg) Files

An Xs«IPC configuration file (.cfg file) completely describes an X+IPC instance. As such, it contains all necessary
information needed to describe and parameterize the instance.

The configuration file is comprised of separate sections for each of the XJlPC subsystems. The sections contain the
definitions and parameters specific to that subsystem. An additional section is required for instances that will be
used in a network environment.

The order of the sectionsisinsignificant. Blank lines and comments are ignored. Comment lines can be started using
almost any non-al phanumeric character. Comments can also occur in lines following any parameter definition. The
exact details of the syntax are specified in the X+IPC Reference Manual, aswell asin theindividual subsystem
manuals.

© Envoy Technologies Inc. 4—1



4XAPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

The sample configuration file below defines an X+IPC instance for an E-Mail application having an Instance File Name
of /usr/emai | . It referencesthe QueSys, MemSys and SemSys subsystems, whose documentation should be
referred to for further information.

A transaction processing application would likely define its own IPC environment separately, in adifferent
configuration file, perhaps namedt psys. cf g. Certain supported operating systems require additional operating
system specific parameters to be specified within their configuration files. These parameters (if any) are listed and
described in the Platform Notes for the respective platforms.

#

# File: /usr/email.cfg

# Created: May 22, 2001

#

Hemm e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e m
#

# This XIPC instance is used for denonstrating the basic

# functions of our E-Mail application. Various limtations are

# i nposed on systemcapacity since it is a deno.

#

- U

[ SEMBYS]

MAX_SEMVB 10 # the denmp system uses 10 senaphores.
MAX_USERS 10 # five progranms plus expected async activity.
MAX _NCDES 50 # general formula given in Reference Manual .
[ QUESYS]

MAX_QUEUES 20 # never needs nore than 20 queues.

MAX _USERS 10 # prograns plus expected async activity.
MAX_NODES 50

MAX_HEADERS 100 # worst case: assuming heavy traffic.

Sl ZE_VSGPOCL 48 # worst case: assunes downl oad activity.
SI ZE_VBGTI CK 64 # smal | est nessage is 64 bytes.

S| ZE_SPLTI CK 128

[ MEMBYS]

MAX_SEGS 15 # depends on | ength of deno.

MAX_USERS 10 # prograns plus expected async activity.
MAX_NODES 50

MAX_SECTI ONS 100

SI ZE_ MEMPOCL 32 # must not be less than 16 K for deno.
SI ZE_MEMIT CK 256 # smal | est segnment to be used.

[ REMOTE_USER]

MAX_TEXTSI ZE 1024

© Envoy Technologies Inc. 4—2



X+IPC Instances

4.4 Defining An Instance Having A Null Subsystem

In some situations it may be desirable to define an X+IPC instance that supports a subset of X+IPC 's subsystems. For
example, one applications may require an instance that only uses QueSys message queuing, while a second
application may have the need for an instance that supports semaphores and shared memory.

For addressing these situations, the developer can define an instance that has a subset of its subsystems
designated as null. Such an instance will support only those I PC services corresponding to the subsystems that are
defined. Attemptstoissue X+«IPC operations using the services of the null-defined subsystems are returned as an
error.

#

# File: [usr/subsetl. cfg

# Created: May 22, 2001

#
o
#

# This XIPC instance denonstrates configuring an instance that
# has no QueSys (or MnBys) subsystens.

#

Hemm e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e m
[ SEMBYS]

MAX_SEMB 10

MAX_USERS 10

MAX_NODES 50

[ MEMBYS]

MAX_SEGS 15

MAX_USERS 10

MAX_NODES 50

MAX_SECTIONS 100
Sl ZE_ MEMPOOL 32
SIZE MEMII CK 256

[ REMOTE_USER]
MAX_TEXTSI ZE 1024

H
H

The above instance is defined to have anull QueSys (and anull MomSys), simply by virtue of omitting them as
section headers.

It isimportant to bear in mind that if a subsystem is defined as null within an instance, then no X+IPC operations of
that nature are possible within that instance. As an example, in the above defined instance, it would be an error to
issue a QueSys or MomSys command.

The advantage of using a null subsystem is that doing so reduces the memory size of an instance (i.e., the amount of
native shared memory required by X+IPC for supporting the instance).

4.5 XIPCROOT

Xl PCROOT isthe platform directory environment variable. Itisrequiredin all cases, for stand-alone, local and
network instances alike.

© Envoy Technologies Inc. 4—3



4-XAPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

When X¢IPC isstarted on aplatform--viathexi pci ni t command--X«IPC sets up itsinternal platform environment
for supporting all subsequent X«IPC activity on that platform. Aspart of thisinitialization, xi pci ni t readsthe

Xi pc. env platform configuration file to ascertain which platform-wide resources need to be set up. Thelocation of
thexi pc. env fileisdefined by the XI PCROOT environment variable. If XI PCROOT is not set, or if it is set, but
pointsto adirectory/folder having noxi pc.env file, thexi pci ni t command will fail. See chapter 3 for amore
detailed description.

4.6 Starting an X¢IPC Instance

An X+IPC instance must be started before it can be used. (And, recall that the X+sIPC platform configuration
environment must be initialized using xi pci ni t beforeany X+IPC activity can beinitiated.). Thisis accomplished
using thexi pcst art command. xi pcst art startsan X«IPC instance. Its argument is the instance
configuration file name of the instance to be started—or to be more precise, the full or relative path name of the
instance configuration file excluding the . cf g suffix.

Consider thefollowing UNIX example:
xi pcstart /projects/|ocal/tpsys

Programs attempting to use an instance that has not been started will receive an error code indicating the problem.
Thiswill be elaborated onin the discussion of "login" functions below.

The Instance File Name can be omitted from the command line. In such acase, xi pcst art usesthe value of the
XI PC environment variable as the Instance File Name of the instance to start.

Starting an instance that is to be used in a network environment requires an additional command argument. Thisis
described in the X+IPC Reference Manual.

As described in the Advanced Topics section of this User Guide, an instance can also be started under program
control.

4.6.1 TEST STARTING AN INSTANCE

Xi pcst ar t , when executed, generates areport that specifies the amount of native operating system memory
resources required by the instance.

Itispossibleto havexi pcst art runintest mode, so that it produces a report indicating the memory resources
that would be required by the instance, had the instance actually been started, and to not actually start the instance.
This mechanism is useful for scoping the size of an instance beforeit is actually started. Thetest flag (-t ) directs

Xi pcst art to produce atest report regarding an instance.

Examples:

xi pcstart /projects/local/tpsys -t

4.7 Stopping an X¢IPC Instance

An X+PC instanceis stopped using the xi pcst op command. Xxi pcst op terminates an active instance, and
releases all resources associated with that instance. Its argument is the Instance File Name of the instance to be
stopped.

© Envoy Technologies Inc. 4—4



X+IPC Instances

Example:
xi pcstop /projects/|ocal/tpsys

The above command stops the X+IPC instance that had been started using the Instance File Name shown (t psys).
Programs requiring the instance's X+IPC facilities can no longer be run.

Programs still using an instance at the time that it is stopped receive an error code indicating the stoppage of the
instance.

Here, too, the Instance File Name can be omitted from the command line. In such acase, xi pcst op also usesthe
value of the XI PC environment variable as the Instance File Name of the instance to stop.

As described in the Advanced Topics section of this book, an instance can also be stopped under program control.

4.8 User-Controlled Configuration

Aswe have seen, each X+IPC instance isindividually configured by the user, without the need to modify the
operating system kernel parameters.

This has a number of obvious advantages:

O Each application's X«IPC environment can be configured and optimized according to its own specific IPC
needs.

O X«PC configurationchanges can be applied without affecting the X+IPC instances of other applications.

O Special X«IPC instances can be devised for testing various aspects of an application's performance. Such
test instances can be used to verify the correctness of special case logic within a system by artificially
forcing those special situations to "occur." Examplesinclude borderline testing (e.g., insufficient message
headers: create an instance with an artificially low number of headers), and stress testing (e.g., insufficient
shared memory space: create an instance having an artificialy small-sized MemSys). In this manner,
obscure pathsin a system's code can be thoroughly tested.

O Production copies of asystem can be individually tailored for different customer and/or site requirements,
without the need to modify the kernel at each site.

4.9 Multiple X¢IPC Instances

X+IPC permits multiple instances to be started and to exist concurrently. In this manner it is possible to have multiple
applications running, each involved with its own X+IPC instance. Multiple active X+IPC instances are completely
segregated from one another.

The ability to define and start multiple X+IPC instances provides significant software management, devel opment and
maintenance benefits:

O It is easy to segregate projects and applications running on a single processor or over a network. Using
X«PC instances, the IPC resource requirements of each application are drawn from the application's own
local private pool of 1PC resources, instead of from some operating system's global pool of |PC resources.
This ensures IPC resource availability for each application, without the need to constantly monitor the
system-wide | PC pool for usage and contention.

O Itispossible to run development and production versions of a system concurrently on asingle processor

or network. Development and support can occur side-by-side on one machine or network without any
compromises or special adjustments.

© Envoy Technologies Inc. 4—5



4-%@PC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

O X«PC instances are independent of one another. Distinct instances for each application lighten the
management task of allocating | PC resource identifiers. As an example, each application can create and use
itsown Test _Queue without ever colliding with some other application'sidentically named queue.

O Finally, the segregation of instances guarantees that the activities within one instance have no impact on
another. For example, debugging of problems in one instance (perhaps due to abusive use of X«PC
resources) has no effect on other active X+IPC instances.

4.10 Stand-Alone Instances

An X+PC instance can be confined to a single processor in one of two ways. One approach isto start such an
instance as a stand-alone instance. (The second approach, using alocal instance, is described in the next section.

A stand-alone instance defines an X+IPC environment that is accessible by local processes only. Processes on other
machines have no access to such an instance.

Because an X+IPC /stand-al one instance isnot named or registered in any manner within any X+IPC naming catal og, it
isideal for establishing an X«IPC instance that is:

inaccessible from any remote node
invisible (except to programs that use it) within the node on which it isrunning

used by intra-nodal X+IPC applications where no networking isinvolved.

4.10.1 INSTANCE NAMING

Aswas shown above, an instance that islocal to one machineisidentified by itsinstance configuration file name.
Example:
xi pcstart /home/ sys/ emai |

The above command starts the instance described by the "/home/sys/email.cfg" file. Had the "email.cfg" file beenin
the current directory, the following command would have had the same effect.

Example:
xi pcstart enail

Each active instance is anchored to its host platform through itsinstance configuration file.

4.10.2 CONFIGURATION

Thebasic configurationsections [ XI PC], [ MOMSBYS], [SEMSYS], [ QUESYS] and[ MEMSYS], as
described in the respective subsystem Reference Manuals, are sufficient for starting a stand-alone instance. If a
[ REMOTE_USER] (formerly [ NETWORK] ) section appearsin the instance configuration file, it isignored.

4.10.3 ENVIRONMENT

The only environment variables used in conjunction with a stand-alone X+IPC instance are XI PCROOT, which is
required at all times, and XI PC. When set, XI PCis assumed to contain the Instance File Name of the instance to be
worked with. X«IPC commands requiring an I nstance File Name as an argument refer to the XI PC environment
variable when the Instance File Name argument is omitted from the command invocation.

© Envoy Technologies Inc. 4—6



X+IPC Instances

4.10.4 STAND-ALONE COMMANDS

The following commands are used to start, stop and view an X«IPC stand-aloneinstance. .

4.10.4.1 xipcstart
Xi pcst art isusedwithout the“-I” flag or "-n" flag which denote local or network instances. Theinstance started

is based on the Instance File Name specified as an argument. If no Instance File Name argument is given,
Xi pcst art usesthevalue of the XI PC environment variable.

4.10.4.2 xipcstop

The instance stopped is based on the Instance File Name specified as an argument. If no Instance File Name
argument isgiven, xi pcst op usesthe value of the XI PC environment variable.

4.10.4.3 momview, queview, memview and semview

The instance monitored is based on the Instance File Name specified as an argument. If no Instance File Name
argument is given, the monitor program uses the value of the XI PC environment variable.

4.10.5 PROGRAMMING TO ACCESS A STAND-ALONE INSTANCE

4.10.5.1 Environment

The XI PCROOT environment variableis required by programs that access a stand-alone X+IPC instance.

4.10.5.2 Logging into a Stand-Alone Instance
The XipcLogin() function identifies the target local instance by means of its Instance File Name.
Example:

Xi pcLogin ("/hone/sys/enumil", "startup");

4.10.5.3 Program Linking

Programs that are to access a stand-alone X+IPC instance may be linked using either the X+IPC Stand-Alone library or
the X+«IPC Combined library. Thetopic of library selection is discussed in detail in the Advanced Topics section of
this Guide.

411 Local Instances

An X«IPC/local instance is an X+IPC instance that is named, but whose name s only visible within the bounds of the
node on which it is started.
An X+IPC /local instance isideal for establishing an X+IPC instance that is:

inaccessible from any remote node

© Envoy Technologies Inc. 4—7



4-X8PC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

accessible withinits platform in an operating system transparent manner (i.e., by its name)

used to advantage by MomSys programming because that environment most often invokes processes
logging into instances on the local node.

Such an instance may be accessed either by itslocal name (@I nstanceName) or by its Instance File Name.
Aninstanceisgivenitslocal characteristic at instance start time. An added argument is specified as part of the
Xi pcst art command that gives the instance itsInstance Local Name. Thisargument is specified usinga”-1" flag.

Example:
xi pcstart /usr/deno -ILocal Dermo

The above command starts an instance defined by the /usr/demo.cfg instance configuration file, and attaches the
"LocalDemo" local nameto it. By binding alocal name to an instance, the instance becomes inaccessible from any
remote node and accessible only within its platform. It may be accessed either by itslocal name (@.ocal Denp) or
by its Instance File Name (/ usr / denp).

The details of starting, stopping and working within a network instance are given in the Advanced Topics section of
this Guide.

4.11.1 INSTANCE NAMING

Aninstanceisgivenitslocal characteristic at instance start time. An argument specified as part of thexi pcst art
command assigns an Instance Local Name to theinstance. Thelocal nameis specified using the"-I" flag asfollows:

xi pcstart /honme/sys/email -1 EMil

A local instance can also be named by setting the LOCALNAME parameter in the configuration file. (Thisis
described in the X+IPC Reference Manual.)

If no naming parameters are specified, the instance is started as a stand-al one instance with no registered name.

4.11.2 CONFIGURATION
The basic configuration sections[ XI PC] , [ MOMSYS], [ SEMSYS], [ QUESYS] and[ MEMSYS], as

described in the respective subsystem Reference Manuals, are sufficient for starting alocal instance. If a
[ REMOTE_USER] (formerly [ NETWORK] ) section appears in the instance configuration file, it isignored.

4.11.3 ENVIRONMENT

The only environment variables used in conjunction with alocal X+IPC instance are XI PCROOT, which is required at
all times, and XI PC. When set, XI PCisassumed to contain the Instance Local Name of the instance to be worked
with. X+IPC commands requiring an Instance Local Name as an argument refer to the XI PC environment variable
when the Instance Local Name argument is omitted from the command invocation.

4.11.4 LOCAL COMMANDS

The following commands are used to start, stop and view an X«IPC local instance.

© Envoy Technologies Inc. 4—8



X+IPC Instances

4.11.4.1 xipcstart

Xi pcst art isused with the*-|” flag which denotes alocal instances. The instance started is based on the Instance
Local Name specified as an argument. If no Instance Local Name argument isgiven, xi pcst art usesthe value of
the XI PC environment variable. Some examplesfollow:

xi pcstart /home/sys/enmail -1 EMil
xi pcstart -1EMail /home/sys/enail
xi pcstart -1 EMail /home/sys/enuil

4.11.4.2 xipcstop

The instance stopped is based on the Instance Local Name specified as an argument. If no Instance Local Name
argument isgiven, xi pcst op usesthe value of the XI PC environment variable. Anexamplefollows:

xi pcstop /hone/sys/ enil

4.11.4.3 momview, queview, memview and semview

The instance monitored is based on the Instance Local Name specified as an argument. If no Instance Local Name
argument is given, the monitor program uses the value of the XI PC environment variable.

4.11.5 PROGRAMMING TO ACCESS A LOCAL INSTANCE

4.11.5.1 Environment

The XI PCROOT environment variableisrequired by programs that access alocal X+IPC instance.

4.11.5.2 Logging Into a Local Instance

An XipcLogin() function call that is targeting alocal instance specifies the instance by itslocal name with an " @"
prefixed toit.

Example:
Xi pcLogin ("@Mail"™, "InitPgm);

In the above example, aprogram identifying itself as"InitPgm" logsinto the local instance "EMail."

4.11.5.3 Program Linking

Programs that are to access alocal X+IPC instance may be linked using the X+IPC Combined library. The topic of
library selection is discussed in detail in the Advanced Topics section of this Guide.

© Envoy Technologies Inc. 4—9



4-X4PC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

4.12 Network Instances

An X«PC instance that is to support processes which access it over anetwork is called a network instance.
An X«PC /network instance isideal for establishing an instance that:
must be accessed in a network-transparent manner across the network

isused, therefore, to advantage by QueSys, SemSys and MemSys programming, where network-
transparent access to an instance isa primary feature

Aninstanceisgivenits network characteristic at instance start time. An added argument is specified as part of the
Xi pcst art command that givesthe instance its Ingance Network Name. Thisargument is specified usinga"-n"

flag.
Example:
xi pcstart /usr/denmo -nNet Deno

The above command starts an instance defined by the /usr/demo.cfg instance configuration file, and attaches the
"NetDemo" network nameto it. By binding a network name to an instance, the instance becomes accessible to
processes across the network. They will refer to the instance by the instance's network name "NetDemo.”

The details of starting, stopping and working within a network instance are given in the Advanced Topics section of
this Guide.

4.12.1 INSTANCE NAMING

Aninstancethat is defined across a network in order to provide X+IPC services between processes spread over the
network is called a network instance.

