

Envoy Connect XIPC Connector
Version 3.4.0

Envoy Connect XIPC
User Guide

Envoy Technologies Inc.
555 Route 1 South
Iselin, NJ 08830

http://www.envoytech.com

Copyright © 2004 Envoy Technologies Inc. All rights reserved

This document and the software supplied with this document are the property of Envoy Technologies Inc. and are furnished
under a licensing agreement. Neither the software nor this document may be copied or transferred by any means, electronic
or mechanical, except as provided in the licensing agreement. The information in this document is subject to change without
prior notice and does not represent a commitment by Envoy Technologies Inc. or it's representatives.

Printed in the United States of America.

Envoy XIPC, Envoy Connect XIPC are either trademarks or registered trademarks of Envoy Technologies Inc. Other
product and company names mentioned herein might be the trademarks of their respective owners.

Envoy Connect XIPC is represented throughout the documentation as X IPC.

© Envoy Technologies Inc. I

XsIPC VERSION 3.4.0

USER GUIDE

TABLE OF CONTENTS

1. INTRODUCING XsIPC.. 1—1

1.1 Purpose .. 1—1

1.2 Scope.. 1—3

1.3 Availability ... 1—3

1.4 Documentation Roadmap.. 1—3

1.5 Getting Started.. 1—4

1.5.1 SYSTEM REQUIREMENTS ...1—4

1.5.2 INSTALLATION..1—4

2. XsIPC CONCEPTS... 2—1

2.1 Interprocess Communication (IPC).. 2—1

2.1.1 MULTITASKING – STAND-ALONE IPC..2—1

2.1.2 DISTRIBUTED COMPUTING - NETWORK IPC ..2—1

2.1.3 GUARANTEED MESSAGE DELIVERY...2—1

2.2 Why XsIPC?.. 2—1

2.2.1 XsIPC'S ADVANCED IPC SOFTWARE ENGINEERING TOOLS AND METHODS...2—2

2.2.2 XsIPC'S ENHANCED IPC BASIC AND EXTENDED FUNCTIONALITY...2—2

2.2.3 XsIPC'S IMMEDIATE INTER-OPERATING SYSTEM IPC SOFTWARE PORTABILITY2—3

2.2.4 XsIPC'S NETWORK IPC TRANSPARENCY...2—3

3. THE XsIPC PLATFORM ... 3—1

3.1 Function of the XsIPC Platform Environment .. 3—1

3.2 XsIPC Platform Configuration ... 3—1

3.2.1 XsIPC PLATFORM CLASSIFICATION ..3—1

3.3 XsIPC Platform Commands... 3—4

3.3.1 THE XIPCROOT ENVIRONMENT VARIABLE..3—4

3.3.2 THE xipcinit COMMAND ...3—5

3.3.3 THE xipcterm COMMAND ...3—6

3.4 XsIPC Logging.. 3—6

3.4.1 PLATFORM ENVIRONMENT LOGGING...3—6

3.4.2 INSTANCE LOGGING..3—7

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. II

II

4. XsIPC INSTANCES ... 4—1

4.1 What is an XsIPC Instance?.. 4—1

4.2 Defining an XsIPC Instance .. 4—1

4.3 Configuration (.cfg) Files... 4—1

4.4 Defining An Instance Having A Null Subsystem... 4—3

4.5 XIPCROOT.. 4—3

4.6 Starting an XsIPC Instance ... 4—4

4.6.1 TEST STARTING AN INSTANCE...4—4

4.7 Stopping an XsIPC Instance ... 4—4

4.8 User-Controlled Configuration... 4—5

4.9 Multiple XsIPC Instances .. 4—5

4.10 Stand-Alone Instances .. 4—6

4.10.1 INSTANCE NAMI NG...4—6

4.10.2 CONFIGURATION...4—6

4.10.3 ENVIRONMENT...4—7

4.10.4 STAND-ALONE COMMANDS..4—7

4.10.5 PROGRAMMING TO ACCESS A STAND-ALONE INSTANCE...4—7

4.11 Local Instances ... 4—8

4.11.1 INSTANCE NAMI NG...4—8

4.11.2 CONFIGURATION...4—9

4.11.3 ENVIRONMENT...4—9

4.11.4 LOCAL COMMANDS...4—9

4.11.5 PROGRAMMING TO ACCESS A LOCAL INSTANCE ..4—10

4.12 Network Instances ... 4—10

4.12.1 INSTANCE NAMI NG...4—11

4.12.2 CONFIGURATION...4—11

4.12.3 NETWORK INSTANCE LOCATION ...4—11

4.12.4 NETWORK INSTANCE SEARCH RANGE ...4—12

4.12.5 SPECIFYING A NODE NAME IN XIPCLOGIN() ..4—12

4.12.6 THE XIPCHOST ENVIRONMENT VARIABLE ...4—12

4.12.7 THE XIPCHOSTLIST ENVIRONMENT VARIABLE...4—13

4.12.8 THE XIPCCAT ENVIRONMENT VARIABLE ..4—13

4.12.9 THE XIPCCATLIST ENVIRONMENT VARIABLE..4—13

4.12.10 INSTANCE SEARCH RANGE SPECIFICATION PRECEDENCE...4—13

4.12.11 NETWORK COMMANDS..4—13

4.12.12 PROGRAMMING TO ACCESS A NETWORK INSTANCE ...4—15

4.13 Multi-Instance Applications.. 4—16

© Envoy Technologies Inc. III

5. X© IPC PROGRAMMING .. 5—1

5.1 Accessing An X©IPC Instance... 5—1

5.1.1 XipcLogin() - LOGGING INTO AN INSTANCE...5—1

5.1.2 XipcLogout() - LOGGING OUT OF AN INSTANCE ...5—1

5.1.3 XipcAbort() - ABORTING AN INSTANCE USER - FORCING A LOGOUT..5—2

5.2 X©IPC Blocking Options ... 5—2

5.2.1 SYNCHRONOUS OPTIONS..5—2

5.2.2 ASYNCHRONOUS OPTIONS...5—3

5.2.3 BLOCKING OPTIONS SUMMARY..5—4

5.3 Using XsIPC With Threads ... 5—5

5.3.1 XsIPC LOGIN PER THREAD...5—5

5.3.2 PROGRAMMING RESTRICTIONS...5—5

5.3.3 ASYNCHRONOUS OPERATIONS...5—6

5.3.4 PROGRAM LINKING...5—6

5.4 X©IPC On-Line Monitoring ... 5—6

5.4.1 STARTING THE X©IPC MONITORS..5—7

5.4.2 MONITOR FUNCTIONS AND LAYOUT...5—7

5.4.3 MONITOR MODES...5—8

5.4.4 BASIC COMMANDS..5—9

5.4.5 ZOOMING..5—10

5.4.6 UN-ZOOMING...5—11

5.4.7 BROWSING..5—11

5.4.8 WATCHING.. I

5.4.9 PANNING..5—12

5.4.10 EXITING THE MONITOR..5—12

5.5 X©IPC Function Return Codes - Using XipcError().. 5—12

6. ADVANCED TOPICS... 6—1

6.1 Advanced Instance Configuration ... 6—1

6.1.1 CONFIGURING XsIPC FOR MULTIPLE-CPU (SMP) SYSTEMS...6—1

6.1.2 CONFIGURING AN INSTANCE’S MEMORY UTILIZATION..6—1

6.2 Asynchronous Operations... 6—5

6.2.1 INTRODUCTION ...6—5

6.2.2 THE ASYNCRESULT CONTROL BLOCK (ACB) ..6—5

6.2.3 ACB RETURN VALUES ...6—9

6.2.4 THE CALLBACK OPTION ..6—9

6.2.5 THE POST OPTION...6—12

6.2.6 THE IGNORE OPTION ...6—13

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. IV

IV

6.2.7 ABORTING A PENDING ASYNCHRONOUS OPERATION ..6—14

6.2.8 MIXING ASYNCHRONOUS AND SYNCHRONOUS OPERATIONS...6—15

6.2.9 CONCLUSION ...6—15

6.3 Network Timeout Detection ... 6—16

6.3.1 DESCRIPTION...6—16

6.3.2 CHANGING DEFAULT BEHAVIOR ...6—16

6.4 Working With XsIPC Instances ... 6—17

6.4.1 XsIPC INSTANCES: THE APPLICATION PERSPECTIVE..6—17

6.4.2 XsIPC INSTANCES: THE PROCESS PERSPECTIVE ...6—20

6.5 Starting and Stopping Instances Under Program Control.. 6—37

6.5.1 XipcStart() - STARTING AN INSTANCE..6—37

6.5.2 XipcStop() - STOPPING AN INSTANCE ...6—38

6.6 Using XsIPC Libraries... 6—39

6.6.1 INTRODUCTION ...6—39

6.6.2 THE XsIPC STAND-ALONE LIBRARY...6—39

6.6.3 THE XsIPC NETWORK LIBRARY ...6—40

6.6.4 THE XsIPC COMBINED LIBRARY..6—41

6.6.5 CONCLUSION ...6—43

6.7 Trap Handling ... 6—44

6.8 XipcFreeze(), XipcUnfreeze() - Freezing and Unfreezing an Instance............................ 6—47

6.9 Extending X©IPC 's Functionality ... 6—48

6.9.1 INCREMENT A SHARED MEMORY WORD ATOMICALLY...6—48

6.10 Info Function List Manipulation.. 6—52

6.10.1 INTRODUCTION ...6—52

6.10.2 INFORMATION VERBS..6—52

6.10.3 UNDERSTANDING XsIPC INFORMATION VERBS...6—53

6.10.4 CODING EXAMPLES OF MOMSYS INFORMATION VERBS..6—53

6.10.5 SAMPLE QUESYS FUNCTION ...6—55

6.11 The XsIPC Command Interpreter.. 6—59

6.11.1 SAMPLE USAGE OF THE XsIPC INTERACTIVE COMMAND INTERPRETER..6—59

7. INDEX...................... ... 7—1

Introducing XsIPC

© Envoy Technologies Inc. 1—1

1. INTRODUCING XsIPC

1.1 Purpose

This document presents User guidance for Version 3.4.0 of XsIPC, the Extended Interprocess Communication
Facilities product from Envoy Technologies Inc.

XsIPC is a toolkit for developing software systems employing Interprocess Communication (IPC). XsIPC is comprised
of four IPC subsystems, each with a library of functions and support utilities:

o MomSys, the guaranteed disk-
based messaging subsystem

The XsIPC message oriented
middleware subsystem, MomSys,
is a highly scalable, dynamically
configurable, guaranteed message
delivery facility. Ideal for
mission-critical, enterprise-wide
applications, MomSys ensures the
constant trackability and
reliability of all messages.

 o QueSys, the high-speed
memory-based messaging subsystem

The XsIPC message queue system, QueSys is a complete message queuing facility. Many advanced features
are included (e.g., individualized queue sizing, dynamic queue spooling, queue multiplexing, etc.) to facilitate
most necessary message queuing requirements.

o SemSys, the Semaphore System

The XsIPC semaphore subsystem is known as SemSys. SemSys includes a comprehensive implementation of
event and resource semaphores. Its wide range of operations and the various waiting and acquiring
alternatives ensures that almost every semaphore-related system requirement can be easily implemented.

o MemSys, the Shared Memo ry System

The XsIPC shared memory system is known as MemSys MemSys is a complete shared-memory management
system. It includes memory allocation as well as access control, synchronization, locking and protection at the
byte level.