Aninstanceisgiven its network characteristic at instance start time. An argument specified as part of the
Xi pcst art command, assigns an Instance Network Name to the instance. The network name is specified using
the"-n" flag asfollows:

Example:
xi pcstart /home/sys/email -nEMil

The above command starts the instance defined by the "/home/sys/email.cfg" instance configuration file, and
attachesthe "EMail" network nameto it. By binding a network name to an instance, the instance becomes accessible
to processes across the network. They refer to the instance by its network name ("EMail™).

A network instance can also be named by setting the NETNANE parameter in the configuration file. (Thisis
described in the X+IPC Reference Manual.)

If no naming parameters are specified, the instance is started as a stand-al one instance with no registered name.

An Instance Network Name can be any ASCII string up to 255 charactersin length.

4.12.2 CONFIGURATION

A configuration file that isto be used as part of a network instance requiresthe inclusion of a[ REMOTE_USER]
(formerly [ NETWORK] ) section, in addition to the basic subsystem sections being used.

© Envoy Technologies Inc. 4—10



X+IPC Instances

4.12.3 NETWORK INSTANCE LOCATION

When working within an X+IPC /Network environment, it is possible to have multiple instances concurrently active on
the network. Each active instance is physically located on the network node where it was started.

It is possible to have some nodes supporting more than one instance and others supporting no instances.

Of course, processes using a network instance have no concern for the instance's physical location since they refer
to the instance by its network name.

4.12.4 NETWORK INSTANCE SEARCH RANGE

X+IPC commands and programs working within a network instance locate the physical position of the target instance
as part of their instance login procedure. The range of machines searched isreferred to as the instance search range.

Theinstance search range can be set in one of three ways:
O By explicitly specifying the instance' s node name in the XipcLogin() call (demonstrated below).
O By specifying the name of one or more hosts (network nodes) where the instance should be searched for

viathe XI PCHOST and XI PCHOSTLI ST environmental variables.

O By specifying the name of one or more Catal og Nodes where X+IPC maintains a catalog of network
instances, viathe XI PCCAT and XI PCCATLI ST environmental variables.

Controlling the search range is accomplished using the following environment variables: XI PCHOST,
XI PCHOSTLI ST, XI PCCAT and XI PCCATLI ST. Each program can set and control its own search range, using
these variables. The order in which instance search range specification parameters are used follows:

1. The XI PCHOST environment variable.

2. The Xl PCHOSTLI ST environment variable.
3. The Xl PCCAT environment variable.

4. TheXl PCCATLI ST environment variable.

© Envoy Technologies Inc. 4—11



4-X4PC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

When more than one search specification is present, X+IPC uses the first onein the order listed above and ignores
therest. (These environment variables are discussed below.)

4.12.5 SPECIFYING A NODE NAME IN XIPCLOGIN()

When invoking the XipcLogin() verb to log into a network instance, you can specify the specific node name where
the instance resides.

In the following example, the process logs into network instance “ Serverinstance” on node “ sneezy.”

Ret Code = Xi pcLogi n(" @neezy: Server | nstance", "George");

4.12.6 THE XIPCHOST ENVIRONMENT VARIABLE

When the XI PCHOST environment variable is set, it isassumed to contain alist of node names (separated by white
spaces, commas, colons or semicolons) that should be the target of instance searches. Instance searching is limited
to those listed nodes, in the order listed.

Example:

Xl PCHOST=sneezy: dopey: sl eepy

4.12.7 THE XIPCHOSTLIST ENVIRONMENT VARIABLE

When the XI PCHOSTLI ST environmental variable is set, it is assumed to contain the path name of afilein which a
list of node names appears, one name per line. Instance searching is limited to those listed nodes, in the order listed.

4.12.8 THE XIPCCAT ENVIRONMENT VARIABLE

When the XI PCCAT environment variable is set, it is assumed to contain alist of Catalog Node names that should
be queried for the instance discovery.

4.12.9 THE XIPCCATLIST ENVIRONMENT VARIABLE

When the XI PCCATLI ST environmental variable is set, it is assumed to contain the path name of afilein which a
list of Catalog Node names appears, one name per line. The catal og nodes should be queried for instance discovery.

4.12.10 INSTANCE SEARCH RANGE SPECIFICATION PRECEDENCE

The following list describes the order of precedence in which instance search range specification parameters are
used:

1. Node name specification in the XipcLogin() verb.
2. Theenvironment variable XI PCHOST.

3. Theenvironment variable XI PCHOSTLI ST.

4. Theenvironment variable XI PCCAT.

© Envoy Technologies Inc. 4—12



X+IPC Instances

5. Theenvironment variable XI PCCATLI ST.

When more than one search specification is present, X+IPC uses the first one in the order listed above and ignores
therest.

4.12.11 NETWORK COMMANDS

Thefollowing commands are used to start, list, stop and view instances in a networked environment.

4.12.11.1 xipcstart

Starting an instance that is to be used over a network requiresthat an Instance Network Name be specified as part of
thexi pcst art command.

Example:
xi pcstart /home/sys/email -n EMil

The above command starts an instance defined by the "/home/sys/email.cfg" instance configuration file and attaches
"EMail" toit asits Instance Network Name.

Other possible forms of the same command include:

Example:
xi pcstart /home/sys/enmail -nEMil
xi pcstart -nEMail /home/sys/enail
xi pcstart -n EMail /home/sys/enuil

Were an Xl PC environment variable set to "/home/sys/email,” then the command could have been reduced to:
xi pcstart -nEMai |

The specified Instance Network Name must be unique within the prescribed search range.

When xi pcst art isinvoked with the"-n" flag for starting a network instance, it searches the network for the
existence of an active instance having the specified network name. If such aninstanceisfound, thexi pcst art
command fails.

It isalso possibleto start an instance from under program control, using the XipcStart() function call. Thisfunctionis
described in the Advanced Topics chapter of this Guide and in the X+IPC Reference Manual.

4.12.11.2 xipclist - Listing Active Network Instances

It is occasionally important to know which network instances are active and where they are physically located.
Xi pcl i st servesthat purpose. It lists all activeinstancesin the defined search range.Example:

xi pcli st

If amachine name s specified as an argument, thenxi pcl i st reporting islimited to that machine. In such a case,
the search rangeisignored.

© Envoy Technologies Inc. 4—13



4-X4RC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

Example:

xi pcli st nodeA

4.12.11.3 xipcstop

Thexi pcst op command for stopping a network instance isidentical to the command for stopping alocal or stand-
aloneinstance. Itslone argument is the I nstance File Name of the instance being stopped.

Example:
xi pcstop /hone/sys/ enuil

Of course, the Instance File Name can be omitted, in which case the value of the XI PC environment variableis used.

It is also possible to stop an instance from under program control, using the XipcStop() function call. Thisfunctionis
described in the Advanced Topics chapter of this Guideand in the XJlPC Reference Manual.

4.12.11.4 momview, queview, memview and semview

The syntax for starting the X+«IPC monitors is unchanged when monitoring a network instance. No reference is made
of the instance's network name. Itslone argument is the instance configuration file name of the instance being
monitored.

Example:

quevi ew 250 /hone/sys/enuil

Here, too, the Instance File Name can be omitted, in which case the value of the XI PC environment variableis used.

4.12.12 PROGRAMMING TO ACCESS A NETWORK INSTANCE

4.12.12.1 Environment
The XI PCHOST, Xl PCHOSTLI ST, Xl PCCAT and/or Xl PCCATLI ST environment variables must define an
instance search range when X+IPC programs are used within a network instance. Specifically, it isrequired by the

XipcLogin function call that refers to a network instance by its Instance Network Name. These functions conduct a
search for the specified network instance within the indicated search range.

4.12.12.2 Logging Into a Network Instance

An XipcLogin() function call that is targeting a network instance specifies the instance by its network name with an
"@" prefixed toit.

Example

Xi pcLogin ("@Mail", "InitPgn);

© Envoy Technologies Inc. 4—14



X+IPC Instances

In the above example, a program identifying itself as"InitPgm" logs into the network instance "EMail." The search
for the"EMail" instance is conducted based on the settings of the XI PCHOST, Xl PCHOSTLI ST, XI PCCAT
and XI PCCATLI ST environment variables.

4.12.12.3 Program Linking

Programs that are to access a network X+IPC instance may be linked using either the X+IPC Network library or the
X«PC Combined library. The topic of library selection is discussed in detail in the Advanced Topics section of this
Guide.

4.13 Multi-Instance Applications
In many cases, a one-to-one mapping scheme between an applicationand an X+IPC instance provides a sufficient
level of abstraction for configuring and supporting the application's | PC requirements.

There are, however, situations—particularly when building larger applications—where it makes sense to split the
application’'s IPC resources along certain physical or logical seams and to employ more than one instance for
supporting the application's |PC activity. Such an application is a multi-instance application.

Issues related to the devel opment of multi-instance applicationsare discussed in the Advanced Topics chapter of
this Guide, in the section entitled "Working With X+«IPC Instances."

© Envoy Technologies Inc. 4—15



X+IPC Programming

5. X4IPC PROGRAMMING

5.1 Accessing An X+IPC Instance

5.1.1 XipcLogin() - LOGGING INTO AN INSTANCE

A user program must log into an instance before it can use its X+IPC environment. Thisis accomplished using the
XipcLogin() function.

XipcLogin() takes the following arguments:
O Theidentity of the target instance.

O A login name by which the user will be known within the instance.

Thetarget instance is specified in one of the following forms:
O Stand-aloneinstances areidentified by their instance configuration file name.

Example:
Ret Code = Xi pcLogi n("/usr/deno", "nyprog");

O Loca and Network instances are identified by their Instance Local Name or Instance Network Name. An
'@' character must be prefixed to the name to distinguish it from a stand-alone name.
Example:
Ret Code = Xi pcLogi n(" @\et Deno", "nyprog");
In the above examples, the calling program attempts to log into the instance named “NetDemo,” using the login name
"myprog.”

Duplicate login names are permitted within an instance. It would thus be possible to have more than one user log in
as"myprog" within the same instance.

XipcLogin() returnsanon-negative instance"User Id" asits value when successful. Thisvalueis of minor
significance and is generally not needed subsequently.

5.1.2 XipcLogout() - LOGGING OUT OF AN INSTANCE

A user logs out of aninstance using XipcLogout(). XipcLogout() severs any connection between the calling user
and theinstanceit islogged into.

XipcLogout() takes no arguments.
Example:
Ret Code = Xi pcLogout ();

XipcLogout() releases all held resources of the instance before it logs the user out. It isagood programming practice
to have application program termination functions (such astrap handlers) call XipcLogout() before terminating.

© Envoy Technologies Inc. 5—-1



5-%8APC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

Usersthat fail to log out of an instance can be forcibly removed from the instance by another logged-in user, using
XipcAbort(). Refer tothe Appendix containing the Technical Note on the X+IPC Idle User Detection M echanismfor
further details.

5.1.3 XipcAbort() - ABORTING AN INSTANCE USER - FORCING A LOGOUT
Occasionally a user program that has logged into an instance will fail to log out from the instance before terminating.
In such asituation, instance resources are locked up by the inactive user.

XipcAbort() can be called by alogged in user to forcibly remove another user from the instance. In the case of users
that are no longer executing, XipcAbort() isauseful tool for cleaning up and recovering instance resources.

XipcAbort() can also be called to violently log another active user out of an instance. In most situations this will not
be appropriate, but the capability exists.

XipcAbort() takes the following argument:
O The Uid of the user to be aborted.
Example:
Ret Code = Xi pcAbort (U d);

XipcAbort() takes asits argument the user id (Uid) of the user that isto be aborted. Recall that the Uid is returned as
the value of a successful XipcLogin() operation.

5.2 X+IPC Blocking Options

Many X+IPC operations have the potential for blocking or completing asynchronously. X+IPC offers a complete set of
synchronous and asynchronous options for controlling such behavior.

5.2.1 SYNCHRONOUS OPTIONS

X«IPC provides three synchronous blocking options.

The NOWAIT Option

The NOWAI T option isthe most straightforward. It isin fact a blocking option that directs X+IPC not to block. When
specified as part of apotentially blocking function, it stipulates that the function should not block if the operation
cannot complete.

In such a case, an appropriate error code is returned by the function indicating that the function's operation was not
accomplished and that waiting will not take place.

The WAIT Option

TheWAI T option instructs the function to block indefinitely when it cannot complete immediately.

When WAI T is specified, the invoking user becomes blocked when the function cannot complete. The process then
remains blocked until conditions necessary for the function's completion exist, at which time the function compl etes
and the user is woken up.

© Envoy Technologies Inc. 5—-2



X+IPC Programming

The TIMEOUT Option

The TI MEOUT optionisidentical to the WAI T option except that, when blocking occurs, it islimited to the specified
number of seconds of real time.

Should the blocked operation compl ete within the timeout period, the user is awakened and allowed to proceed. If,
however, the stipulated time period expires, then the user's blockage is cancelled and an appropriate error codeis
returned by the function.

5.2.2 ASYNCHRONOUS OPTIONS

X+IPC additionally provides three asynchronous optionsfor situations where it is desired that an operation complete
in the "background." Assuch, it is possible—and often desirable—for a program to initiate multiple X+IPC operations
that remain pending in the background until conditions permit them to complete.

The common denominator of the three asynchronous options isthat the X+IPC operation doesnot cause the calling
program to block. It continues unimpeded. The options differ in their method of completion notification. A key
component of these approachesis the usage of a user-declared Asynchronous Result Control Block (ACB) variable.
Each X+IPC operation that is directed to complete asynchronously has a user-specified ACB associated with it. The
ACB alowsthe tracking (and possible aborting) of the operation if and when it blocks asynchronously. The ACB
structure is additionally used by X«IPC for returning data from the asynchronous operation, when the operation
completes.

Note that an X+IPC operation that is coded with an asynchronous option completes asynchronously whether or not it
isforced to block before completing. Thisisthe default behavior of the asynchronous options.

Itis, however, sometimes required that an asynchronous option be applied only if the subject operation is forced to
block, and to otherwise return synchronously if it can complete without blocking. Thisbehavior can be
accomplished by specifying the RETURN option flag together with the asynchronous option. Examples of using this
option are given in the Advanced Topics section of this Guide.

The CALLBACK Option

The CALLBACK option directs X+IPC to notify of an asynchronous operation's completion by means of a user-
defined callback function. The specified callback function isinvoked when the blocked operation completes. The
function's single argument is a pointer to the ACB associated with the compl eting operation. In thisway, one
function can be used to serve multiple asynchronous X+IPC operations.

The POST Option

The POST option directs X+IPC to mark the completion of the operation by setting a user-specified X+«IPC event
semaphore. The semaphore is set when the operation completes. A typical scenario would have another program or
thread waiting for that semaphore to be set, and then to react appropriately. Alternatively, the semaphore can be
examined at some later point in time by the original calling program or by another program in the instance.

The IGNORE Option

The | GNORE option instructs X+IPC to allow the operation to complete "silently.” No explicit notification is given
upon its completion. The original calling program may periodically poll the ACB associated with the pending
operation, until the operation completes. Or it canignoreit entirely.

Refer to the specific function descriptions below and to the X+IPC Reference Manual for additional related
descriptions. Further discussion of working with X«IPC ‘s asynchronous blocking optionsis presented in the
Advanced Topics section of this Guide.

5.2.3 BLOCKING OPTIONS SUMMARY

The table below summarizes the uses of X«IPC ‘s synchronous and asynchronous blocking options.

© Envoy Technologies Inc. 5-3



5-%4PC Version 3.4.0 User Guide

Date: 1/20/2004 - Revision: 2

The blocking option parameter accepts one of the following values, aslisted in the table below. The characters
"XXX_"in all blocking option codes and return codes should be replaced by MOM , SEM , QUE_ or MEM

depending on the subsystem called.

All X+IPC functions that have the potential to block or complete asynchronously, have a BlockOpt parameter that is
used to specify the appropriate option for the function call. The asynchronous options refer to a user-declared
Asynchronous Result Control Block structure (ACB). The function of this control block was described above.

SYNCHRONOUS Blocking Options

Description

XXX_NOWAI T
XXX_WAI T

XXX_TI MEOUT( n)

ASYNCHRONOUS Blocking Options

If the request specified in the function call cannot be satisfied, the
function returns immediately withRC = XXX_ER_NOWAI T.

If the request specified in the function call cannot be satisfied, the caller
is blocked until the request is completed.

If the request specified in the function call cannot be satisfied, the caller
is blocked until the request is completed or until n seconds have
€l apsed after which the function returns with
RC = XXX_ER TI MEOUT.

Description

XXX_CALLBACK (Func, AcbPtr)

XXX_POST(Si d, AcbPtr)

XXX_1 GNORE( AcbPt r)

The function returns immediately withRC = XXX_ER_ASYNC. When
the request is completed, the ACB pointed to by AcbPtr is filled with
the results of the operation and the function Func is called with AcbPtr
passed asits only argument.

The function returns immediately withRC = XXX_ER_ASYNC. When
the request is completed, the ACB pointed to by AcbPtr is filled with
the results of the operation and the event semaphore Sid is set.

The function returns immediately withRC = XXX_ER_ASYNC. When
the request is completed, the ACB pointed to by AcbPtr is filled with
the results of the operation.

The three asynchronous options cause all successful operation completions to occur using the prescribed
asynchronous mechanism, including operations that can be completed immediately.

It is sometimes required that operations which complete immediatel y—without blocking—should return their result
synchronously and have the specified asynchronous option apply only to blocking situations. This behavior can be
achieved by specifying the XXX_RETURN option flag along with the asynchronous options, asin:

XXX_RETURN | XXX_CALLBACK( Func, AcbPtr)

XXX_RETURN | XXX_POST(Sid, AcbPtr)

XXX_RETURN | XXX_| GNORE( AcbPt r)

In each of the above cases, the specified asynchronous mechanism is employed only if the operation cannot
complete immediately. Operationsthat can completeimmediately return synchronously with their resuilts.

5.3 Using X¢IPC With Threads

Thread-safe versions of X+«IPC are available. This meansthat it is possible to develop a multithreaded program that
employs threads for X+IPC operations without having to be concerned for the integrity of X«PC'sinternal data

© Envoy Technologies Inc.




X+IPC Programming

structures. There are, however, rules that must be followed and understood in order to program multithreaded
applications successfully.