This User Guide describes the XsIPC product without specific reference to the individual subsystems. It provides a
global presentation of XsIPC concepts–most importantly, instances–and usage; it is accompanied by a Reference
Manual. Separate documentation is available for the subsystems. Used together or individually, these subsystems
provide significant enhancements to the native IPC facilities of the supported operating systems. XsIPC additionally
provides its full functionality distributed over a network.

User
Application

API

Message

Repository

Manager

 MomSys
 Manager

Comm

Manager

User
Application

API

Message

Repository
Manager

 MomSys
 Manager

Comm

Manager

Message Repository Message Repository

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 1—2

1—2

XsIPC is a set of libraries and support utilities that greatly simplifies software development involving stand-alone or
network IPC. XsIPC provides the systems developer with a state-of-the-art IPC development environment, including:
on-line interactive IPC monitoring and debugging; extended basic and advanced functionality; immediate inter-
operating system IPC source-code portability; guaranteed message delivery; complete network transparency; and
dynamic configuration.

XsIPC benefits are realized throughout all phases of the software development cycle:

o System design is simplified by the availability of XsIPC 's rich set of basic and advanced IPC functions.
System design decisions are no longer constrained by non-existent or deficient IPC capabilities.

 Distributed application design also benefits from XsIPC 's full functionality being transparently available
over a network.

o The development phase is enhanced at the unit test level and, more significantly, during system
integration. IPC problems resulting from programmer error or misinterpretation are identified and resolved
rapidly via XsIPC 's on-line monitoring and debugging facilities.

 Network application development is further simplified by the fact that all IPC-related development can
occur in a stand-alone environment and subsequently be distributed over a network with virtually no
modification.

o System maintenance is similarly enhanced by the ability to remotely monitor live (stand-alone or network)
applications in the field, if and when they exhibit problems.

o Porting IPC-laden systems between dissimilar operating systems is reduced to a recompile instead of a
total redesign.

o Spreading an application over a network requires no program modification. Distributed processes can
communicate using XsIPC functionality regardless of their network location.

Database Servers

Appl icat ion and
Communicat ion
Servers

Workstat ion
Cl ients

DBMS

UNIX, NT, VMS, LINUX

Java, WinXP, WinNT, VMS, UNIX, LINUX …

Introducing XsIPC

© Envoy Technologies Inc. 1—3

In short, XsIPC redefines how the IPC components of sophisticated multitasking, multi-platform and distributed
software systems are designed and developed.

1.2 Scope

This XsIPC User Guide is for experienced software developers, who are familiar with the basic concepts of IPC as
well as with common software development practices. These developers need the enhancements provided by XsIPC
for easing and expediting the development of quality, portable applications in a multitasking or distributed
environment.

This volume, the XsIPC User Guide, is put to best advantage if you first read Chapters 1 through 4 thoroughly to
become well acquainted with the XsIPC product and its key concepts. Chapter 5 addresses basic programming
techniques, while Chapter 6 presents more advanced topics in greater detail. Technical Notes, which discuss special
issues and product enhancements, are provided in Chapter 7, the Appendix.

1.3 Availability

XsIPC is available on a wide variety of operating system platforms and, when used in a networking environment,
includes support for a wide range of protocol families. This platform and environmental independence is one of the
major benefits of working with XsIPC : It provides for immediate IPC source code portability. It additionally allows for
flexible configuration of a distributed application's processing components, since they are not bound to any
particular operating system platform.

Note that all platform-specific information, from installation and program compiling/linking to configuration and
administration guidance, is found in the individual Platform Notes documentation that is available for each supported
platform.

1.4 Documentation Roadmap

The following publications are available to support XsIPC Version 3.4.0:

o Getting Started is a brief introduction to XsIPC . It gives the user a "fast track" to select the relevant
documentation, install the software and rapidly begin using XsIPC .

XsIPC provides network-transparent connectivity

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 1—4

1—4

o XsIPC Platform Notes provide platform-specific information regarding product installation, program
compilation, program linking and, where appropriate, configuration and administration guidance. The
supported environments are individually documented.

o XsIPC system level documentation:
♦ The XsIPC User Guide describes in detail how to employ XsIPC for distributed application development.

This document is generic in that it presents XsIPC without regard to any particular hardware platform,
operating system or network protocol. The information is presented at an XsIPC -system-level, i.e., it is
XsIPC -subsystem-independent.

♦ The XsIPC Reference Manual provides XsIPC (system level) commands, functions and macros, as well
as function calling sequences and possible return codes. Included are code segments and sample
programs.

o QueSys/MemSys/SemSys documentation:
♦ The QueSys/MemSys/SemSys User Guide describes in detail how to use these three XsIPC subsystems

for distributed application development. It includes API descriptions as well as topical presentations
on special subsystem features.

♦ The QueSys/MemSys/SemSys Reference Manual provides subsystem-level functions and macros,
interactive commands and sample programs, as well function calling sequences and possible return
codes.

o MomSys documentation:
♦ The MomSys User Guide describes in detail how to use the MomSys subsystem for distributed

application development. It includes API descriptions as well as topical presentations on special
subsystem features.