This section describes general rules regarding the use of X+IPC within threaded programs. Operating system specific
rules are delineated within the respective X+«IPC Platform Notes. The reader is encouraged to refer tothose notes after
reading this general section.

5.3.1 X¢IPC LOGIN PER THREAD

Thefirst ruleisthat each thread must explicitly manage its own X+IPC logins, asit needs them. X«IPC logins cannot
be shared across multiple threads. So, for example, an X+IPC program having five threads, each performing X«PC
operations, must be written so that each of the five threads performsits own XipcL ogin() and XipcL ogout()
operations as necessary. In our example, that would translate into five separate logins. It isnot possible for one
thread to perform one login and have the context of that login shared by the five threads. (Of course, threads not
doing X+IPC work need not log in to an instance.)

The “login per thread” rule has ramifications regarding X+IPC asynchronous programming. Thisis discussed below.

5.3.2 PROGRAMMING RESTRICTIONS

Following isalist of additional restrictions that are imposed on X+IPC —based threaded applications:

O Thefollowing three X+IPC list-building utility functions are not thread-safe: QueLi st (), Senlist(),
MerLi st () . These functions use internal static data areas which cannot be relied upon in a multithreaded
environment. The other list building functions (e.g., QueLi st Bui I d(), QueLi st Add(), etc.) arethread
safe.

O Threaded programs, written for the supported UNIX Oper ating System platforms, cannot perform X+PC
operations that specify the XXX_TI MEOUT() blocking option.

O TheMemSysfunction MenSect i on() isnot thread-safe. One should usethe MenSect i onBui | d()
function instead.

O X«PC, by default, cannot support more than 64 threads per process. In order to override this limit, one must set
the external X+«IPC variable Xi pcMaxThr eads with the override value before the process performsits first
Xi pcLogi n() cal.

5.3.3 ASYNCHRONOUS OPERATIONS

The Xi pcAsyncEvent Handl er () function that is called by an application upon completion of an asynchronous
operation must be called by the same thread that issued the original X+«IPC operation. It is possible to have another
thread wait for the associated system event to occur (e.g., in UNIX to wait for the I/O descriptor to become set; in
Windows NT to wait for the Event object to become set), but the final processing step of the operation— the calling
of Xi pcAsyncEvent Handl er () — must be performed by the thread that initiated the original X+«IPC operation.

UNIX-based multithreaded programs that issue X+IPC asynchronous operations are not able to receive notification of
operation completion via system signals. Rather, they must use the I/O descriptor method of asynchronous
notification. See the Technical Note “Using I/0 Descriptors for Asynchronous Notification” for details on how this
is programmed.

Each thread within a UNIX-based multithreaded program must set the XI PC_SETOPT_PRI VATEQUEUE optionin

order for its asynchronous operations to compl ete successfully. Thisis accomplished by having each thread call the
XipcSetOpt() function, as follows, beforeit logs into X+IPC .

© Envoy Technologies Inc. 55



5-%dPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

Example:

/*

* Set XIPC option to use a private UNl X queue used for
* inplementing this thread’ s asynchronous Xl PC activity.
* Then log in to the XIPC instance ...

*/

Xi pcSet Opt ( XI PC_SETCPT_PRI VATEQUEUE) ;

XipcLogin(..., ...);

5.3.4 PROGRAM LINKING

The method for linking a multithreaded X+IPC program is platform-dependent. On some platforms, the standard X+IPC
libraries are inherently thread-safe (e.g., Windows NT). On other platforms, special reentrant versions of the X+IPC
libraries are provided (e.g., most UNIX platforms). Here, too, one should refer to the specific Platform Notes for
details.

5.4 X+IPC On-Line Monitoring

X«PC includes full-screen interactive monitors that provide continuous real-time views of the activities occurring
within an XsIPC instance. Monitoring an instance's subsystems is accomplished using the subsystem monitors:
nonvi ew, quevi ew, semvi ew and nmenmvi ew. Detailsfor each can be found in the respective subsystem
documentation.

The monitoring facility does not require that applications be specially prepared for monitoring (e.g., "debug" mode).
The facility can be invoked for any active X+IPC instance—including those of production systems out in the field—
without any extra provisions and without incurring performance overhead in the application when monitoring is not
inuse.

As such, the monitor can be used by an application's support personnel to remotely (viaaremote login) perform
analysis of adead or dying system, without having to be present at the customer site.

When invoked, monitoring becomes an invaluable tool for identifying problems, particularly when the problems
result from incorrect or misunderstood usage of an application's IPC resources—i.e., semaphores, queues and
segments. The delicate task of application integration testing and debugging is greatly simplified.

5.4.1 STARTING THE X«IPC MONITORS

The XJIPC monitors are started from the command line. The name of the subsystem monitor is followed by two
arguments:

O The first argument is theinitial "interval" snapshot setting. It will be described in detail below. Briefly, the
interval defines, in milliseconds, theinitial update frequency of the monitor.

O The second argument is the Instance File Name of the instance to be monitored.
Example:

senvi ew 100 /usr/deno

© Envoy Technologies Inc. 5—6



X+IPC Programming

The above command startsthe senvi ew monitor for the SemSys of the "/usr/demo” instance. The initial update
frequency is set to 100 milliseconds.

Aswasthe case withxi pcst art andxi pcst op, the Instance File Name can be omitted from the command line.
In such acase, senmvi ewalso usesthe value of the XI PC environment variable for the Instance File Name of the
instance to start monitoring.

5.4.2 MONITOR FUNCTIONS AND LAYOUT

The X+«IPC monitors are very similar in layout and function, sharing the same general "look and feel.” Information is
presented in amatrix-like display, where the users and the I PC entities make up the axes of the matrix. Interaction
between users and | PC entities is displayed within the body of the matrix.

Asynchronously blocked X+IPC operations are treated as pseudo-users and receive an Asynchronous Uid (AUid)
while they are pending. Information regarding AUids is displayed on the X«IlPC monitorsin the same manner as
ordinary users. This provides a consistent means of monitoring pending asynchronous operations.

Moni t or
St at us | PC Resources. ..
Users
I nteraction
Mat ri x
Command Capacity
Trace Operation

Important subsystem capacity datais displayed at the lower right portion of the screen. Monitor status datais shown
at the top left of the screen. The command entry window is at the lower |eft of the screen. The same format is used for
all four subsystem monitors.

The trace window (located at the bottom of the command window) is active when the monitor isin one of the trace
update modes (Flow or Step). It reports the next X+IPC operation to be executed and the Uid of the user performing
the operation.

5.4.3 MONITOR MODES
XJPC monitors operate in one of two modes:
O Update Mode

O Command Mode

5.4.3.1 Update Mode
When in Update M ode, the monitor updates the display of X«JIPC activity in one of the following ways:
O "Interval Snapshot Mode" causes the monitor display to be refreshed at a user-specified interval rate

(specified in milliseconds). Activity occurring between snapshots is not shown. This mode is useful for
observing the general ebb and flow of activity occurring within an X+«IPC instance.

© Envoy Technologies Inc. 5—7



5-%8PC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

The interval value is user-defined and controls how frequently the snapshots occur. Setting the interval to
50, for example, resultsin 50 millisecond interval s between snapshots.

A small interval value causes screen updates to occur frequently. Increased screen update activity often
results in significant performance overhead for the instance being monitored and its client programs. This
should be considered when monitoring XJIPC activity of real-time systems.

O "Trace Flow Mode" results in the monitor being refreshed before every X+«IPC operation in the monitored
subsystem. The trace operation window reports the next X«IPC operation to be executed and the identity

of the Uid performing the operation. The monitor then pauses for "interval" milliseconds, after which it
continues.

Trace flow mode is often used for watching an instance's activity in "slow motion.” Setting "interval" to
1000 while within trace flow mode can produce such an effect.

O "Trace Step Mode" causes activity in the monitored subsystem to completely stop after each X«PC
operation is performed. There too the trace operation window reports the next X+IPC operation to be
executed and the Uid performing the operation. The user must depress a key to perform the next X+«PC
operation. This mode is useful when the slow motion provided by the trace flow mode s still too fast. This
islikely to be the case during intense logic debugging sessions.

When first activated, the monitor isin "Interval Snapshot Mode.” Theinitial interval valueis set to the value
specified on the command line.

Note that monitoring an instance's subsystem (in any mode) has no effect on the performance of other subsystemsin
the instance or on other concurrently active instances.

5.4.3.2 Command Mode

In order to enter commands to the monitor it must first be temporarily taken out of Update Mode and placed in
Command Mode. The exact keystrokes to be used are operating system dependent and are specified in the
appropriate Platform Notes.

Oncein Command Mode, the user is prompted with:

Comrand> _

After acommand is entered, the monitor automatically returns to Update Mode.

5.4.4 BASIC COMMANDS

The X+«IPC monitorsare very similar in their basic functionality, with several basic commands common to all X«PC
monitors (Monvi ew, quevi ew, senvi ew, nenmvi ew). Specific capabilities particular to the individual
monitors and their appropriate commands are described below and in the subsystem documentation.

5.4.4.1 Setting the Interval Value
Setting the interval value is accomplished using the command:
Command> i N

where N specifiesthe new interval valuein milliseconds. N must be greater than or equal to zero.

Examples:.

© Envoy Technologies Inc. 5—-8



X+IPC Programming

Conmand> i 2000
Command> i 50

Thefirst example setsinterval to 2000 milliseconds, or two seconds. The second example sets "interval" to 50
milliseconds.

Very low interval settingswill often cause performance degradation in the monitored instance subsystem.

5.4.4.2 Entering Trace Flow Mode

Entering Trace Flow Modeis accomplished by entering:

Command> tf

5.4.4.3 Entering Trace Step Mode
Entering Trace Step Mode is accomplished by entering:

Command> ts

5.4.4.4 Exiting Trace Mode

Leaving either Trace Mode returns the monitor to Interval Snapshot Mode. Thisis achieved by entering the Trace
Off command:

Command> to

5.4.5 ZOOMING

X«IPC monitors provide a set of facilities for examining aspects of an instance with additional scrutiny. One of these
toolsisthe monitor "zoom window.” The other facility, the "browse screen,” will be described shortly.

The monitor Zoom Window allows the devel oper to watch general X+IPC instance activity and at the same time focus
on the activity of aspecific aspect of the instance subsystem being viewed.

Mbni t or
St at us | PC Resources...
Users
I nteraction
Matri x
Zoom
W ndow
Command Capacity
Trace Command

Each of the subsystem monitors provides awide array of Zoom Window options from which to choose. The specific
option codes and their applications are outlined in the subsystem specific sections below and in the X+IPC Reference
Manual.

© Envoy Technologies Inc. 5—9



5-%4PC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

All zooming commands begin with the letter z. The remaining characters specify which Window to activate.
Examples:

Command> zs5
The above semvi ew command activates aZoom Window for observing, in detail, the activities of the semaphore
having an'Sid' of 5. (We will seelater that an 'Sid' is a handle used for identifying and manipulating a specific X+IPC
semaphore.)

Command> zp

This command activates aZoom Window for observing, in detail, the activities of the message text pool of a QueSys
instance.

5.4.6 UN-ZOOMING
Zooming in on a particular aspect or entity within an instance can be stopped in three ways:

O The easiest approach isto enter the UnZoomcommand:

Command> uz

O A second possibility isto start zooming on anew aspect of the instance. Thiswill replace the current zoom
data.

O Third, deleting the resource being zoomed automatically brings down the zoom window.

5.4.7 BROWSING

A second and more powerful means of monitoring the status of an X+«IPC instanceis viathe "browsing" facility.
Browsing is possible from within themonvi ew, quevi ew and nenvi ew monitorsfor scanning the contents
of message queues and shared memory segments.

The general layout of the browse screenisasfollows:

St at us Ti me

O f set Hex ASCI |
Representation |  ........

Command Li ne

5.4.8 WATCHING

Within menvi ew, athird form of monitoring is provided: Watching. Memory segment watching allows the
developer to observe the contents of shared memory segmentsin real-time. An additional section watching facility
lets the devel oper monitor the lock status of segment data down to the byte level.

© Envoy Technologies Inc. 5—10



X+IPC Programming

5.4.9 PANNING

Aswe have seen, X+«IPC monitors are matrix-like in their layout. As such, they can be manipulated ason a
spreadsheet when certain "off the screen” portions of the matrix are required for viewing. Thisis accomplished by
Panning.

Panning can be performed horizontally or vertically. The exact format of the panning commands are subsystem
specific and are provided in the susbsystem volumes.

5.4.10 EXITING THE MONITOR

Monitoringof an X+«IPC instance is terminated using the g command. Thisistrue for all subsystem monitors:
nmonvi ew, quevi ew, senview and nmenvi ew.

Example:
Comrand> g

Of course, bringing down an XJPC monitor has no effect on the underlying instance, its ongoing activities or its
client programs.

When monitoring is off, there is virtually no overhead to the performance of the instance (one additional machine
instruction per X+IPC operation). This removes any need for building separate "debug" and "production" versions of
asystem. X+IPC production systems are automatically subject to X+IPC monitoring, even out in thefield. It isthus
possible for technical support personnel to remotely log into installed systems for analysis purposes using X+«IPC
monitors, if and when there are problems.

5.5 X«IPC Function Return Codes - Using XipcError()

X¢+IPC functions return negative integer codes whenever they do not complete successfully. These codes and their
interpretations are described in the X+IPC Reference Manual and in appropriate sections of the subsystem-specific
documentation.

By testing for anegative return value, it isimmediately possible to check on afunction's success or failure.
The XipcError() function is used for translating an error code returned by afailed X+IPC function call.

XipcError() takes one argument:

O The X+IPC error code whose translation is desired.

XipcError() returns a pointer to a static string containing a brief translation of the error codeit is passed. It returns a
pointer to an appropriate message for undefined error codes.

Example:
Ret Code = QueCreate(...);
if (RetCode < 0)

{

/* Error handling code */
printf("QueCreate Error: %\n", X pcError(RetCode));

© Envoy Technologies Inc. 511



Advanced Topics

6. ADVANCED TOPICS

This section of the X+lPC User Manual presentsin-depth discussions of several advanced topics that can
be central to optimizing your use of X«PC. Most of the topics are presented from the perspective of the
QueSys, SemSys and MemSys subsystems. Advanced Topicsthat are especially pertinent to MomSys are
presented in the MomSys User Guideand MomSys Reference Manual.

6.1 Advanced Instance Configuration

Thiss section describes instance configuration parameters that can be employed for making an X+IPC
application take advantage of the specific hardware and operating system environment that it is running on.

The behavior of an X+IPCinstance — and consequently of applications using the instance — can be
influenced by anumber of platform resources. The most critical platform resourcesinvolved are:

Q Thenumber of CPUs (processors) running on the platform
O Themanner in which theinstance' s underlying memory sharing isimplemented

X+IPC providesinstance configuration parameters that can be used for influencing how an instance uses
these resources.

6.1.1 CONFIGURING X+IPC FOR MULTIPLE-CPU (SMP) SYSTEMS

An X+IPC instance that will run on amulti-CPU platform such as a Symmetric Multiprocessor (SMP)
computer should be configured differently than a single-CPU platform. The parameter that isinvolved isthe
CSEC_ALGORI THMinstance configuration parameter. This parameter, found within the[ XI PC] section,
hastwo alternativevalues: Gat e and Semaphor e. (Some platforms support only one of these values,
however; seethe PlatformNotes regarding your particular platform.)

The usual default value for CSEC_ALGORI THM isGat e . Thissetting is optimal for single-CPU systems.
Multi-CPU systems should have their instances configured with CSEC_ALGORI THMset to Semaphor e
to override the default value.

Example:

[XIPQ
CSEC_ALGORI THM  Senaphor e

The alternative value, Semaphor e, can in certain circumstances be the default value. On certain UNIX
platforms (e.g., HP-UX, Solarisand A1X 4.1 and higher), X+IPC is able to detect whether the underlying
hardware isan SMP, or not. If it detects more than one processor active, then the CSEC_ALGORI THM
parameter is set to adefault value of Semaphor e, which can be overridden to Gat e. Seethe Platform
Notes for details.

6.1.2 CONFIGURING AN INSTANCE'S MEMORY UTILIZATION

An X«IPC instance uses the operating system’ s underlying memory resources for supporting the activities
of the instance. Exactly how thisis accomplished depends on the operating system involved. The following
table summarizes the default mechanisms used for implementing an instance’s memory sharing
requirements.

© Envoy Technologies Inc. 6—1



6-%8APC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

Operating System Instance Memory Elements Single/ Multiple
(Default) (Default)
UNIX Shared memory Multiple
Win32 Memory-mapped files Multiple
VMS Global sections Multiple

To understand the above table let us examine the entries for UNIX. Aninstanceis by default implemented
on UNIX using multiple shared memory segments. The exact meaning of the word multiple depends on the
combination of subsystems configured for the instance.

The following table describes how each subsystem contributes to this value:

MomSys QueSys SemSys MemSys

2 2 1 2

Thus, afull (four-subsystem) instance on UNIX will, by default, consume seven shared memory segments.
(Note that this number doesnot include the resources used by the X«IPC Platform Environment which
typically consumes an extrafour elements.)

6.1.2.1 Configuring to Use a Single Memory Element

X«IPC permitsthe user to stipulate that the instance will use a single memory sharing element instead of the
default multiple element approach. Thisis useful for situationswhereit is preferred that the system not
create multiple elements when starting the instance, but rather implement all necessary memory sharing
within asingle memory element.

One example where thisisimportant is for configuring instances on certain UNIX platformsthat limit the
number of shared memory segments that a process can attach to at one time. If alimit of six segments
existed, then it would be impossible for a process on that platform to log into an instance having all four
subsystems. (See the respective UNIX X+IPC Platform Notes for details on such limitations.)

The SHARED MEMconfiguration parameter is used for controlling whether a single or multiple memory
element approach is used by the instance.

Example:
# In the foll owi ng exanpl e, SHARED MEMis set in the [ Xl PC
# section causing all subsystens within the instance to
# consolidate their underlying shared nenory el enents into

# a single element. This instance will thus use one nenory
# el ements instead of four.

[ XIPC]
SHARED MEM SI NGLE

[ QUESYS]

[ MEVBYS]

© Envoy Technologies Inc. 6—2



Advanced Topics

6.1.2.2 Configuring to Use Memory Mapped Files on UNIX

X¢PC instances that run on UNIX have the added flexibility that they may be configured to employ memory -
mapped files instead of shared memory as the mechanism for supporting the instance’ s memory sharing
elements. Thisisuseful in situations where the UNIX system places size limitations on the size of shared-
memory segments that can be created, thusinhibiting the size of the instances that can be run.

The MAPFI LE_CTL and MAPFI LE_POCL configuration parameters are used for specifying that the
instance should use memory-mapped files instead of shared memory. The parameter is configured by
specifying afile-system path name for the memory-mapped file that isto be created. The MAPFI LE_CTL
parameter defines where the shared control data should be created. The MAPFI LE_PQOCL isonly relevant
for subsystems that have atext pool.

Example:

[ QUESYS]
MAPFI LE_CTL [ usr/ harvey/ quesys. ct|
MAPFI LE_PQOOL/ usr/ har vey/ quesys. pool

The following table lists the map-file configuration parameters that are valid in the respective instance
configuration sections.

Section Memory-Map Parameters (UNIX only)
[ XI PC] MAPFI LE

[ MOMBYS] (Not Supported)

[ QUESYS] MAPFI LE_CTL, MAPFI LE_POOL
[ SEMSYS] MAPF| LE_CTL

[ MEVBYS] MAPFI LE_CTL, MAPFI LE_POOL

Note that the configuring MAPFI LE withinthe[ XI PC] sectionisonly valid when the SHARED MEM
parameter is also specified in that section. Such a configuration directs X+IPC to configure the entire
instance as a single memory element, where the memory element is to be implemented as a memory mapped
file.

Example:
# In the follow ng exanple all subsystens within the instance

# consolidate into a single elenent that is inplenented as a
# menory nmapped file.

[ XIPQ

SHARED MEM SI NGLE

MAPFI LE [ usr/ projects/foolxipc.ctl
[ QUESYS]

[ MEMBYS]

© Envoy Technologies Inc. 6—3



6-X%4PC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

6.1.2.3 Configuring to Use Memory-Mapped Files on Windows NT, 2000 and
VMS

X«PC instances that run on Win32 or VMS platforms always employ the operating system’ s native memory -
mapping facilities for implementing an instance’ s underlying shared-memory elements. X+IPC by default
chooses names for these memory -sharing elements that should normally be left untouched.

In those cases where it is necessary to override these default names, X+IPC allows this to be accomplished
using the MAPNAME, MAPNAME _CTL and MAPNAME_ POQOL instance configuration parameters. Their rules
of usage are identical to the MAPFI LE, MAPFI LE_CTL and MAPFI LE_POOL parameters described
above, except that instead of specifying a file-system path name for amemory mapped file, one specifiesa
valid memory element name. The syntax for these names is operating system dependent.

Example:

# In the followi ng, all subsystens within the instance
# consolidate into a single entity that is inplenented as a
# native nenory mapped entity having the name “xipcstuff”.

[ XIPC
SHARED MEM SI NGLE
MAPNAME xi pcst uf f

[ QUESYS]
[ MEMBYS]

Example:

# In the follow ng, the QueSys subsystemis inplenmented as
# native nenory mapped entities.

[ QUESYS]
MAPNAME _CTL quesys. ct |l
MAPNAME _POOL quesys. pool

© Envoy Technologies Inc. 6—4



Advanced Topics

6.2 Asynchronous Operations

6.2.1 INTRODUCTION

X«IPC operations that can block can complete synchronously or asynchronously. The WAI T and T MEOQUT
synchronous blocking options actually block the program that initiated the X+IPC operation until the
operation completes—either successfully or in failure—at which time the program becomes unblocked and
continues its processing.

X+IPC asynchronous options provide a more powerful set of alternatives. Unlike the synchronous options,
asynchronous options indicate that the subject X+«IPC operation should complete in the background,
without blocking the calling program. The program is allowed to proceed. When the operation compl etes,
some form of notification is given by X+IPC, depending on the asynchronous option specified at the start of
the operation.

X+IPC supports three asynchronous options. Each describes a different form of notification to be given by
X+IPC at the completion of the operation.

O The CALLBACK option directs X«PC to execute a user-specified callback function upon
completion.

O The POST option directs X+IPC to set a SemSys event semaphore when the operation completes.

O The | GNORE option directs X+IPC to allow the operation to complete "silently” with no explicit
form of notification.

The three options are described in more detail below. An operation that isinvoked asynchronously returns
the MOM_ER_ASYNC, QUE_ER ASYNC, SEM ER ASYNC or MEM ER_ASYNC return code, as
appropriate. It isimportant to note that flags must always be ORed to the left of (before) the blocking
option.

6.2.2 THE ASYNCRESULT CONTROL BLOCK (ACB)

Tracking of an asynchronous X+IPC operation is achieved using an Asynchronous Result Control Block
(ACB). An ACB isauser-declared structure (of type ASYNCRESULT) that is associated with an
asynchronous X+IPC operation. Each X+IPC operation that is coded with an asynchronous blocking optioniis
required to specify an ACB (actually, apointer to an ACB) along with the option. (Examples are provided
below.) The ACB isthe vehicle by which X+IPC transmits return data when the operation compl etes.

An ACB also contains a number of fields that support the tracking of asynchronous operations while they
arestill pending.

When an X+IPC operation executes asynchronously, the operation's ACB is set with information for tracking
the operation.

O An asynchronously blocked operation is treated as a pseudo-user within the subsystem that it
blocked. As such, the pending operation is recorded as an entry in the subsystem's user table
and is assigned its own User ID—or, more precisely, an Asynchronous User I1d (AUid). The AUid
field of the ACB is set with the blocked operation's AUid.

© Envoy Technologies Inc. 6—5



6-%dPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

User information functions that accept a Uid as an argument, such as SeminfoUser(), accept an
AUid as well. X+IPC 's subsystem monitors present status on AUid's in the same manner as for
ordinary Uid's. This provides the developer with the means for tracking al pending
asynchronous operations occurring within an instance, without having to "invent" specialized
async monitoring tools. Asynchronous operations that succeed without blocking have the AUid
field of their associated ACB set to zero.

O The AsyncStatus field remains set as XI PC_ASYNC | NPROGRESS as long as the operation is
pending completion. When the operation completes, the field is set to
Xl PC_ASYNC_COMPLETED. Thisis most useful for asynchronous operations started with the
IGNORE option. In that case, the AsyncStatus field being set to XI PC_ASYNC_COVPLETED s
the only direct indication given by X«IPC that the operation has completed.

O The User Data fields are useful for passing application information between the point where the
asynchronous operation isinitiated and the logic that handles its notification of completion. The
information passed is application-dependent.

O The OpCode field is set to the appropriate Xl PC_OPCODE_API NAME macro value that
identifies the XodPC function call associated with the ACB. Examples include
Xl PC_OPCODE_SEMMI T, XI PC_OPCODE_QUESEND, etc.

The remaining elements within the ACB are a union of structures, one structure per blockable X«IPC API.

The appropriate structure is set with return data from the completing asynchronous operation with which it
is associated.

Definition of the ASYNCRESULT structure follows:

/-k

*  The ASYNCRESULT Control Block (ACB) structure is used to exam ne the
* results of an asynchronous operation. The structure contains a union

* that defines returned fields for every XIPC operation that can bl ock.
*/

/*********************************************************************

** Macr os

*********************************************************************/

#defi ne Xl PC_ASYNC | NPROGRESS 1
#defi ne Xl PC_ASYNC COWPLETED 2
#defi ne ACB_FI ELD( AcbPtr, Function, Field) AcbPt r - >Api . Function. Fi el d

/*********************************************************************

*x "ACB - ASYNCRESULT Control Block ---

*********************************************************************/

struct _ASYNCRESULT /* Result of Async APl call */

{
XINT AU d; /* Async Ud "receipt" */
XINT  AsyncSt at us; /* XI PC_ASYNC_| NPROGRESS or Xl PC_ASYNC COVPLETED */
XINT UserDatal; [* - user defined usage ---- */
XINT User Dat a2; [* aeee-- user defined usage ---- */
XI NT  User Dat a3; [* e user defined usage ---- */
XINT  OpCode; /* Async operation, key to union */

© Envoy Technologies Inc. 6—6



uni on
struct

XI'NT
XI'NT

}
SemMi t ;

struct

{
XI NT
XI NT

}
SemAcqui r e;

struct

{
VBGHDR MsgHdr ;
CHAR FAR
XI NT

}
QeWite;

struct

{
VBGHDR MsgHdr ;
XI NT
XI NT

}
QuePut ;

struct
{
VBGHDR MsgHdr ;
XI NT
XI NT
XI NT

}
QueCet ;

struct

{
CHAR FAR
XI NT
XI NT

}
QueSend,;

struct

{
CHAR FAR
XI'NT
XI'NT
XI'NT
XI'NT

© Envoy Technologies Inc.

Advanced Topics

Ret Si d;
Ret Code; /* of conpl eted async operation */

Ret Si d;
Ret Code; /* of conpl eted async operation */

/* The resultant MsgHdr */
* MsgBuUf ;
Ret Code; /* of conpl eted async operation */

/* The resultant MsgHdr */
Ret Q d;
Ret Code;

/* The resultant MsgHdr */
Priority;
Ret Q d;
Ret Code;

* MsgBuUf ;
Ret Q d;
Ret Code;

* MsgBuUf ;
MsgLen;
Priority;
Ret Q d;
Ret Code;



6-%8PC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

QueRecei ve;
struct
{

/*

* Only used for passing error infore
* failed QueBurstSend() operation.
/

XI NT SeqNo; /* of burst-send message that failed */
XI NT TargetQ d;
XI NT Priority;
XI NT Ret Q d;
Xl NT Ret Code;
}
QueBur st Send;
struct
{
/*
* Only used for handling an asynchronous
* QueBur st SendSync() operati on.
*/
XI NT SeqNo; /* of last burst-send nsg enqueued */
XI NT Ret Code;
}
QueBur st SendSync;
struct
{
Xl NT M d; /* of target */
XI NT Ofset; /* of target */
XI'NT Lengt h; /* of target */
CHAR FAR *Buf fer;
XI'NT Ret Code;
}
MenmNi te;
struct
{
XI'NT M d; /* of target */
XI'NT Ofset; /* of target */
XI NT Lengt h; /* of target */
CHAR FAR *Buf f er;
Xl NT Ret Code;
}
MenRead;
struct
{
SECTI ON Ret Sec;
XI'NT Ret Code;
}
MenecOnn;
struct
{

© Envoy Technologies Inc. 6—8



Advanced Topics

SECTI ON Ret Sec;
Xl NT Ret Code;

}

MerLock;

struct

{
MOM _MVSA D Vegl d;
XI NT Ret Code;

}

MorrBend;

struct

{
CHAR FAR *MsgBuf ;
XI NT MsglLen;
MOM_MVSA D Vegl d;
XI'NT Repl yAppQueue;
XI NT Ret Code;
XI NT Tracki ngLevel ;

}

MonRecei ve;

}
Api ;

}s

6.2.3 ACB RETURN VALUES

The results of an asynchronously blocked operation are returned within the ACB of the completed
operation. The one important exception to thisis the treatment of what can be generalized as "text data."

When an X+IPC operation that specifies atext buffer as an argument blocks asynchronously and then
subsequently completes, the originally specified user text buffer is used when the operation compl etes. So,
for example, acompleting QueReceive() operation receives datainto the text data buffer that was specified
when the QueReceive() wasinitially called. Thisistruefor all of the X+«IPC functions that manipulate "text
data." They are: MomSend(), MomReceive(), QueRead(), QueWrite(), QueSend(), QueReceive(), MemWrite()
and MemRead|().

It istherefore a dangerous practice to pass stack space variables as text data arguments to asynchronously
blocking X«IPC functions calls. Static or heap storage variables should be used instead.

6.2.4 THE CALLBACK OPTION

The CALLBACK option directs X+IPC to interrupt the calling program when the asynchronously blocked
operation completes by having it execute a user-specified callback function. Thisform of completion
notification is the most severe in terms of "rudeness” and should be used in situations where the indicated
urgency iscalled for.

© Envoy Technologies Inc. 6—9



6-%4PC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

Example:

/*

* Wit for any one of three event semaphores to becore
* set. A callback function will execute when the

* operation conpl etes.

*/

ASYNCRESULT Acb;

VO D Funct () ;
Xl NT Ret Si d;
Xl NT Ret Code;

Ret Code = SemMit ( SEM ANY,
Senii st (Sidl, Sid2, Sid3, SEMEQ),
&Ret Si d,

SEM CALLBACK( Funct, &Ach)

)
if (RetCode == SEM ER _ASYNQ)
{
/*
* (Qperation executing asynchronously.
*/
printf ("Sem\Mit executing asynchronously, AU d = %l\n",
Acb. AU d );
}
el se
{
/*
* BError !!
*/
}
Vva D
Funct (Acb)
ASYNCRESULT *Acb;
{
printf ("SemMit conpleted.\n");
printf ("RetCode = %\ n", Acbh->Api.SemMit. RetCode);
printf ("RetSid = %l\n", Acb->Api.SemMit.RetSid);
}

Because it is sometimes important that an operation return synchronously if it can complete without
blocking, you should resort to the asynchronous option only when the operation cannot immediately
complete.

© Envoy Technologies Inc. 6—10



Advanced Topics

The preceding example could be modified as follows to force such behavior:

/*

* Wit for any one of three events semaphores to becone
* set. Block asynchronously, if necessary. O herw se,

* return immediately with the operation's result.

*/

ASYNCRESULT Acbh;

VA D Funct () ;
XI NT Ret Si d;
XI NT Ret Code;

Ret Code = SemMit (SEM ANY,
SenList(Sidl, Sid2, Sid3, SEMEQ),
&Ret Si d,

SEM RETURN | SEM CALLBACK( Funct, &Ach)

)
if (RetCode == SEM ER ASYNC)
{
/*
* Qperation bl ocked asynchronously.
*
/
printf ("Semit bl ocked asynchronously, AU d = %\ n",
Acb. AU d );
}
el se
{
/*
* (Qperation conpleted i mediately. Process results in-line.
*
/
}
VO D
Funct (Acb)
ASYNCRESULT *Acb;
{
printf ("SemMit conpleted.\n");
printf ("RetCode = %\ n", Acb->Api.SenmMit. Ret Code);
printf ("RetSid = 9%l\n", Acb->Api.SemMit.RetSid);
}

It is often convenient to have a single callback function serve multiple pending asynchronous operations. In
that case, the application could utilize the various ACB User Datafields to distinguish between the pending
operations as they complete. One possibility would be to assign an identifying code to each ACB, using
one of the User Datafields.

© Envoy Technologies Inc. 6—11



6-%4PC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

6.2.5 THE POST OPTION

The POST option directs X+IPC to set the specified SemSys event semaphore upon completion of the
specified operation. Thisform of completion notification islessintrusive than the CALLBACK option in that
no program is directly interrupted as aresult of the operation's completion.

Example:

/*

* Recei ve nmessage having Priority = 100.

* Semaphore "PostSid" is to be set when the message is received.
*/

Ret Code = QueReceive (QUE_Q ANY,
QuelLi st ( QUE_M PREQQQ d1, 100), QUE EQ.),
MsgBuUf ,
MsgLen,
&Ret Pri o,
&Ret Q d,
QUE_POCST( Post Si d, &Ach)
)

i f (RetCode == QUE_ER _ASYNC)

{
/*
* (Qperation executing asynchronously.
*/
printf ("QueReceive executing asynchronously, AU d = %\ n",
Acb. AU d );
}
el se
{
/*
* BError !!
*/
}

This example may also be modified to return synchronously if the operation succeeds without blocking:

© Envoy Technologies Inc. 6—12



Advanced Topics

/*

* Receive nessage having Priority = 100. Bl ock

* asynchronously if necessary. Oherw se, operation
* results are returned i mredi ately.

*/

Ret Code = QueReceive (QUE_Q ANY,

QuelLi st ( QUEM PREQ(Q d1, 100), QUE_EQ),

MsgBuUf ,

MsglLen,

&Ret Pri o,

&Ret Q d,
QUE_RETURN | QUE_PCST(Post Sid, &Ach)

)
i f (RetCode == QUE_ER ASYNC)

{
/*
* (Qperation bl ocked asynchronously.
*/
printf ("QueReceive bl ocked asynchronously, AU d = %\ n",
Acb. AU d );
}
el se
{
/*
* Qperation conpleted i mediately. Process results in-line.
*/
}

Reacting to a completed asynchronous operation that specified the POST option can be handled by the
original calling program at some later point in itslogic when it is convenient for it to issue a SemWait call
regarding the post semaphore, or possibly by a second program waiting for the post semaphore to become
set.

Infact, the wait for the post semaphore can be asynchronous aswell. It is plain to see how a domino-effect
can very easily be created between processes.

6.2.6 THE IGNORE OPTION

The | GNORE option directs X+IPC to complete the subject operation silently, if it blocks asynchronously.
Thisform of notification isthe most passive of the asynchronous optionsin that no explicit notice of the
operation's completion is given by X«IPC. The ACB'sAsyncStatusfieldis set to

Xl PC_ASYNC_COVPLETED when the operation it represents completes. The field may be examined
periodically to determine when this has occurred.

Consider the following example: If segment Mid islocked at the time of the MemWrite() calls, then the two
operations will remain pending asynchronously until the segment is unlocked and the MemWrite()
operations are permitted to complete. No explicit noticeis given by X+IPC when the operations complete.
Thetwo ACB's can be examined later to confirm completion.

© Envoy Technologies Inc. 6—13



6-%4RC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

Example:

/*
* Wite two records to a shared nenory table.
* The operations conmplete silently in the background.