♦ The MomSys Reference Manual provides subsystem-level functions and macros, interactive commands
and sample programs, as well function calling sequences and possible return codes.

1.5 Getting Started

1.5.1 SYSTEM REQUIREMENTS

XsIPC utilizes certain native operating system resources when it is used. The quantities and sizes of these resources
are relatively small and are usually available within the standard operating system configuration. Formulae for
calculating required native resources are operating-system dependent and are described in the Platform Notes
accompanying the product.

When using XsIPC in a networking environment, certain network resources are used. The nature and quantities of
these resources are network-dependent and are outlined as well in the Platform Notes.

1.5.2 INSTALLATION

Installation is operating system and network dependent. Consult the Platform Notes for details of the installation
procedure.

XsIPC Concepts

© Envoy Technologies Inc. 2—1

2. XsIPC CONCEPTS

2.1 Interprocess Communication (IPC)

2.1.1 MULTITASKING – STAND-ALONE IPC

With the emergence of powerful microprocessors, multitasking operating environments have become increasingly
popular, most recently at the micro-computer level. This is a direct result of the increased processing power provided
by these processors. Such power is a prerequisite for an operating system performing as a multitasking scheduler.

The popularity of UNIX systems, from workstations to super-micros, the increasing acceptance of Windows NT and
Windows 95, along with the continued popularity of OS/2 and VMS, are all indicative of the movement toward
employing sophisticated multitasking programming techniques for solving increasingly complex system
requirements.

The key to such systems is Interprocess Communication. IPC is the mechanism by which multiple active tasks
dynamically synchronize and pass information between one another. IPC provides the tools for affecting process
synchronization, message passing and resource and memory sharing needed within the context of multitasking
systems.

2.1.2 DISTRIBUTED COMPUTING - NETWORK IPC

More recently, a second form of IPC requirement has grown in demand. While processing power has become less
expensive and increasingly diversified, network technologies have matured and become widespread. The
convergence of these factors has led to an upsurge in demand for distributed computing applications. Of particular
interest is the growing need for guaranteed message delivery.

Such distributed applications often have the same kinds of IPC requirements as stand-alone multitasking IPC
applications: interprocess synchronization, message passing and resource and memory sharing. The difference is
that the processes in a distributed application are not confined to one computing platform and may be spread across
a network.

2.1.3 GUARANTEED MESSAGE DELIVERY

IPC tools have facilitated the successful design and implementation of multitasking and distributed application
systems which can make possible the building of reliable, large-scale mission critical distributed applications which
demand guaranteed message delivery. The spread of these enterprise-wide applications has been accompanied by a
demand for guaranteed message delivery. As the technological environment increases in complexity, incorporating
disparate operating systems, platforms and applications, the risks associated with messaging among them has risen
dramatically. Only with guaranteed message delivery provided by IPC network tools can such environments by
operated and expanded with reliability, with the confidence that messages cannot be lost.

2.2 Why XsIPC?

A major shortcoming of earlier IPC approaches is that they reflect the state and limitations of software development
methods of a decade ago. This is most apparent in the areas of IPC software engineering techniques, IPC
functionality, IPC source code portability, network IPC transparency and system scalability.

XsIPC overcomes these problems in a consistent and cohesive manner.

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 2—2

2—2

2.2.1 XsIPC'S ADVANCED IPC SOFTWARE ENGINEERING TOOLS AND
METHODS

XsIPC provides the systems developer with a set of IPC tools and techniques that support the latest programming
methods. For instance:

o On-line monitoring and interactive debugging at the IPC level of a system's execution is not possible with
current IPC tools. XsIPC provides the developer with the ability to view, in real-time, all of his IPC
resources as they are created, manipulated and deleted–irrespective of whether the IPC activity is
occurring on a stand-alone platform or dispersed over a network.

This facility reduces time spent in testing and integration phases of a system's development. In addition, it
enhances product support efforts by providing the ability to remotely monitor live production systems in the
field if and when they exhibit problems.

o XsIPC makes it possible to develop a distributed application using a stand-alone IPC environment, and to
subsequently disperse the application's component processes to positions on a network with virtually no
IPC code modifications.

o XsIPC moves all aspects of IPC configuration and parameterization out of the kernel. Most current IPC
tools place any possible IPC parameterization together with other kernel-related parameter values. This, in
effect, forces all applications to share in the parameterization decisions and in the resulting IPC resource
allocation pools, regardless of differing and sometimes conflicting needs. And when changes are agreed
upon, they can only be affected after the kernel has been brought down, thus interrupting everyone
using the system.

The setting and tuning of IPC parameter values is done at the application level, each application according to
its own specific requirements. Concurrently active XsIPC intensive applications have no relationship with one
another and can be configured and fine-tuned individually. XsIPC monitoring and debugging is performed
and segregated on an application-dependent basis as well.

2.2.2 XsIPC'S ENHANCED IPC BASIC AND EXTENDED FUNCTIONALITY

The native IPC facilities of the various operating systems are frequently inadequate. XsIPC affords the developer a
more complete set of IPC functionality. New basic and advanced IPC features are provided. A few examples follow.

♦ XsIPC provides guaranteed message delivery––assuring that no message can be lost–– to support the demands
of today’s large-scale, mission-critical, globally distributed applications.

♦ The queue system provides individualized queue sizing in terms of bytes and/or messages, thus allowing for
throttling of message-producing tasks. Automatic spooling for overflowing queues is also provided as an option
in order to avoid losing peak-period messages.