*/
XI NT Md, Ofsetl, Ofset2;
XI NT Si zel, Size2, RetCode;

ASYNCRESULT  Acbl, Acb2;

Ret Code = MemWite (Md, Ofsetl, Sizel, MEM | GNORE(&Acbl) );

if (RetCode != MEM ER ASYNC)
/*
* Error !!
*)

Ret Code = MemWite (Md, Offset2, Size2, MEM | GNORE(&Acb2) );
if (RetCode != MEM ER ASYNC)

/*

* Error !!

*/

Here again the MemWrite function calls could have been coded to return synchronously, if they complete
without blocking, by specifying the MEM_RETURN flag logically ORed to the | eft of the VEM | GNORE

option.

Example:

Ret Code = MemWite(..., MEM RETURN | MEMIGNORE(...)):;

6.2.7 ABORTING A PENDING ASYNCHRONOUS OPERATION

It is occasionally necessary for aprogram to abort a pending asynchronous operation before it compl etes.
The functions MomAbortAsync(), QueAbortAsync(), SemAbortAsync() and MemAbortAsync() can be
used to cancel blocked asynchronous operationsin their respective subsystems.

The functions take one argument:

O The AUid of the asynchronous operation to abort.

© Envoy Technologies Inc. 6—14



Advanced Topics

Example:
if (SemMit (SEM ANY,
Si dLi st
&Ret Si d,
SEM | GNORE( &Acb)) == SEM ER_ASYNC)
{
/*
* Do other work ...
*/
/*
* |f operation is still pending, then
* abort it.
*/
if (Acb. AsyncStatus == Xl PC_ASYNC | NPROGRESS)
SemAbor t Async( Acb. AU d) ;
}

6.2.8 MIXING ASYNCHRONOUS AND SYNCHRONOUS OPERATIONS

The current version of X«IPC employs an interrupt mechanism for implementing asynchronous functionality
on most of its supported platforms. Exceptionsinclude MSWindows 3.x, Windows NT and X-Windows.
This means that a process that issues an X+IPC asynchronous operation must be prepared to be silently
interrupted by X+IPC when the operation completes. At that time, X+«IPC internally reactsto the operation's
completion.

Thisisan important consideration if the process can block synchronously at points withinitslogic. Callsto
such synchronous operations should be coded so that they are restarted if interrupted.

The interrupt mechanisms employed are platform-specific. Information about each mechanism can be found
within the relevant Platform Notes.

6.2.9 CONCLUSION

Using X+IPC 's asynchronous blocking optionsit is possible to have a single program initiate multiple
parallel X+IPC operations and to react to them individually asthey complete. When used in conjunction with
X+IPC 's asynchronous trigger mechanism it becomes possible to build elaborate event-driven network
applications of immense capability—and to do so with relative ease.

© Envoy Technologies Inc. 6—15



6-%4BC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

6.3 Network Timeout Detection

6.3.1 DESCRIPTION

XdPC ‘s Network Timeout Detection feature makes network clients aware that a server is not responding
(e.g., someone “powers off” the server machine). For this feature to work, the xi pci ad daemon must be
running on the server platform.

The following parameters are used by the X+IPC Network Timeout Detection Mechanism:

RECVTI NEOUT This vgl ue determines the network receive timeout.
Thereisno default value for this parameter.

This value determines the network ping timeout.
PI NGTI MEQUT : . -
The default value for this parameter is O milliseconds.

This value determines the network ping retry number.
Pl NGRETRI ES . .
The default value for this parameter is 3.

Pl NGFUNCTI ON This value identifies the ping function used to find out the remote host status.
By default, Pl NGFUNCTI ONisa pointer to an internal X+IPC function. The
user has the option of writing his own ping routine that can be installed as the
ping function, as described in the description of the XipcSetOpt() function in
the XJPC Reference Manual. In this case, a pointer to astring containing the
I P address of the remote connection, in the base-256 notation “d.d.d.d”, is
passed as an argument to the routine.

6.3.2 CHANGING DEFAULT BEHAVIOR

By default, the X«IPC Network Timeout Detection Mechanism is not active. If an application wants to
activate thisfeature, it should set both the PI NGTI MEOUT and RECVTI MECUT parameters to non-zero
values by using the XipcSetOpt()function (discussed in the X+IPC Reference Manual). To deactivate the
Network Timeout Detection Mechanism, set the RECVTI MEQUT valueto zero.

The X+IPC user has the option of changing the network timeout detection parameter values to his needs
either before or after alogin (with two exceptions, as noted in the Reference Manual). If the parameters are
modified before login, then it will affect all the corresponding logins for that specific thread. If the
parameters are changed after login then only that particular login will be affected by thischange.

Please refer to the XipcGetOpt(), XipcSetOpt() and XipcPing() function descriptionsin the X+IPC Reference
Manual for further information.

© Envoy Technologies Inc. 6—16



Advanced Topics

6.4 Working With X¢IPC Instances

Central to any application built using X+«IPC isthe role of X+IPC instances. This section describes the issues
related to working with X«IPC instances, asthey relate primarily to the QueSys, SemSys and MemSys
subsystems. Refer to the MomSys User Guide for detailed discussion of MomSys' utilization of X+IPC
instances.

6.4.1 X+IPC INSTANCES: THE APPLICATION PERSPECTIVE

Therole of instancesin an X+IPC -based application can be understood from an application perspective
and from a process perspective, as described in the following sections. At ahigh level, XJPC instances are
building blocks for defining an application's |PC environment. This environment can be monolithic or it may
be divided into anumber of parts. Strictly speaking, an application built using X+IPC is comprised of one or
more X+IPC instances.

6.4.1.1 Single-Instance Applications

In many situationsthe level of abstraction provided by one X+IPC instance is sufficient for an application's
IPC requirements. In such situations there is a one-to-one rel ationship between application and instance.
Such an application is a single-instance application. The following diagram schematically presents an
example of asingle-instance application.

Of course, there is no restriction on the number of single-instance applications that can coexist on asingle
node or on a network, nor isthere any restriction as to the type of instance (stand-alone or network) used in
such applications.

Single-instance applications are the most basic way of using X+IPC to provide segregated | PC environments.
Multiple applications sharing a machine or anetwork are automatically insulated from one another at the IPC
level.

© Envoy Technologies Inc. 6—17



6-%4BC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

As an example, consider the following diagram depicting an environment in which three independent single-
instance applications are active. The environment may be a single node or a multi-node network.

6.4.1.2 Multi-Instance Applications

There are situations, particularly when larger applications are involved, when it is desirable to split an
application’'s IPC environment along certain physical or logical seams within the application. Such
applications are multi-instance applications.

Building an application using multiple instances allows the application architect to strategically position the
IPC components of the application where they fit best. Working with multiple instances further encourages
thelogical division of the application's | PC resources according to the application's varying internal 1PC
constraints.

© Envoy Technologies Inc. 6—18



Advanced Topics

The multi-instance application model broadens the class of applications requirements that can be met using
XJPC . A large application having a hierarchical structure of processes can have its IPC environment
constructed along similar hierarchical lines.

The actual physical positioning of the application's |PC components can then be determined in a manner
that addresses the application's topological characteristics The following diagram offers two alternatives for
positioning the previous application's processes and X+IPC instances. Either selection would have no effect
on the X+IPC portion of the application.

Application architects may further employ the multi-i nstance application model to incorporate varying
degrees of redundancy within their application's IPC environment. Critical elements of the |PC environment
may be duplicated by using multiple instancesin aprimary (I) and backup (I") role. By duplicating its IPC
activity, the application can be designed to recover if an outage occurs on the primary instance platform.

© Envoy Technologies Inc. 6—19



6-%#APC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

-

- -
- -

- e =

Applimasion

Thisform of redundancy can be isolated to only the most critical portions of the application's IPC
environment, thus limiting the costs of such a capability to whereit istruly necessary. Consider the
following example. The topmost instance is duplicated on a second node because of its critical role within
the overall application. The application may thus be engineered to recover from afailure within the primary
instance.

r

TEm L ar

e dea e

6.4.2 X+IPC INSTANCES: THE PROCESS PERSPECTIVE

Theflip side of the X+IPC instance paradigm is an understanding of how a process interacts with an
application's X+IPC environment, specifically, the application's X+IPC instance(s).

6.4.2.1 Logging Into An Instance

Before a process can engage in an instance's | PC activity, it must first log into that instance. Thisis
accomplished by the process issuing an XipcLogin() function call to the target instance. The XipcLogin()
operation establishes alogin session between the process and the instance. A User Id (Uid) integer
returned by XipcLogin() uniquely identifies the process’'s new session with the instance.

© Envoy Technologies Inc. 6—20



Advanced Topics

Infact, a process may log into an instance more than once, with each XipcLogin() operation establishing an
independent logical session having a unique Uid within the instance. Examples of this appear later in this
section.

A login session between a process and an instance may be expressed schematically as:

or algebraically as:
login = (I, Uid)

Thus, for example, when a process successfully logsinto instance "xyz" and is assigned a Uid of 5 within
theinstance, this can be expressed as:

E‘ £

I

login = ("xyz", 5)

Processes that are part of a single-instance application will generally establish one login session with that
application's one instance.

6.4.2.2 A Process’s Working Set of Logins
Basic utilization of the X+IPC toolset typically involves processes that log in to asingle X+IPC instance.
This, infact, isalimited usage of amuch broader capability.

Asindicated above, aprocess may establish multiple login sessions with a single instance or, for that
matter, with multipleinstances. Such is usually the situation regarding processes in a multi-instance
application. Processes there will typically log into more than one of the application's instances.

© Envoy Technologies Inc. 6—21



6-%8APC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

A process having multiple [oginsinto one or more instances can be expressed schematically as:

Algebraically, such aprocessis said to have aworking set of logins, connoted as:
L ={loginl, login2, login3}
L ={ (11, Uid1), (12, Uid2), (13, Uid3) }

As an example, when a process successfully logs into three instances—"xyz," "abc" and "qrs"—with 10, 20
and 30 being the respective login Uid's, the situation may be expressed as:

L ={("xyz", 10), ("abc", 20), ("qrs", 30) }

The earlier case of aprocess|ogging into a singleinstance had aworking set of logins containing asingle
element:

L={("xyz", 5)}

© Envoy Technologies Inc. 6—22



Advanced Topics

The above notation is extremely useful for describing relationships between user processes and X+IPC
instances.

6.4.2.3 Some Examples
The following examples essentially cover the gamut of possible cases:
O Not Logged In Anywhere

A process that is not logged into any instance, such as when it first starts executing, is defined as
having aworking set of logins that is empty:

L={}
O Multiple Logins/Multiple Instances

An example of aprocess that has logged into multiple instances one or moretimesis:

L={("xyz", 2), ("xyz", 3), ("xyz", 10), ("abc", 20), ("qrs", 30) }
O SngleLogin/Instance

A process that logs into multiple instances, one login per instance:

© Envoy Technologies Inc. 6—23



6-%aARC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

L ={("xyz", 2), ("abc", 5), ("grs", 2) }
O Multiple Logins/Single Instance

A process that establishes multiple login sessions with a single instance:

L={(xyz", 2), ("xyz", 5), ("xyz", 4) }

Thisform of utilization is usually associated with a server process that is required to multiplex between
multiple independent login sessions within a single instance.

© Envoy Technologies Inc. 6—24



Advanced Topics

6.4.2.4 A Process’s Current Login

A process that has established multiple login sessionsis actually connected to at most one of the logins at
any point intime. That login session is referred to as the process’s Current Login. X«IlPC function calls that
access and/or manipulate X+IPC objects do so using the context of the calling process’s current login (i.e.,
itsinstance and Uid). As such, aprocess’s current login defines, for that process, the instance being dealt
with and the Uid being used within that instance, when X«IPC function calls are issued. It isthus generally
an error for aprocessto execute an X+IPC function call whileits current login is not defined. Thisis
elaborated on below.

Consider the following example. Process P has established login sessions with two X«IPC instances. Two
login sessions (Uids 3 and 14) are with instance "xyz." A third iswith instance "abc." The process's current
loginis highlighted.

L ={("xyz", 3), ("xyz", 14), ("abc", 5) }
current_login = ("xyz", 14)

A process can control which login (from its working set of logins) isits current login by means of callsto
the XipcLogin(), XipcLogout(), XipcConnect() and XipcDisconnect() functions. Thisis now demonstrated.

6.4.2.5 Modifying a Process’s Working Set of Logins, Current Login

As was mentioned earlier, a process sworking set of loginsisinitially empty:
L={}
In addition, the process’s current login isinitially undefined:
current_login = ?

The means for adding and del eting logins from the working set and for setting the current loginis by callsto
XipcLogin(), XipcLogout(), XipcConnect () and XipcDisconnect(). The best vehicle for describing how
these functions are employed for such activity isto present an example.

© Envoy Technologies Inc. 6—25



6-%8ABC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

Example:

/*

* The follow ng exanpl e denonstrates how calls to Xi pcLogin(), X pcLogout(),
* Xi pcConnect() and XipcD sconnect() affect the calling process’s

* working set of logins and its current |ogin. The comrents al ong

* the side provide a running trace of the changing contents of the

* working set of logins. The login fromthe working set that is the current
* login (if one is defined) is highlighted. If no login is highlighted,

* then the process’s current |ogin is undefined.

*/
Vva D
mai n()
{
CHAR *11 = "@bc";
CHAR *12 = "@yz";
CHAR *13 ="@rs";
CHAR *Nane = "Exanpl e";
XI NT U di, U d2, U d3;
/* {Working Set Logins: initially empty} */
Udl = XipcLogin (11, Narme); /* { (11, uUdl) } */
Xi pcDi sconnect (); [* { (11, udl) } */
U d2 = XipcLogin (12, Narme); /* { (11, uUdl), (12, ud2) } */
Xi pcDi sconnect (); [* { (11, udl), (12, Uud2) } */
U d3 = XipcLogin (13, Nane); /* { (11, udl), (12, Uud2), (13 Ud3) } */
Xi pcDi sconnect (); [* { (11, udl), (12, Ud2), (13, Ud3) } */
Xi pcConnect (11, Uidl); [* { (11, udl), (12, Uud2), (I3, Ud3) } */
Xi pcLogout (); [* { (12, Ud2), (13, Ud3) } */
}

The above example demonstrates a number of points:
O A process sworking set of loginsisinitially empty.
O A process'scurrent loginisinitially undefined.

O XipcLogin() adds a login to the calling process's working set of logins and sets the process's
current login to that login.

O XipcDisconnect() resetsthe calling process's current login, leaving it undefined.
O XipcConnect() setsthe calling process’s current login to the specified login.

O XipcLogout() deletes the calling process's current login from its working set of logins. It also
resets the process’s current login, leaving it undefined.

© Envoy Technologies Inc. 6—26



Advanced Topics

Functional descriptions follow for the XipcConnect() and XipcDisconnect() function calls aswell as
supplementary descriptions of XipcLogin() and XipcLogout(), describing how they affect aprocess’'s
working set of logins and current login.

6.4.2.5.1 XIPCCONNECT() - Connect to a Login Session

The XipcConnect() function call sets the calling process’s current login to the login session specified by the
function's arguments. It isan error to call XipcConnect() when the process's current login is defined. In
such asituation the process's current login must first be reset either by a call to XipcDisconnect() or by a
call to XipcLogout(). These functions are described below.

XipcConnect() takes the following arguments:
O The instance name of the targeted login.

O The Uid of the targeted login.

The two arguments passed to XipcConnect() uniquely identify the login to connect to. Recall that an X«IPC
login session is connoted as the pair (Instance, Uid). The specified login must be a member of the calling
process sworking set of logins.

Example:
Ud = XipcLogin ("@yz", "AnyUser");

Xi pcDi sconnect () ;

Xi pcConnect (" @yz", Ud);

6.4.2.5.2 XIPCDISCONNECT() - Disconnect from the Current Login Session

The XipcDisconnect() function call resets the calling process's current login, leaving it undefined. It isan
error to call XipcDisconnect() when the process's current login is not defined.

It isgenerally an error to issue an X+IPC function call when aprocess's current login is undefined. The
exceptionsto thisrule are:

O XipcConnect() - to set the current login to an existing login session

O XipcLogin() - to establish anew login session, setting the current login to the new login
O XipcStart() - to start an X+IPC instance

O XipcStop() - to stop an X+IPC instance

O XipcInfoLogin() - to query information about the process' s working set of logins. Thisfunctionis
described below.
XipcDisconnect() takes no arguments.

Example:

Ud = XipcLogin ("@bc", "AnyUser");
Xi pcDi sconnect () ;

© Envoy Technologies Inc. 6—27



6-%#ABC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

6.4.2.5.3 XIPCLOGIN() - Effect on Working Set of Logins, Current Login

The XipcLogin() function call isthe basic entry point for working with an X+IPC instance. A successful call
to XipcLogin() adds the newly established |ogin session to the calling process’s working set of logins. It
additionally setsthe process's current login to the new login session.

Itisan error to issue an XipcLogin() call whilethe calling process’s current login is defined.

Example:

/*
* | NCORRECT . ..
*/

Ui di
Ui d2
/*
* CORRECT ...
*/

Xi pcLogin ("@rs", "AnyUser");
Xi pcLogin (" @yz", "AnyUser");

U dl = XipcLogin ("@rs", "AnyUser");
Xi pcDi sconnect () ;
U d2 = XipcLogin ("@yz", "AnyUser");

6.4.2.5.4 XIPCLOGOUT () - Effect on Working Set of Logins, Current Login

The XipcLogout() function call isthe basic exit point from working with an X+IPC instance. A successful call
to XipcLogout() deletes the current login session from the calling process' s working set of logins. It aso
resets the process's current login, leaving it undefined.

The rule against issuing X+IPC function calls while a process's current login is undefined (as stipul ated
regarding XipcDisconnect()) applies here aswell.

6.4.2.6 Programming Within a Multi-Instance Environment

An important tool for coding programsthat are to operate within multiple instance environmentsisthe
XipclnfoLogin () function call. Using the XipclnfoL ogin() function in conjunction with the other login-
related functions (XipcLogin(), XipcLogout(), XipcConnect() and XipcDisconnect()), it is possible to build
high levels of X«IPC object transparency. Thisisshown in the following sections.

6.4.2.6.1 XIPCINFOLOGIN() - Access Information About the Working Set of
Logins

The XipclnfoLogin() function call returns information about the calling process' s working set of logins.
Using thisfunction it is possible to access information about one or more of the logins currently in the
calling process' sworking set of logins.

Initsmost basic form, this function takes three arguments that allow for awide range of flexibility in
specifying the subset of logins about which information should be returned. There are, however, anumber
of convenient macro definitions that may be specified as arguments to the function for querying common
XipclnfoLogin() operations.

© Envoy Technologies Inc. 6—28



Advanced Topics

The basic interface to the XipclnfoL ogin() function ispresented below, followed by the more important
interface which uses predefined macros as arguments.

XipclnfoLogin(), when used in its basic form, takes the following arguments:

O A pointer to a user-declared structure (or perhaps to the first element of an array of structures) of
type XIPCINFOLOGIN, in which the requested login information is returned. This data type is
described below. If this argument is NULL, then the function returns the number of elements
currently in the working set of logins.

O The number of entriesin the specified array.

O A pointer to a cursor variable used by X«PC when using XipclinfoLogin() to enumerate the
elements within the working set of logins. If the cursor pointer variable is NULL, information
about the calling process’s current login is returned.

XipclnfoLogin() generally returns asits value the number of login information structures filled and returned
by the function call. XipclnfoL ogin() returns a zero when no login information is returned.

A high-level interface to the XipclnfoL ogin() function is provided by means of predefined macrosthat may
be used as argumentsto the function:

O The XI PC_LOG N_CURRENT macro may be used to access information about the calling
process’s current login.

Example:
XI PCI NFOLOA N | nf oLogi n;

Xi pcl nfoLogi n (& nfoLogin, Xl PC LOG N CURRENT);

When called using the XI PC_LOG N_CURRENT macro, the function returns information about
the calling process's current login within the XIPCINFOLOGIN structure.

O The XI PC_LOG N_COUNT macro may be used for accessing the size of the calling process's
working set of logins.

Example:
XI NT Set Si ze;

Set Si ze = Xi pclnfolLogin (Xl PC_LOG N _COUNT);

© Envoy Technologies Inc. 6—29



6-%dPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

O The XI PC_LOG N_I NI T_ENUMERATI ON and XI PC_LOG N_NEXT macros may be used for
enumerating the logins currently in the calling process's working set of logins.

Example:

XI PCI NFOLCA N | nf oLogi n;
XI NT c;

c = XIPC_LOG N_I NI T_ENUVERATI ON;
while ( Xi pclnfoLogi n(& nfolLogin, XIPCLOG N NEXT(c)) )
{

}

/* Process InfoLogin */

6.4.2.6.2 THE XIPCINFOLOGIN DATA TYPE

An XIPCINFOLOGIN structure, when used in conjunction with the XipclnfoL ogin() function call, is returned
with login information about one of the loginsin the calling process s working set of logins.

The XIPCINFOLOGIN data type definition includes the following:

typedef struct _XI PCl NFOLOG N /* Login Information */
{
CHAR *| nst anceNane; /* Pointer to Instance Nane */
XI NT User | d; /* User Id within instance */
}

Xl PCl NFOLOGE N,;
where:

O InstanceName - is a character pointer that is set by XipclnfolLogin(), pointing to an internal (user
space) string containing the instance name of the login session, and

O Userld - isthelogin session's Uid within the instance.

Working with XipcLogin(), XipcL ogout(), XipcConnect(), XipcDisconnect() and XipclnfoLogin(), it is
possibleto build alayer of X+IPC abject transparency for working in a multi-instance programming
environment.

Consider the situation in which aprogram is to send messages onto various queues within a multi-instance
application, where the queues are specified by their names. The queues may in fact be defined on any of the
application'sinstances, but thisisto be hidden from the main program. The following example outlines one
method of addressing this problem.

[Note that, for the sake of concept clarity, error checking is not included as part of the coding example.]

© Envoy Technologies Inc. 6—30



Advanced Topics

Example:

/*

* The foll owing sanpl e program denonstrates a nechani smfor performng
* queue di spatch operations within a multi-instance Xl PC environment.

* The application's Xl PC environnment involves three instances: "abc",

* "xyz" and "qrs". The application accesses two nmessage queues namned

* "EMai | Queue" and "Dat aBaseQueue". The application is not required to
* know i n which instance each queue is.

*

/

VA D

mai n()

{
CHAR  *I1 = "@bc";
CHAR  *12 = "@yz";

CHAR *I3 ="@rs";
CHAR *Nane = "Exanpl e";
XI NT U di, Ui d2, U d3;

U dl = XipcLogin (11, Nanme);
Xi pcDi sconnect ();

U d2 = XipcLogin (12, Nare);
Xi pcDi sconnect ();

U d3 = XipcLogin (13, Nane);
Xi pcDi sconnect ();

SendMsg (" EMai | Queue”, "This is an EMail message", 100);
SendMsg (" Dat aBaseQueue", "This is a database nessage", 200);

Xi pcConnect (11, U dl);
Xi pcLogout ();

Xi pcConnect (12, U d2);
Xi pcLogout ();

Xi pcConnect (13, U d3);
Xi pcLogout ();

© Envoy Technologies Inc. 6—31



6-%dPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

XI NT

SendMsg (QueueNane, Message, Priority)
CHAR * QueueNane;

CHAR *Message;

XINT Priority;

{
/*
* This function calls FindQueue() to connect to the login session
* whose instance contains the targeted queue. It then sends the
* message. It finally disconnects the process fromthe |ogin.
*/
XI NT Q d;
XI NT Ret Q d;
Q d = FindQueue (QueueNan®);
QueSend (QUE_ANY, Quelist(Q@d, QUE EQ.), Message, strlen(Message)+1,
Priority, &RetQ d, QUE WAIT );
Xi pcDi sconnect () ;
}
XI NT

Fi ndQueue (QueueNan®)
CHAR * QueueNane;

{
/*
* This function traverses the logins in the calling process’s
* working set of |ogins, searching each | ogin session to see whether
* jts instance has an Xl PC nessage queue of the specified nane. If it
* finds such a queue, the process renains connected to that |ogin and
* returns the Q@d found. Gtherwise, it returns -1, indicating that no
* such queue was found.
*/
XI PCNFOLOA N I nfolLogi n;
XI NT c;
Xl NT Qd;
c = XIPC_LOA N_I NI T_ENUVERATI ON;
whi l e (Xi pcl nfoLogi n(& nfoLogin, XIPC LOA N NEXT(c)))
{
Xi pcConnect (I nfoLogi n. I nstance, InfolLogin. U d);
if ( (Qd = QueAccess(QueueNane)) >= 0 )
return(Qd);
Xi pcDi sconnect () ;
}
return (-1);
}

© Envoy Technologies Inc. 6—32



Advanced Topics

This approach can be employed to provide transparent multi-instance access to X+IPC semaphores and
shared-memory segments as well. Enhancements can be added to optimize for situations where repeated
accesses are to occur, such as building atable of accessed objects within the FindQueue() function. One
approach isincluded as part of an examplethat is presented later in this section.

6.4.2.7 Asynchronous Operations in a Multi-Instance Environment

Ongoing X+IPC asynchronous activity related to a particular processisnot affected by the current login
setting of that process.

Specifically, a process working within a multi-instance environment may initiate numerous asynchronous
operations within these instances and, when the operations compl ete, the process will be notified of each
completion in the manner that was specified when the operation was started (i.e., callback function, post
semaphore or ignore), regardless of the process’ s current login at the time the operation compl etes.

This can be described by means of the following diagram. Process P is currently logged into three instances
"xyz", "abc" and "qrs" (twiceto "xyz"). The process has initiated a number of asynchronous X+PC
operationsin the course of its work within the three instances. Perhapsit is waiting asynchronously for
certain events to occur, or for certain messages to arrive within those instances. It is currently connected to
login ("grs', 3). Otherwise stated, the login ("grs", 3) isthe process's current login.

The process will be notified of each asynchronous operation completion asit occurs within any of the three
instances, regardless of the fact that the processis currently connected to alogin session within instance
"grs." Infact, it would work as well if the process had not been connected to any of itslogin sessions at the
time that the asynchronous operation(s) completed.

Essentialy, notification of asynchronous X+IPC eventsis passed to a process regardless of the process’s
current login status.

As an example of this concept, consider amodified version of the previous example where the process now
issues asynchronous QueReceive() operations using queues that are defined within the multi-instance
environment.

Example:

/*
* The foll owing sanpl e program denonstrates a nechani smfor performng

© Envoy Technologies Inc. 6—33



6-%dBC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

* asynchronous queue retrieval operations in a multi-instance environnent.
*/

va D

mai n()

{
CHAR *I1 = "@bc";
CHAR *12 = "@yz";
CHAR *13 ="@rs";
CHAR *Name = "Exanpl e";
XI NT U dl, Ud2, Uds3;
CHAR Dat aBaseMsgBuf [ 100] ;
CHAR EMai | MsgBuf [ 100] ;

ASYNCRESULT EMai | Acb;
ASYNCRESULT Dat aBaseAch;

/*
* Establish logins into the application's Xl PC instances.
*/

U dl = XipcLogin (11, Nane);
Xi pcDi sconnect ();

U d2 = XipcLogin (12, Name);
Xi pcDi sconnect ();

U d3 = XipcLogin (13, Nane);
Xi pcDi sconnect ();

/*

* |ssue two asynchronous requests: one for any inconing EMail nessages,

* and one al so for inconi ng DataBase transactions. Both operations are to
* run asynchronously so that the process can do other work while the

* requests are pending.

*/

RecvMsgAsync ("EMail Queue”, EMail MsgBuf, 100, EMail Cal | Back, &EMail Ach);

RecvMsgAsync (" Dat aBaseQueue", DataBaseMsgBuf, 100, DataBaseCal | Back,
&Dat aBaseAch) ;
/*
* Do other work while operations are
* conpl eting asynchronously ...
*/

Xi pcConnect (11, Udl);
Xi pcLogout ();

Xi pcConnect (12, U d2);
Xi pcLogout ();

© Envoy Technologies Inc. 6—34



Advanced Topics

Xi pcConnect (13, Ud3);
Xi pcLogout ();

XI NT

RecvMsgAsync (QueueNare, MsgBuf, MsgBuf Size, Call Back, Acb)
CHAR * QueueNane;

CHAR *MsgBuUf ;

XI NT MsgBuf Si ze;

VA D (*Cal | Back) () ;

ASYNCRESULT *Acb;

{
/*
* This function calls FindQueue() to connect to the [ ogin session
* whose instance contains the desired queue. It then issues the receive
* operation. It then disconnects the process fromthe |ogin.
*/
XI NT Q d;
XI NT Ret Q d;
Xl NT Priority;
Q d = FindQueue (QueueNane);
QueRecei ve ( QUE_EA,
QueList(Qd, QUE EQ),
MsgBuUf ,
MsgBuUf Si ze,
&Priority,
&Ret Q d,
QUE_CALLBACK( Cal | Back, Ach));
Xi pcDi sconnect () ;
}

© Envoy Technologies Inc. 6—35



6-%dBC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

XI NT
Fi ndQueue (QueueNan®)
CHAR * QueueNane;

{
/*
* This function traverses the logins in the calling process’s
* working set of |ogins, searching each |login session to see
* whether its instance has an Xl PC message queue of the specified
* nane. If it finds such a queue, the process remains connected to that
* login and returns the Qd found. Gtherwise, it returns -1, indicating
* that no such queue was found.
*/
Xl PCl NFOLOGd N I nfoLogi n;
XI NT c;
XI NT Qd;
¢ = XIPC LOA N_I NI T_ENUVERATI ON;
whi | e (Xi pcl nfolLogi n(& nfolLogin, XIPC LOGA N NEXT(c)))
{
Xi pcConnect (I nfoLogi n. I nstance, | nfolLogin. U d);
if ( (Qd = QueAccess(QueueNane)) >= 0 )
return(Qd);
Xi pcDi sconnect () ;
}
return (-1);
}
VA D

EMai | Cal | Back (Ach)
ASYNCRESULT *Ach;

{
/*
* Process EMail message that has arrived asynchronously ...
*/

}

VA D

Dat aBaseCal | Back (Acb)
ASYNCRESULT *Ach;

{
/*
* Process Dat aBase nmessage that has arrived asynchronously ...
*/
}

© Envoy Technologies Inc. 6—36



Advanced Topics

6.5 Starting and Stopping Instances Under Program Control

6.5.1 XipcStart() - STARTING AN INSTANCE

The XipcStart() function call is used for starting an X+«IPC instanceError! Reference source not found. from
within a program. Thisform of instance control is needed for situationsin which using the xi pcst ar t
command is not appropriate.

The XipcStart() function call takes the following arguments:

O The Instance File Name of the instance to be started. Recall that the Instance File Name identifies
the configuration file (excluding the".cf g" extension) to be used when starting the instance.

O The Instance Name (Local or Network) to be assigned to the instance. In the case that the
instance is being used in a stand-alone environment, this parameter must be set to NULL. If
NULL, the name will be taken from the parameter specified inthe[ XI PC] section of the Instance
Configuration File If no naming parameters are specified within the . cf g file either, then the
instance is started as a Stand-Along instance having no registered name. Such an instance is
only accessible via its Instance File Name. (See the X«PC Reference Manual for further
information.)

O An Options parameter to indicate reporting, testing, initializing and other options.
Example:

* Start an instance that is based on the

* "/projects/tpsys.cfg" configuration file.

* Assign it the network name: "TPSYS'.

* The startup report is generated on 'stdout'.

XipcStart ("/projects/tpsys", "TPSYS',
XI PC_START_REPCRT| XI PC_START_NETWORK) ;

Example:

/*

* Start the sanme instance as in the previous exanpl e,

* but this tinme as a stand-al one instance. Al so, suppress
* the startup report.

*/

XipcStart ("/projects/tpsys", NULL, 0);

XipcStart() creates the IPC environment as described within its Instance Configuration File. As such, it must
be called before any program can log into the instance and use its | PC environment.

The XipcStart() function will only succeed when called as part of an X+«IPC /Stand-Alone program to start a
local instance. It will otherwise return Xl PC_ER_NOTLOCAL.

© Envoy Technologies Inc. 6—37



6-%dBC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

6.5.2 XipcStop() - STOPPING AN INSTANCE

The XipcStop() function call is used for stopping an X«IPC instance from within a program. Thisform of
instance control is needed in situations where using the xi pcst op command is not appropriate.

The XipcStop() function call takes the following arguments:

O The Instance File Name of the instance to be stopped. The Instance File Name identifies the
configuration file (excludingthe” . cf g" extension) that was used when starting the instance.

O An Options parameter to indicate whether a report that lists stopped subsystems should be
written to standard output; whether an instance should be "force" stopped; or neither.

Example:
/*
* Stop the instance started above.
*/
Xi pcStop ("/projects/tpsys”, Xl PC STOP_REPORT);

The XipcStop() function will only succeed when called as part of an X«IPC /Stand-Alone or X+IPC /Local
program to stop alocal instance. It will otherwise return Xl PC_ER_NOTLOCAL.

© Envoy Technologies Inc. 6—38



Advanced Topics

6.6 Using X¢IPC Libraries

6.6.1 INTRODUCTION

The X+IPC toolset includes anumber of libraries for building applications using the XJPC API. Technical
instructions for using these libraries are generally platform-specific in nature and are therefore included as
part of the Platform Notes for each of the platforms supported by X+IPC.

This section presents a high-level discussion of the issues relating to the usage of the different X+«IPC API
libraries, focusing on the advantages and disadvantages of using each of the librariesin various application
settings. Thetermlibrary, as used in this section, is applied in its generic sense. Some of the platforms that
support the X+IPC toolset refer to collections of object modules using different terminology. For the sake of
simplicity, this section will usetheterm library.

The X+«IPC API library can be used in three modes, each of which addresses a specific application class. The
three modes are generally referred to as:

O The X«IPC Stand-Alone Library
O The X«JPC Network Library

O The X«JPC Combined Library

The determining factor in deciding which library to use for linking a program is the program'’s intended
proximity relative to the X«IPC instance(s) that it will be working with. Examples of different scenarios that
cover the range of possible situations are presented below.

6.6.2 THE X¢IPC STAND-ALONE LIBRARY

Consider the following situation:

© Envoy Technologies Inc. 6—39



6-%4PC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

In the above scenario, X+«PC instances |1 and 12 have been started on a stand-alonecomputer platform.
Programs P1, P2 and P3 are to log into the instance(s) to access and manipulate their 1PC objects.
Specificaly, P1, P2 and P3 areto log into | 1. P3isalso to log into instance [ 2. A common aspect of these
programs s that they are all accessing X+IPC instance(s) that are local to them. Because of thislocality, the
programs can be linked using the X+IPC Stand-Alone Library. Such programs are said to belong to the class
of X+IPC Stand-Alone programs.

Using the X+IPC Stand-Alone Library guarantees that the process—instance interaction is performed directly,
without any network activity.

Programsthat will always run on the same platform as the X+IPC instance(s) they work with may be linked
with the X+IPC Stand-Alone Library. As shown below, such programs may also be linked with the X+IPC
Combined Library.

To summarize, the advantage of using the X«IPC Stand-Alone Library isthat:

O The executables that are produced make no reference to any networking capabilities and can
therefore be linked and run on platforms on which there is no network installed.

The disadvantage of using the X+IPC Stand-Alone Library isthat:

O The resulting executables can only interact with local instances.

6.6.3 THE X¢IPC NETWORK LIBRARY

Programs that are intended to interact with remote X+IPC instances exclusively may be linked using the
X«IPC Network Library. Such programs are said to belong to the class of X+«IPC Network programs.

Consider the following situation:

Programs P1, P2 and P3 (on nodes N1 and N2) are intended to access X+IPC instances 11 and |12, where the
instances are started on remote platforms (nodes N3 and N4). In such a situation, the programs may be
linked with the X«IPC Network Library. Asshown below, these programs may also be linked using the X+IPC
Combined Library.

© Envoy Technologies Inc. 6—40



Advanced Topics

The advantage of using the X+«IPC Network Library isthat:
O 1t produces a smaller executable than those produced by either the X+«IPC Stand-Alone Library or
the X«IPC Combined Library.
The disadvantage of using the X+«IPC Network Library isthat:

O Theresulting executables can only interact with remote X+IPC instances.