♦ Atomic operations involving multiple queues provide the multiplexing functionality often needed for building
complex systems such as transaction processing monitors. Messages designated "oldest,” "youngest,”
"highest-priority,” etc., can be retrieved atomically from groups of queues.

♦ XsIPC’ s fully functional queue system eliminates the shortcomings of some of the underlying native IPC facilities.
For example, queue ownership restrictions inherent in OS/2 are removed.

♦ Additional XsIPC functions include a comprehensive implementation of event and resource semaphores. Multiple
semaphores can be operated on in single XsIPC operations thus allowing for a variety of waiting and acquiring
alternatives ("any,” "all-atomic,” "all-cumulative").

♦ XsIPC’ s shared memory system provides for memory read-and-write locking and protection at the byte level. This
too is unique to XsIPC.

XsIPC Concepts

© Envoy Technologies Inc. 2—3

XsIPC additionally supports synchronous and asynchronous operations. XsIPC also supports asynchronous triggers
that monitor specific aspects of an application's IPC environment (e.g., queue "xyz" rises above 90% capacity).

Many more enhancements exist and are described in their appropriate sections below.

The wide array of additional XsIPC functional capabilities elevates the task of system design to a higher and more
abstract level. The difficult job of reducing complex system requirements to meet the low-level realities of native IPC
functionality is significantly alleviated.

2.2.3 XsIPC'S IMMEDIATE INTER-OPERATING SYSTEM IPC SOFTWARE
PORTABILITY

The API used to access XsIPC is independent of the host operating system. Thus, the IPC components of a system
written using XsIPC are immediately portable from one operating system to another.

The most difficult part of porting an application between operating systems is often the IPC portion. This is due to
the gross dissimilarities in functionality, calling sequences and underlying IPC methodologies employed by the
operating systems involved. Bridging these differences frequently requires extensive modifications to the code and
sometimes a total redesign. In such cases, multiple versions of source code have to be maintained and kept in sync.

In contrast, portable IPC code is an immediate by-product of using XsIPC. . The benefits are manifold:

o There is no need to maintain multiple versions of a multi-platform application's source code, or to edit the
source code for porting. The cost of version control is significantly reduced.

o System architects can design multiple-platform applications based on the application's requirements, rather
than according to the lowest common denominator IPC constraints of the specific platforms involved.

o In-house expertise of the native IPC facilities for each operating system is no longer necessary. Training
new programmers in IPC coding is performed once, regardless of the operating system to be used.

2.2.4 XsIPC'S NETWORK IPC TRANSPARENCY

XsIPC presents a uniform approach for handling both stand-alone and distributed forms of IPC. Processes
synchronize, communicate and share data with one another using the same set of function calls whether they are on a
single multitasking platform or distributed over a network of heterogeneous platforms .

The resulting benefits for the developer are:

o Full XsIPC functionality is extended transparently across a network.

o The need for network programming expertise is eliminated.

o Operating system differences are no longer an IPC concern.

o Network protocols are no longer an IPC concern.

o Stand-alone multitasking IPC applications can be distributed over a network with virtually no code
modifications.

The XsIPC Platform Environment and its Configuration

© Envoy Technologies Inc. 3—1

3. THE XsIPC PLATFORM

Before a computer platform can be used for supporting XsIPC activity, the appropriate underlying XsIPC environment
must first be established on that platform. This environment is referred to as the “XsIPC Platform Environment.” This
section discusses the following aspects of the XsIPC Platform Environment:

• Function of the XsIPC Platform Environment
• XsIPC Platform Environment Configuration
• XsIPC Platform Environment Commands

3.1 Function of the XsIPC Platform Environment

As stated above, a computer platform that is to support any form of XsIPC activity must first have its XsIPC platform
environment started. A platform’s XsIPC environment encompasses a number of background processes as well as
underlying system data structures.

The XsIPC platform environment is the infrastructure used to support all XsIPC activity on that platform.
Components within the XsIPC platform environment include:

• an internal XsIPC instance that is used by XsIPC for supporting internal interprocess communication within the
platform

• a number of XsIPC daemon/service programs that operate in the background for supporting various XsIPC -
related functions, such as: catalog and namespace services, asynchronous operation services, idle-user
detection services, etc.

3.2 XsIPC Platform Configuration

The XsIPC platform environment must be properly configured in order for XsIPC -based applications running on the
platform to operate properly. This configuration is based on a single configuration file, called xipc.env. The
xipc.env file is read by an XsIPC utility command, xipcinit, to start the XsIPC platform envuironment. The
xipcinit command reads the parameter definitions contained within the xipc.env file for setting up the XsIPC
platform environment. (The location and contents of the xipc.env file will be discussed below.)

The xipc.env file supports a set of parameter definitions that describe the nature of the XsIPC platform
environment that will be started. Some of these parameters will be described in the following sections. The complete
list of parameter sections, parameter names and possible parameter values are listed on the XsIPC Reference Manual
page for the xipcinit command.

3.2.1 XsIPC PLATFORM CLASSIFICATION

There are two general forms of XsIPC platform configurations: “XsIPC Server Platform Configuration” and “XsIPC
Client Platform Configuration”. These are now described.

3.2.1.1 XsIPC Server Platform Configuration

A computer platform which will be used for supporting one or more XsIPC instances is referred to as an “XsIPC
Server Platform.”