6.6.4 THE X¢IPC COMBINED LIBRARY

Maximum flexibility is achieved using the X+IPC Combined Library. Programsthat are intended to interact
with local and/or remote X+IPC instances should be linked using the X+«IPC Combined Library. Such programs
are said to belong to the class of X+IPC Combined programs.

Consider the following situation:

Program P1 islinked with the X+«IPC Combined Library. It can therefore interact with either or both of
instances |1 and 12, even though I1islocal and |2 isremote. In addition, the interaction between Pland 11 is
carried out in amanner as direct asif the program were linked using the X+«IPC Stand-Alone Library (i.e.,
avoiding the network environment entirely).

The same P1 executable would work without relinking (assuming N1 and N2 are homogeneous platforms) in
the following three situations:

© Envoy Technologies Inc. 6—41



6-%4PC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

The advantage of using the X+IPC Combined Library isthat:

O The produced executables can interact with local and/or remote instances. This flexibility allows
for simplified application run-time configuration. The positioning of an application's processes
can be determined at run-time, regardless of the location of the application's X+IPC instance(s).
Thisflexibility isvisible in the above diagram.

The disadvantages of using the X+lPC Combined Library are that:
O Linking and running programs that use the X«PC Combined Library generally require the
availability of a networking environment on the platform. This makes it all but impossible to use

the X+«IPC Combined Library on platforms that have no network capabilities, where X+«IPC is being
used for itsintra-nodal 1PC capabilities.

O Executables that are produced using the X«IPC Combined Library are larger than those produced
using the Stand-Alone or Network libraries.

© Envoy Technologies Inc. 6—42



Advanced Topics

6.6.5 CONCLUSION

Thethreetypesof X«PC API Library provide awide range of flexibility for using the X+IPC toolset under
different application settings.

In most situations, linking with the X+sIPC Combined Library is a safe choice-unless there is no network
available whatsoever, in which case the X+IPC Stand-Alone Library isrequired. As an application evolves,
itsindividual programs can subsequently be linked using either of the other X+IPC librariesto benefit from
their advantages, where possible.

© Envoy Technologies Inc. 6—43



6-X%4RC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

6.7 Trap Handling

Applications using X+IPC can be designed to react promptly to asynchronous interrupt situations. Thereis
no conflict between X+IPC 's implementation and underlying operating system signal or trap mechanisms.

Trap service functions can be written to respond to operating system level signals or traps. Such functions
can include X+IPC function calls aswell. For example, atrap function may respond to an asynchronous
interrupt signal or trap by setting a SemSys semaphore or by issuing QueSys messages.

The use of trap functionsin conjunction with X+«IPC requires, however, that the trap functions be coded with
acal tothe XI PC_TRAP_FUNCTI ON_TEST() macro inserted at the start of the function.

The macro should be placed as the first executable statements in the trap function—possibly preceded only
by the necessary operating system calls required to re-enable the signal or trap, if so desired. The

Xl PC_TRAP_FUNCTI ON_TEST() macro prevents trap service function execution at times when X+IPC
trap masking isin effect.

A user'strap function mask becomes active in two situations:

O X4pC automatically activates a user's trap function mask to prevent trap function execution at
times when the user is executing internally within one of X+IPC 's critical regions. Trap function
execution, when prevented for these situations, is delayed momentarily.

O An application program can explicitly mask traps on its own at other times as well, using the
XipcMaskTraps() and XipcUnmaskTraps() function calls. Trap function execution, when
prevented with this approach can be delayed for as long as the program wishes. In this manner,
an application can prevent trap function execution during critical momentsin its execution.

Both XipcMaskTraps() and XipcUnmaskTraps() take no arguments.
Example
/ *
* Prevent trap handling.

*/

Xi pcMaskTraps();

/*
* Do work that is uninterruptable.
*/

* Restore trap handling. Any functions that
* were prevented fromrunning while the nask
* was active are now run.

*/

Xi pcUnnmaskTraps() ;

© Envoy Technologies Inc. 6—44



Advanced Topics

The XI PC_TRAP_FUNCTI ON_TEST() macro requires arguments that are operating system specific. Refer
to the appropriate Platform Notes for details of its calling sequence.

As an example, consider the following body of atrap service function:

{

}

/*

* Systemcall to reset the operating system'signal'
* or "trap' flag should go here (if required).

*/

XI PC_TRAP_FUNCTI ON_TEST( ... );
/*
* The renai nder of the function can safely

* service the asynchronous 'signal' or 'trap'.
*/

return;

A note regarding trap service functions and the SemList(), QueList() and MemList() functions: Recall that
theselist functions build their listsin their own internal static memory. Calling these functions from within a
trap service function is thus dangerous, since the interrupted process might have been in the middle of
using this same static area.

It istherefore much safer to use the SemListBuild(), QueListBuild() and MemListBuild() functionsinstead,
because they build their lists using user-specified list variables. These list variables (of type SIDLIST,
QIDLIST or MIDLIST) should ideally be automatic (i.e., stack) variables; as such, they would avoid the
above-stated problem.

Two important notes regarding XipcMaskTraps() are:

O It only prevents the complete execution of trap handling functions (assuming they are coded with

the XI PC_TRAP_FUNCTI ON_TEST() macro at their start). It does not control whether signals
arrive at the process. A process that can receive a signal while traps are masked should be coded
to restart interrupted synchronous operations executed during that period.

O Asynchronous X+IPC operations that complete while traps are masked are prevented from having

their completion processing performed (e.g., running a callback function), until the mask is lifted
viaacall to XipcUnmaskTraps().

It istherefore advisable to use XipcMaskTraps() and XipcUnmaskTraps() to mask traps for limited periods
of time and only when necessary.

© Envoy Technologies Inc. 6—45



6-%4BC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

6.8 XipcFreeze(), XipcUnfreeze() - Freezing and Unfreezing an Instance

The ability to freeze activity within an instance is most often only necessary at the subsystem level. Thus,
for example, a process can call QueFreeze() to freeze activity in an instance's QueSys for the purpose of
browsing message queues, etc.

For situations where the entire instance must be frozen, X«IPC providesthe XipcFreeze() and XipcUnfreeze()
function calls. These functions call their three respective subsystem functions as a unit, the result being the
freezing or unfreezing of the entire instance.

Neither XipcFreeze() nor XipcUnfreeze() take any arguments:
Example:
/*
* Freeze the instance. This gives the caller exclusive

* access to all subsystens of the instance.
*/

Xi pcFreeze();
/*

* Do excl usive work.
*/

/*

* Unfreeze the instance. Qther users are now pernmitted
* to execute Xl PC operations within the instance.

*/

Xi pcUnfreeze();

© Envoy Technologies Inc. 6—46



Advanced Topics

6.9 Extending X+IPC's Functionality

X+IPC provides the developer with the means for extending X+IPC’s capabilities beyond its basic
functionality. User-written functions, built upon the X+sIPC API, can provide greatly expanded and
speciaized forms of IPC functionality.

Examples of extending X+IPC's functionality could include user-written functions that:
O Increment aword of shared memory "atomically."
O Analyzethe contents of all the messages on a message queue.

O Collect IPC statistics as part of a user-designed |PC monitoring system; collected data can be
used for display purposes or for dynamic system intervention.

O Capture periodic images of message queue, shared memory contents or event semaphore
settings.

6.9.1 INCREMENT A SHARED MEMORY WORD ATOMICALLY

Consider writing a user function that increments afour-byte "word" of X+«IPC shared memory "atomically."
The target memory word isto beidentified by Mid and Offset. The function should return the value of the
incremented word.

By masking MemSys traps and then freezing the subsystem, a series of MemSys operations can beissued
that are guaranteed to be run as an "atomic" unit, without trap function interruption and without other
MemSys user operations executing interwoven within.

Thisisabasic requirement for coding a user-defined atomic operation that issues multiple X«IPC function
cals.

Example:
/*
* Memner() --- Version 1.
*/

XI NT

Mem ncr (M d, Ofset)
XINT Md;
XINT O fset;

{
XINT  Data;

/*

* Stop everyt hing.
*

/

Xi pcMaskTraps();
Mentfr eeze() ;

/*
* Performthe necessary MenBys operations.
*/

MenRead (M d, Offset, (CHAR *)&Data, 4L, MEM NOMIT);

© Envoy Technologies Inc. 6—47



6-%4BC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

Data ++;
MemWVite (Md, Ofset, (CHAR *)&Data, 4L, MEM NOMIT);

/*
* Restart everything.
*/

Menmnf reeze();
Xi pcUnmaskTr aps() ;

return (Data);
}

The above exampleis sufficient for situations where it is known that the MemRead() and MemWrite()
function callswill always have read/write access to the targeted area.

For situations where thisis not the case, amore generalized solution can be built. MemL ock() and
MemUnlock() are resorted to if the targeted areais not read/write accessible.

Example:

/*

* Memner() --- Version 2.

*/

XI NT

Mem ncr (Md, Ofset)

XINT M d;

XINT Of f set;

{
XI NT Dat a;
XI NT RC,
/*

* Stop everyt hing.
*/

Xi pcMaskTraps();
Mentr eeze();

/*
* Attenpt w thout | ocking.
*
/
RC = MenRead(M d, Ofset, (CHAR *)&Data, 4L, MEM NOWMAIT);
if (RC == MEM ER_NOWAIT)
MenUnf reeze();
Xi pcUnmaskTr aps() ;

return(Mem ncrLock(Md, Offset));
}

Dat a ++;
RC= MenmWite(Md, Offset, (CHAR *)&Data, 4L, MEM NOWAIT);
if (RC == MEM ER _NOMIT)

Mennf reeze();

Xi pcUnmaskTraps() ;
return(Mem ncrLock(Md, Ofset));

© Envoy Technologies Inc. 6—48



Advanced Topics

/*
* Restart everything.
*/

Mennf reeze();
Xi pcUnmaskTraps();
return (Data);

}
L */
/*
* Mem ncrLock() --- Perfornms increment operation using
* MenmLock and Meninl ock.
*/
XI NT
Mem ncr Lock(M d, O fset)
XINT M d;
XINT O fset;
{
SECTI ON TenpSec, Ret Sec;
M DLI ST M dLi st;
XI NT Dat a;
/*
* Performthe Mem ncr operation
* using MenLock/ Mennl ock to wait
* for target to become accessible.
*/
Xi pcMaskTraps();
MenLi st Bui | d(M dLi st
*MenSecti on( &TempSec, Md, O fset, 4L),
MEM EQL ) ;
MenLock (MEM ALL, MdList, &RetSec, MEMWAIT);
MenRead (Md, Ofset, (CHAR *)&Data, 4L, MEM NOMIT);
Data ++;
MenmWite (Md, Ofset, (CHAR *)&Data, 4L, MEM NOMAIT);
Meninl ock (M dLi st, &Ret Sec);
Xi pcUnmaskTraps();
return (Data);
}

Thisversion will perform like the first example, so long as the calling user has read/write accessto the
targeted memory area. If the areaisfound inaccessible by either MemRead() or M emWrite() then the
operation is performed using a memory locking approach by acall to MemlncrLock().

To summarize, the ability to extend X+IPC's functionality greatly broadens the range of 1PC application
requirements that can be addressed using the X+IPC product.

© Envoy Technologies Inc. 6—49



6-%49PC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

6.10 Info Function List Manipulation

6.10.1 INTRODUCTION

Many of the Information functions provided within Xs+IPC 's subsystems return list datain addition to
identification and statistical information. The method for accessing list datais uniform acrossal "Info"
functions providing such information.

This section describesin detail how to request and receive complete representations of the various internal
XePC lists, using the Information function calls. The method that is demonstrated appliesin asimilar vein to
all "Info" function list data.

6.10.2 INFORMATION VERBS

XJdPC provides a number of verbs that allow a user to extract information regarding subsystem
activity within an instance. The mgjor information verbs are;

MOMSYS

Monmi nf oSys() - Provides general, message repository and communication manager
information

Mom nf oAppQueue() - Provides application queue information

Mo nf oUser () - Provides user information; also used for providing information about
pending asynchronous operations and MomSys events

Mot nf oMessage() - Provides the latest information regarding a message

Mom nf oLi nk() - Provides information about MomSys links to other X«IPC instances
QUESYS
" Quel nf oQue() - Provides queue information

Quel nf 0Sys() - Provides QueSys information

Quel nfoUser () - Provides user information; aso provides information about pending
asynchronous operations and QueSys events.
MEMSYS

Meni nf oMen{() - Provides memory segment information
Meni nf oSec() - Provides section information
Mem nf oSys() - Provides MemSys information

Mem nf oUser () - Provides user information; aso provides information about pending
asynchronous operations and MemSys events.

SEMSYS
Sem nf 0Semn() - Provides semaphore information
Sem nf 0Sys() - Provides SemSys information

© Envoy Technologies Inc. 6—50



Advanced Topics

Sem nf oUser () - Provides user information; aso provides information about pending
asynchronous operations and SemSys events.

Other secondary information verbs are provided as well for reporting less significant information occurring
within the specified subsystem.

Using these verbsit is possible to build customized monitor processes within an application that oversee
theinternal operations of the application. It is additionally possible to build customized GUI-based
application monitors that display dataretrieved from these functionsin a customized display format.

6.10.3 UNDERSTANDING X¢IPC INFORMATION VERBS

Within the family of Information verbs, all of the verbs listed above can be employed to obtain information
about a series of subsystem dataitems. The programming method for looping through the series of itemsin
this group, using aMomSys example, is:

1. Initidly, cal Mo nf oXxx( MOM_I NFO_FI RST, &...)
2. Subsequently, call Mo nf oXxx( MOM_| NFO_NEXT(...), & ..) .
3. Stop when the return codeisMOM_ER_NOMORE .

Two other verbsin the MomSys subsystem-- Monl nf oAppQueueW.i st () and
Mol nf oUser Al i st () -- can be used to report more detailed MomSys information. The programming
method looping through the series of itemsin thisgroupis:

1. Initialy, cal the corresponding Mom nf oXxx () verb, and use its output parameter both to
initialize a cursor variable (e.g., My Cur sor ) to the position of the first element of the XList, and
also to obtain information about that element

2. Then,cal Mom nf oXxxXLi st (..., &WCursor, & ..). Thisadvances MyCur sor to
the position of the next element of the XList and obtains information about that element.

3. Stop when the return codeisMOM_ER_NOMORE.
6.10.4 CODING EXAMPLES OF MOMSYS INFORMATION VERBS

The following two code templatesillustrate the two styles of information-gathering loops (including error
checking).

Example 1.

/*

* Sanpl e of Mom nfoXxx()verb usage - e.g. for Mn nf oAppQueue().
* Loop through all the app-queues in the current instance,

* retrieving and processing the status data of each app-queue.

*/
MOM NFQAPPQUEUE MyI nf oAppQueue;
XI NT RC, M/AQ d;
for (RC = M nf oAppQueue( MOM | NFO FI RST, &WI nf oAppQueue );
RC ! = MOM ER_NOMVORE;
RC = Monm nf oAppQueue( MOM I NFO NEXT( MYAQ d ), &WI nf oAppQueue ))
{
if (RC<DO0)
{

/* Take appropriate error action for M/ nfoAppQueue */

br eak;

© Envoy Technologies Inc. 6—51



6-%49PC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

}
M/AQ d = M/l nf oAppQueue. AQ d;
/* Process Myl nfoAppQueue data for MYAQd */
} /* for */
Example 2:
/*
* Sanpl e of Mom nf oXxxXLi st() verb usage - e.g. for Mm nfoAppQueueW. st ().
* Loop through the entire wait-list for the specific app-queue

* jdentified by MPJAQ d, retrieving and processing the status
* data of each wait-list elenent.

*/
XI'NT RC, MYAQ d, M/Cursor;
MOM NFQAPPQUEUE M/ nf oAppQueue;

MOM_APPQUEUEWLI STI TEM M/Wi st tem

MAQd =...; /* AQd of app-queue whose wait-list is to be traversed */

if ( (RC = Mn nfoAppQueue( M/Agid, &WI nfoAppQueue )) <0 ) /

{
if (RC!= MOM ER_NOVORE)
{
/* Take appropriate error action for Mm nfoAppQueue() */
}
}
el se /* we have at |least one elenent in the wait-list */
{

for (MyCursor = Myl nfoAppQueue. W.i stlnitial Cursor,
M/W.i stltem = Myl nf oAppQueue. Wi stFirstltem
RC ! = MOM ER_NOMORE;
RC = Mom nf oAppQueueW.i st ( MYAQ d, &WCursor, &WW.istltem))

{
if (RC!= MOM ER NOVORE)
{
/* Take appropriate error action for Mm nfoAppQueueW.i st */
br eak;
}

/* Process MyYW.istltemdata */

Yy I* for */

} /* else */

© Envoy Technologies Inc. 6—52



Advanced Topics

If one wanted to loop through all the app-queues wait-lists, then the second code segment above would be
nested within the first segment, so that the processing of each app-queue would entail traversing itswait-
list.

Refer to the respective Reference Manual pages for additional details on the usage of these verbs.

6.10.5 SAMPLE QUESYS FUNCTION

Consider the QUEINFOSY S data structure. A pointer to such a structure is passed as a parameter to the
QuelnfoSys() function for accessing status information about an instance's QueSys.

The QUEINFOSY S structure returns with assorted identification and statistical datathat describe the status
of the QueSys subsystem. QuelnfoSys() additionally returns with Wait List data relating to the subsystem's
Message Text Pool. The Wait List identifies the list of QueSys users currently blocked on QueWrite()
operations to the Message Text Pool.

The QUEINFOSY S data type includes the following fields:

typedef struct

{
/*
* |dentification and statistical data.
*/
/*
* List data.
*/
XI'NT W.i st Tot al Lengt h;
Xl NT Wi st O fset;
XI NT W.i st Lengt h;
QUE_SYSW.I STI TEM Wi st[ QUE_LEN | NFQLI ST] ;
} QUEI NFCSYS;

wherethe QUE_SYSWLI STI TEMdatatypeisdefined as:

typedef struct

{
XI NT Ui d;

XI'NT MsgSi ze;
} QUE_SYSW.I STI TEM

The WListOffset field of the QUEINFOSY S structure should be set before QuelnfoSys() is called. Setting it to
zero instructs the function to return with WList data, starting with the first element on thelist.

© Envoy Technologies Inc. 6—53



6-%49RC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

Example:

/*

* Report all blocked QueWite operations
* currently occurring in QeSys.

*/

QUEI NFOSYS I nfoSys;
XI NT i;

/*

* Set offset to zero so that W.ist data is returned
* fromthe start of the list.

*/

I nfoSys. WistOfset = 0;
Quel nfoSys ( & nfoSys );

for (i=0; i < InfoSys.W.istLength; i++)
printf("Ud %l is blocked on QueWite of %d bytes",
InfoSys. Wist[i].Ud, InfoSys.W.ist[i].MqgSize);

The WList isdefined so that it may hold up to QUE_LEN | NFOLI ST elements. The above example
assumes that the Wait List of blocked QueWrite() operationsiswithin thislimit. In such acase,
InfoSys.WListLength will equal InfoSys.WListTotal Length, and the entire list will be printed.

Itis, however, possible that the current Wait List has morethan QUE_LEN | NFOLI ST elements. In such a
situation, the value of InfoSys.WListTotal Length will be set to the total number of blocked QueWrite()
operations, and InfoSys.WListLength will be equal toQUE_LEN_| NFOLI ST.

Getting the entire Wait List would then require aloop of QuelnfoSys() calls.

© Envoy Technologies Inc. 6—54



Advanced Topics

Example:

/*

* Report all blocked QueWite operations
* currently occurring in QueSys.

*/

QUEI NFOSYS I nf 0Sys;
XI NT i;

/*

* Set offset to zero so that W.ist data is returned
* fromthe start of the list.

*/

I nfoSys. WistOfset = 0;

do

{
Quel nfoSys ( & nfoSys );

for (i=0; i < InfoSys.W.istLength; i++)
printf("Ud %l bl ocked on QueWite of %d bytes",
InfoSys. Wist[i].Ud, InfoSys.W.ist[i].MqgSize);

I nfoSys. Wi st Offset += | nfoSys. W.i st Lengt h;

} while (InfoSys. WistOfset < InfoSys. WistTotal Length );

The problem with issuing multiple callsto QuelnfoSys() to report on Wait List statusis one of data
variability. Things can happen between the calls.

This can be prevented by freezing QueSys and masking traps for the duration of the reporting loop. Thiswill
guarantee that the collected Wait List dataiscomplete, accurate and consistent.

The method outlined in the next example for acquiring Wait List data can be applied in asimilar manner to all
of XsIPC 's"Info" function list data.

In summary, by using the "Info" function callsin conjunction with the XxxFreeze() and XipcMaskTraps()
function calls, it is possible to build customized I PC reporting and monitoring capabilitiesinto your product,
tailored to the specific real-time reporting needs of the application. An example of this approach follows:

Example:

/*

* Report all blocked QueWite operations
* currently occurring in QeSys.

*/

QUEI NFOSYS I nfoSys;
XI NT i;

/*

* Stop everyt hing.
*

/

© Envoy Technologies Inc. 6—55



6-%49BC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

Xi pcMaskTraps();
QueFreeze();

/*

* Set offset to zero so that W.ist data is returned
* fromthe start of the list.

*/

I nfoSys. W.istOfset = 0;

do

{
Quel nf oSys ( & nfoSys );

for (i=0; i<lInfoSys.W.istLength; i++)
printf("Ud %l bl ocked on QueWite of %d bytes",
InfoSys. W.ist[i].Ud, InfoSys.W.ist[i].MgSi ze);
I nf oSys. W.i st Of fset += | nf oSys. W.i st Lengt h;
} while (InfoSys. WistOfset < InfoSys. W.istTotal Length );
/*
* Restart everything.
*
/

QueUnfreeze();
Xi pcUnmaskTr aps() ;

© Envoy Technologies Inc. 6—56



Advanced Topics

6.11 The X+IPC Command Interpreter

The X+IPC toolset provides the application devel oper with the ability to manipulate an X+IPC instance and its
IPC objectsinteractively. Thisisaccomplished using the xi pc interactive command interpreter.

Xi pc provides an interactiveinterface to all the X+lPC API's. xi pc ismost useful in situations where
accessto an instance and its | PC objects are required on an ad-hoc basis. This need can arise throughout
the application development process.

With xi pc itispossible, for example, to:
O Create or delete X+IPC objects (queues, app-queues, semaphores, segments)
Set or clear event semaphores
Initialize the contents of a shared memory segment
Extract arbitrary messages from a message queue
Lock (or otherwise set the access privileges of) areasin shared memory
Clean up after "untidy" user programs
Insert messages onto one or more message queues
Control a queue's overflow spooling activity

Set or reset X+IPC triggers

O O O o o o o o o

Initiate an asynchronous X«PC operation that, when completed, executes another X+PC
command or native operating system command

O

Log into a corrupted X+IPC instance to examine its status

O etc.

Thexi pc interactive interpreter is based on alanguage of commands. The exact syntax and details of using
the xi pc interactive command language are described in the chapter on X«IPC Commandsin the X«PC
Reference Manual.

6.11.1 SAMPLE USAGE OF THE X¢IPC INTERACTIVE COMMAND
INTERPRETER

This section presents a selection of sample xi pc sessions. The examples demonstrate the types of
situations where using xi pc can provide important time-saving devel opment assistance.

© Envoy Technologies Inc. 6—57



6-%49BC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

Sample 1: Run a native Operating System command.

xi pc> # UNI X exanpl e of operating system comrand
xi pc> !date
Thu May 21 10:58:20 EDT 1996

xi pc> # VMB exanpl e of operating system conmand
xi pc> !'show tine
21- May- 1996 10:58: 20

xi pc> # OS5/ 2 exanpl e of operating system conmand
xi pc> !date

The current date is: Thu 5-21-1996

Enter the new date: (nm dd-yy)

Sample 2: Initiate an asynchronous operation and arrange that its completion runs a second X+IPC
command.

xi pc> # Assign call back variable cba with xi pc conmand to send
xi pc> # an applicati on shutdown nessage into queue O
xi pc> cal | back cba "quesend any 0 999 \"Shutdown\" wait"
Command saved
xipc> # Initiate an asynchronous operation that waits for
xi pc> # three events to occur. Wen they all have occurred
xi pc> # cal | back cba is run, i.e., the above xi pc conmand
xipc> # is executed
xi pc> semmait all 0,1,2 callback(cba, a)
Ret Code = -1097
Qperation continui ng asynchronously

Sample 3: Initiate an asynchronous operation and arrange that its completion runs a native operating
system command to print report xyz.

Xi pc> # Assign call back variable cbhz with xipc "!'" comand
Xi pc> # which will execute an operating system comuand to
Xi pc> # produce report xyz
xi pc> cal | back cbz "! print xyz"

Command saved
Xxi pc> # Initiate an asynchronous operation that waits for
xi pc> # any of events 10,20,30 to occur. Wen this happens,
xi pc> # cal |l back cbz is run, i.e., the above operating system
xi pc> # command i s executed
Xi pc> semmai t any 10, 20, 30 cal | back(cbz, c)

Ret Code = 0

© Envoy Technologies Inc. 6—53



Advanced Topics

Sample 4 : Log into two instances.

xi pc> xi pcl ogin /proj/xipc/ demo Jack

ud =11
xi pc> xi pcdi sconnect
Ret Code = 0
xi pc> xi pclogin @B Jack
ud =15
xi pc> xi pci nfol ogin
Ud Instance
15 @B

11 /proj/xipc/deno

A brief note regarding this last example: Thesuper user capability, in providing a means for logging into
an otherwise inaccessible instance, also returns the instance to a state where it may be accessed on a
general basis (such as by the X+IPC monitor programs).

Thereis no guarantee, however, that the instanceisin complete working order. Thesuper user loginis

most useful for ascertaining the identity of the program that |ast accessed the instance, i.e., the one that was
the likely cause of the instance becoming corrupted.

© Envoy Technologies Inc. 6—59



7. INDEX

.cfgfile. See Instance Configuration File
Aborting asynchronous operations, 6—13
ACB, 5—3,5—4,6—5,6—6
AsyncStatus Field, 6—5
AUid Fidd, 6—5
Opcode Field, 6—5
Return values, 6—8
UserData Fields, 6—5, 6—11
Asynchronous blocking options, 6—5
Asynchronous blocking options, 5—3
Asynchronous operations, 6—37, 6—40, 6—53
Mixing with synchronous, 6—14
Asynchronous operations, 2—3
Multi-instance environment, 6—30
Asynchronous User Id. See AUid
ASYNCRESULT Control Block. See ACB
AUid, 5—7,6—5
Blocking options, 5—2,5—3,5—4
Forced blocking, 6—10
BlockOpt. See Blocking options
Browsing, 5—10
CALLBACK option, 5—3,6—5,6—9
CALLBACK option, 6—9
Combined library, 6—37
Command Interpreter. See Interactive Command
Interpreter
Configuration File. See Instance Configuration
File
Connectivity, 1—3
Daemon/service programs, 3—3
Daemon/service programs, 3—1
Debugging, 2—2
Distributed computing, 1—2
Distributed processes, 1—2
Error codes, 5—11
Extended functionality, 6—43
FindQueue(), 6—29, 6—31
IGNORE option, 5—3, 6—5
Interactive Command Interpreter, 6—52
Info Functions. See Information Verbs
Information Verbs, 6—46
Installation, 1—4
Instance, 4—1.
Application perspective, 6—16
Configuration, 4—4
Local. See Local instance
Network. See Network instance
Process perspective, 6—19
Program Control, 6—34
Specid, 4—5
Stand-alone. See Stand-alone instance

© Envoy TechnologiesInc.

INDEX

Starting an, 4—3, 6—34

Stopping an, 4—4, 6—35

Test Starting an, 4—4

Working with, 6—16
Instance Configuration File, 4—3
Instance File Name, 4—7, 4—14
Instance Configuration File, 4—1
InstanceFileName, 4—1
Interprocess Communication, 2—1. See IPC
Interrupts, 6—40
Interval Snapshot Mode, 5—7
IPC, 2—1-2—3,2—1,6—16
Libraries, 6—36.

Combined, 4—9, 6—37

Network, 4—14, 6—37

Stand-Alone, 6—36
Local instance, 4—7

Commands, 4—8

Configuration, 4—8

Environment, 4—8

Login, 5—1

Naming, 4—8

Programming, 4—9
Logging

Daemon/service programs, 3—6

Instance, 3—7, 6—19

Platform environment, 3—6
Login

Current, 6—22, 6—23

Modify working set, 6—23

Multiple, 6—21

Process working set, 6—20

Single, 6—21
MEM_CALLBACK, 5—4
MEM_ER_ASYNC, 6—5
MEM_IGNORE, 5—4
MEM_NOWAIT,5—4
MEM_POST, 5—4
MEM_RETURN, 5—4
MEM_TIMEOUT, 5—4
MEM_WAIT,5—4
MemAbortAsync(), 6—13
MemincrLock(), 6—45
MemlnfoMem(), 6—46
MeminfoSec(), 6—46
MeminfoSys(), 6—46
MemlnfoUser(), 6—46
MemList(), 6—41
MemListBuild(), 6—41
MemLock(), 6—44
MemLogin(), 4—7



Memory segment watching, 5—10
MemRead(), 6—9, 6—44, 6—45
MemSys, 1—1,4—1, 4—9, 6—43,6—46
MemUnlock(), 6—44
MemView, 4—7,4—9,4—14,5—6
MemWrite(), 6—9, 6—12, 6—44, 6—45
M ulti-instance application, 6—17
MomAbortAsync(), 6—13
MomlinfoAppQueue(), 6—46
MominfoLink(), 6—46
MominfoM essage(), 6—46
MominfoSys(), 6—46
MominfoUser(), 6—46
MominfoUserAList(), 6—47
MomReceive(), 6—9
MomSend(), 6—9
MomSys, 1—1,3—2,4—1,4—7,6—1, 6—16,

6—46, 6—47
MomView, 5—6
Monitor modes

Command, 5—8

Trace Flow, 5—8

Trace Step, 5—8

Update, 5—7
Monitor modes, 5—7
Monitoring

Basic Commands, 5—8
Monitoring, 4—7, 4—9,5—6
Monitoring, 2—2, 4—13
Monitoring, 5—11
Multi-instance applications, 4—14
M ulti-instance applications, 6—25
Multiple instances, 4—5
multitasking, 2—1
Network application development, 1—2
Network instance

Commands, 4—12

Configuration, 4—10

Environment, 4—14

Location, 4—10

Login, 5—1

Naming, 4—10

Programming, 4—14

Search range, 4—11

Search range specification, 4—12
Network library, 6—37
Network programming, 2—3
Network resources, 1—4
Network transparency, 2—3
Network instance, 4—9
NOWAIT option, 5—2
Null Subsystem, 4—2
Operating system platforms, 1—3
Operating system resources, 1—4

© Envoy Technologies Inc.

052,2—1
Panning, 5—11
Platform Commands, 3—4
Platform configuration, 3—1

Client, 3—3

Server, 3—1
Portability, 2—3
POST Option, 6—11
POST option, 5—3,6—5
Platform environment, 3—1
Pseudo-user, 6—5
QUE _CALLBACK,5—4
QUE _ER ASYNC, 6—5
QUE _IGNORE, 5—4
QUE_NOWAIT,5—4
QUE_POST, 5—4
QUE RETURN, 5—4
QUE_SYSW.I STI TEM 6—49
QUE_TIMEOUT, 5—4
QUE_WAIT,5—4
QueAbortAsync(), 6—13
QueFreeze(), 6—42
QuelnfoQue(), 6—46
QUEINFOSY'S, 6—49
QuelnfoSys(), 6—46, 6—48
Quel nfoUser(), 6—46
QueL.ist(), 6—41
QueListBuild(), 6—41
QuelL ogin(), 4—7
QueRead(), 6—9
QueReceive(), 6—9, 6—30
QueSend(), 6—9
QueSys, 1—1,4—1, 4—9, 6—46, 6—48
QueView, 4—7,4—9,4—14,5—6
QueWwrite(), 6—9, 6—49
Return codes, 5—11
RETURN option, 5—3
SEM_CALLBACK,5—4
SEM_ER_ASYNC, 6—5
SEM_IGNORE, 5—4
SEM_NOWAIT,5—4
SEM_POST, 5—4
SEM_RETURN, 5—4
SEM_TIMEOUT, 5—4
SEM_WAIT,5—4
SemAbortAsync(), 6—13
SemlnfoSem(), 6—46
SemlinfoSys(), 6—46
SeminfoUser(), 6—47
SemList(), 6—41
SemListBuild(), 6—41
SemLogin(), 4—7
MOM_ER _ASYNC, 6—5
SemSys, 1—1,4—1,4—9,5—7,6—46



SemView, 4—7,4—9,4—14,5—6

Shareable Images. See Libraries
Signals, 6—40
Spooling, 6—52
Single-instance application, 6—16
Stand-aloneinstance, 4—5
Synchronous blocking options, 5—2
Stand-alone instance
Commands, 4—6
Configuration, 4—6
Environment, 4—6
Login, 5—1
Naming, 4—6
Programming, 4—7
Stand-alonelibrary, 6—36
START parameter, 3—2, 3—3
Superuser, 6—54
Synchronous blocking options, 5—3
Synchronous operations
Mixing with asynchronous, 6—14
Synchronous Operations, 2—3
System design, 1—2
System maintenance, 1—2
System integration, 1—2
TIMEOUT option, 5—2, 6—5
Trace Flow Mode, 5—8,5—9
Trace step mode, 5—8
Trace Step Mode, 5—9
Trap handling, 6—43
Trap handling, 6—40
Triggers, 6—52
Testing, 4—5
UNIX, 2—1
UnZooming, 5—10
VMS, 2—1
Wait List, 6—49, 6—50
Wait List, 6—50
WAIT option, 5—2,6—5
Watching, 5—10
Window, 6—14
Windows, 2—1
WList. See Wait List
Working set of logins, 6—20
Working set of logins, 6—27
xe, 5—7
XE, 2—1
XI PC environment variable, 4—7

xi pc. env file, 3—1,3—3,3—4,4—3

default, 3—2
XIPC_LOGIN macros, 6—26

XIPC_TRAP_FUNCTION_TEST(), 6—40

XipcAbort(), 5—2

© Envoy TechnologiesInc.

INDEX

XI PCCAT environment variable, 4—11, 4—12,
4—14

XI PCCATLI ST environment variable, 4—11,
4—12

XI PCCATLI ST environment variable, 4—14

XipcDisconnect(), 6—23, 6—24, 6—25, 6—27

XipcError(), 5—11

XipcFreeze(), 6—42

Xl PCHOST environment variable, 4—11, 4—14

Xl PCHOSTLI ST environment variable, 4—11,
4—12,4—14

XIPCINFOLOGIN, 6—26

XIPCINFOLOGIN data type, 6—27

XipclnfoLogin(), 6—25, 6—26, 6—27

Xipcinit,3—3

Xi pci nit command, 3—4,4—3

Xi pci ni t command, 3—5

xi pcli st command, 4—13

XipcLogin(), 4—7,4—9, 4—11,4—14,5—1,6—
23,6—25,6—27

XipcLogout(), 5—1, 6—23, 6—24, 6—25, 6—27

XipcMaskTraps(), 6—40, 6—50

Xl PCPATH parameter, 3—5

XI PCROOT environment variable, 3—4, 4—3,
4—7,4—9

Xl PCROOT environment variable, 3—5, 3—6

Xi pcstart command, 4—3, 4—4,4—6, 4—7,
4—8,4—12

Xi pcst op command, 4—4, 4—6, 4—8, 4—13

xi pcsys. | og file, 3—6

Xi pct er m command, 3—4

Xi pct er m command, 3—6

XipcUnfreeze(), 6—42

XipcUnmaskTraps(), 6—40

XxxFreeze(), 6—50

Zooming, 5—9