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 3—2

3—2

The two typical situations where server platform configuration is required are as follows:

• In configuring an XsIPC platform that will host an XsIPC instance that is to be accessed by local and/or

remote QueSys / MemSys / SemSys users, as depicted in the following diagram:

• In configuring an XsIPC platform that will be used as part of a MomSys application, as depicted

in the following diagram:

Note that programs employing the MomSys subsystem require a local XsIPC instance to be active for supporting
the MomSys activity. Hence, MomSys users must configure all involved computer platforms as XsIPC server
platforms.

The xipc.env file for such a configuration requires that all XsIPC services/daemons be started on that platform.
This is the default behavior for an xipc.env file that does not specify the START parameter within the file’s
[xipcinit] section. A default xipc.env file for an XsIPC server configuration has the following contents:

Q
S
M

Remote
User
Progra
m

XsIPC Instance

Remote
User
Progra
m

Local
User
Progra

XsIPC Instance

MomSys
User
Program

XsIPC Instance

MomSys
User
Program

[xipcinit]

[catalog]

[catalog.tcpip]

Default XsIPC Server Platform Configuration (xipc.env)
File

The XsIPC Platform Environment and its Configuration

© Envoy Technologies Inc. 3—3

3.2.1.2 XsIPC Client Platform Configuration

A computer platform that will not support any XsIPC instances is referred to as an “XsIPC Client Platform.” Thus, for
example, a platform that is to be used for supporting QueSys / MemSys / SemSys programs that access remote XsIPC
instances exclusively may be configured as an XsIPC client platform.

The xipc.env file for such a configuration requires that a limited subset of XsIPC daemon/service programs be
started on that platform. This is specified via the START parameter within the xipc.env file’s[xipcinit]
section. An example of such a file is as follows:

Where the platform will not employ any of XsIPC ’s asynchronous functionality, the xipciad name can be deleted
from the START parameter. In such a case, the START parameter should appear with no values assigned to it, as
follows:

User
Progra
m

User
Progra
m

User
Progra

Login to remote
XsIPC instance

Login to remote
XsIPC instance

Login to remote
XsIPC instance

[xipcinit]
START xipciad # Only starts this program.

[catalog]

[catalog.tcpip]

Typical XsIPC Client Platform Configuration (xipc.env) File

[xipcinit]
START # Has no parameters. Starts no background programs.

[catalog]

[catalog.tcpip]

XsIPC Client Platform Configuration (xipc.env) File supporting no asynchronous
functionality or catalog access.

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 3—4

3—4

3.3 XsIPC Platform Commands

The two XsIPC commands that initialize and terminate a platform’s XsIPC platform environment are xipcinit and
xipcterm, respectively. These commands make particular use of the XIPCROOT environment variable that must be
defined in order for them to function.

3.3.1 THE XIPCROOT ENVIRONMENT VARIABLE

When XsIPC is started on a platform--via the xipcinit command--XsIPC sets up its internal platform environment
for supporting all subsequent XsIPC activity on that platform. As part of this initialization, xipcinit reads the
xipc.env platform configuration file to ascertain which platform-wide resources need to be set up. The location of
the xipc.env file is defined by the XIPCROOT environment variable. If XIPCROOT is not set, or if it is set, but
points to a directory/folder having no xipc.env file, the xipcinit command will fail.

xipcinit's work includes the creation of a number of scratch-pad files within the XIPCROOT directory. As such,
the XIPCROOT directory must be situated within a writeable area of the file-system.

The XIPCROOT environment variable typically has a second function: defining for xipcinit where to find the
installed XsIPC product. Thus, xipcinit uses the value of XIPCROOT to find the product's bin directory for
starting internal processes that are installed therein.

Typically, these two roles of XIPCROOT:

♦ identifying the directory in which xipcinit will find the xipc.env file and in which it will create scratch- pad
files, and

♦ identifying the location of the installed XsIPC product

are addressed in a unified manner. In such a case, XIPCROOT is set pointing to the installation directory in which
the xipc.env file is positioned and in which xipcinit creates scratch-pad files. This is depicted in the above
diagram.

XsIPC Installation
Directory/Folder

…xipc.env
…scratch-pad
files
…bin/
…include/
…lib/
…samples/
…log/

XIPCROOT

The XsIPC Platform Environment and its Configuration

© Envoy Technologies Inc. 3—5

Occasionally, it is desired to have the XsIPC product installed in an area of the file system that is read-only. In this
case, it is undesirable (and, in fact, impossible) for xipcinit to use the installation directory for its scratch-pad
files.

The prescribed approach, therefore, is to move the xipc.env file and the log directory to a writeable directory and
set XIPCROOT pointing there. xipcinit now knows where to find xipc.env and where to do scratch-pad file
work, when invoked. xipcinit must still, however, be guided to the XsIPC installation directory, which is
elsewhere (in a read-only directory); this is accomplished by adding, within the [xipcinit] section of the
xipc.env file, the XIPCPATH parameter set with the directory path of the installed XsIPC product. This is
depicted in the following diagram:

3.3.2 THE xipcinit COMMAND

The xipcinit command is used for initializing the XsIPC platform environment. xipcinit must be the first
XsIPC command issued on the platform when the platform is started. xipcinit reads the xipc.env file and sets
up all internal structures and background processes needed for supporting XsIPC activity on the platform, based on
the file’s parameter settings.

xipcinit requires the setting of the XIPCROOT environment variable as described above. It takes no arguments.
See the XsIPC Reference Manual for parameter guidelines.

XIPCROOT

XsIPC Installation
Directory/Folder

…bin/
…include/
…lib/
…samples/

…xipc.env
…scratch-pad files
…log/

[xipcinit]
XIPCPATH # set this parameter to point to the
 # XsIPC installation directory/folder

[catalog]

[catalog.tcpip]

Platform Configuration (xipc.env) File

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 3—6

3—6

3.3.3 THE xipcterm COMMAND

A bracketing command, xipcterm, is used to terminate the XsIPC environment on a given platform. xipcterm
should be the last XsIPC command issued when the platform is stopped. xipcterm closes all internal structures and
background processes needed for supporting XsIPC activity on the platform.

xipcterm takes no arguments, but it too requires the XIPCROOT environment variable to be set.

Refer to the XsIPC Reference Manual for details on xipcinit, xipcterm and for information about the
parameters that may be defined within the xipc.env file. The XIPCROOT environment variable is defined as well
in the same Reference Manual.

3.4 XsIPC Logging

There are two types of logging relevant to XsIPC : Platform Environment Logging and Instance Logging.
Descriptions follow.

3.4.1 PLATFORM ENVIRONMENT LOGGING

XsIPC ‘s platform environment generates a set of log files containing information about the activities occurring within
the XsIPC platform environment. These log files are generated within the XsIPC platform’s log directory (i.e., the log
directory/folder within the directory/folder pointed at by the XIPCROOT environment variable. Refer to the diagrams
earlier in this section.)

These log files are actually divided into two groups:

• The single XsIPC system summary log file - xipcsys.log

• Individual log files for each of the platform-level background service/daemon programs

3.4.1.1 XsIPC System Summary Log File – xipcsys.log

The xipcsys.log file provides a high-level running summary of XsIPC activity occurring on a platform. Included
within this file are entries such as:

• “xipcinit has initialized the platform environment”
• “xipcterm has terminated the platform environment”
• “User xipc instance … was started”
• “User xipc instance … was stopped”

The xipcsys.log file will also include reports of high-level warnings or errors occurring within other XsIPC
components. As such, the xipcsys.log file is the central repository of overall XsIPC activity occurring on a
platform; it should be examined first when tracking down suspected problems.

3.4.1.2 Background Service/Daemon Logging

Each background service/daemon program may log errors and warnings specific to its function within a log file
specific to it. As with the xipcsys.log file, these log files are generated within the platform's log directory.
These files follow the naming convention <ProgramName>.log. For example, the xipcisd background program
generates the xipcisd.log file.

The XsIPC Platform Environment and its Configuration

© Envoy Technologies Inc. 3—7

3.4.2 INSTANCE LOGGING

A second form of logging occurs at the XsIPC instance level and, then, only within instances running the MomSys
subsystem. In this case, a series of log files, specific to the MomSys subsystem of that instance, are generated in the
instance’s anchor directory/folder (i.e., the directory/folder in which the instance’s configuration file is situated).

Assuming that the instance’s configuration file was named test.cfg, then the generated MomSys log files will
have names such as: test.SSS, test.MRI, test.MRO, test.CSI, test.CSO and test.CLK,
corresponding to the internal components of the instance’s MomSys subsystem.

XsIPC Instances

© Envoy Technologies Inc. 4—1

4. XsIPC INSTANCES

4.1 What is an XsIPC Instance?

An important XsIPC concept is that of an instance. An XsIPC instance is an environment for doing XsIPC work. An
XsIPC instance is comprised of one or more of XsIPC ‘s subsystems: MomSys, QueSys, SemSys and MemSys.

In the case of QueSys, SemSys and MemSys, an XsIPC instance is the true hub of XsIPC activity; it is in this context
that instances are discussed here.

In the case of MomSys, instances serve as gateways to route messaging activity; MomSys’ utilization of instances
is discussed at greater length in the MomSys documentation.

In general, the reader should refer to the respective subsystem manuals for further information on the establishment
and use of instances and for all other subsystem-specific details.

XsIPC instances are typically utilized on an application-by-application basis, with instances defined to meet the
specific IPC requirements of a given application and configured to optimize IPC performance of the application.

In short, an XsIPC instance is an IPC environment tailored to the specific needs of an application and its programs
that will use it.

4.2 Defining an XsIPC Instance

An XsIPC instance is defined via an XsIPC instance configuration file. An instance configuration file is a flat ASCII file
containing the parameterization definitions that describe the XsIPC instance. XsIPC instance configuration file names
have the form:

<InstanceFileName>.cfg

Examples for various platforms:

frontend.cfg stress.cfg userdisk:[email]production.cfg

/usr/demo.cfg tpsys.cfg

/tmp/test.cfg c:\appls\transact.cfg

The maximum length of InstanceFileName depends on the host operating system's file naming rules.

4.3 Configuration (.cfg) Files

An XsIPC configuration file (.cfg file) completely describes an XsIPC instance. As such, it contains all necessary
information needed to describe and parameterize the instance.

The configuration file is comprised of separate sections for each of the XsIPC subsystems. The sections contain the
definitions and parameters specific to that subsystem. An additional section is required for instances that will be
used in a network environment.

The order of the sections is insignificant. Blank lines and comments are ignored. Comment lines can be started using
almost any non-alphanumeric character. Comments can also occur in lines following any parameter definition. The
exact details of the syntax are specified in the XsIPC Reference Manual, as well as in the individual subsystem
manuals.

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 4—2

4—2

The sample configuration file below defines an XsIPC instance for an E-Mail application having an Instance File Name
of /usr/email. It references the QueSys, MemSys and SemSys subsystems, whose documentation should be
referred to for further information.

A transaction processing application would likely define its own IPC environment separately, in a different
configuration file, perhaps named tpsys.cfg. Certain supported operating systems require additional operating
system specific parameters to be specified within their configuration files. These parameters (if any) are listed and
described in the Platform Notes for the respective platforms.

#==

File: /usr/email.cfg
Created: May 22, 2001

#--

This XIPC instance is used for demonstrating the basic
functions of our E-Mail application. Various limitations are
imposed on system capacity since it is a demo.

#--

[SEMSYS]
MAX_SEMS 10 # the demo system uses 10 semaphores.
MAX_USERS 10 # five programs plus expected async activity.
MAX_NODES 50 # general formula given in Reference Manual.

[QUESYS]
MAX_QUEUES 20 # never needs more than 20 queues.
MAX_USERS 10 # programs plus expected async activity.
MAX_NODES 50
MAX_HEADERS 100 # worst case: assuming heavy traffic.
SIZE_MSGPOOL 48 # worst case: assumes download activity.
SIZE_MSGTICK 64 # smallest message is 64 bytes.
SIZE_SPLTICK 128

[MEMSYS]
MAX_SEGS 15 # depends on length of demo.
MAX_USERS 10 # programs plus expected async activity.
MAX_NODES 50
MAX_SECTIONS 100
SIZE_MEMPOOL 32 # must not be less than 16 K for demo.
SIZE_MEMTICK 256 # smallest segment to be used.

[REMOTE_USER]
MAX_TEXTSIZE 1024

#==

XsIPC Instances

© Envoy Technologies Inc. 4—3

4.4 Defining An Instance Having A Null Subsystem

In some situations it may be desirable to define an XsIPC instance that supports a subset of XsIPC 's subsystems. For
example, one applications may require an instance that only uses QueSys message queuing, while a second
application may have the need for an instance that supports semaphores and shared memory.

For addressing these situations, the developer can define an instance that has a subset of its subsystems
designated as null. Such an instance will support only those IPC services corresponding to the subsystems that are
defined. Attempts to issue XsIPC operations using the services of the null-defined subsystems are returned as an
error.

#==

File: /usr/subset1.cfg
Created: May 22, 2001

#--

This XIPC instance demonstrates configuring an instance that
has no QueSys (or MomSys) subsystems.

#--

[SEMSYS]
MAX_SEMS 10
MAX_USERS 10
MAX_NODES 50

[MEMSYS]
MAX_SEGS 15
MAX_USERS 10
MAX_NODES 50
MAX_SECTIONS 100
SIZE_MEMPOOL 32
SIZE_MEMTICK 256

[REMOTE_USER]
MAX_TEXTSIZE 1024
#==

The above instance is defined to have a null QueSys (and a null MomSys), simply by virtue of omitting them as
section headers.

It is important to bear in mind that if a subsystem is defined as null within an instance, then no XsIPC operations of
that nature are possible within that instance. As an example, in the above defined instance, it would be an error to
issue a QueSys or MomSys command.

The advantage of using a null subsystem is that doing so reduces the memory size of an instance (i.e., the amount of
native shared memory required by XsIPC for supporting the instance).

4.5 XIPCROOT

XIPCROOT is the platform directory environment variable. It is required in all cases, for stand-alone, local and
network instances alike.

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 4—4

4—4

When XsIPC is started on a platform--via the xipcinit command--XsIPC sets up its internal platform environment
for supporting all subsequent XsIPC activity on that platform. As part of this initialization, xipcinit reads the
xipc.env platform configuration file to ascertain which platform-wide resources need to be set up. The location of
the xipc.env file is defined by the XIPCROOT environment variable. If XIPCROOT is not set, or if it is set, but
points to a directory/folder having no xipc.env file, the xipcinit command will fail. See chapter 3 for a more
detailed description.

4.6 Starting an XsIPC Instance

An XsIPC instance must be started before it can be used. (And, recall that the XsIPC platform configuration
environment must be initialized using xipcinit before any XsIPC activity can be initiated.). This is accomplished
using the xipcstart command. xipcstart starts an XsIPC instance. Its argument is the instance
configuration file name of the instance to be started––or to be more precise, the full or relative path name of the
instance configuration file excluding the .cfg suffix.

Consider the following UNIX example:

xipcstart /projects/local/tpsys

Programs attempting to use an instance that has not been started will receive an error code indicating the problem.
This will be elaborated on in the discussion of "login" functions below.

The Instance File Name can be omitted from the command line. In such a case, xipcstart uses the value of the
XIPC environment variable as the Instance File Name of the instance to start.

Starting an instance that is to be used in a network environment requires an additional command argument. This is
described in the XsIPC Reference Manual.

As described in the Advanced Topics section of this User Guide, an instance can also be started under program
control.

4.6.1 TEST STARTING AN INSTANCE

xipcstart, when executed, generates a report that specifies the amount of native operating system memory
resources required by the instance.

It is possible to have xipcstart run in test mode, so that it produces a report indicating the memory resources
that would be required by the instance, had the instance actually been started, and to not actually start the instance.
This mechanism is useful for scoping the size of an instance before it is actually started. The test flag (-t) directs
xipcstart to produce a test report regarding an instance.

Examples:

xipcstart /projects/local/tpsys -t

4.7 Stopping an XsIPC Instance

An XsIPC instance is stopped using the xipcstop command. xipcstop terminates an active instance, and
releases all resources associated with that instance. Its argument is the Instance File Name of the instance to be
stopped.

XsIPC Instances

© Envoy Technologies Inc. 4—5

Example:

xipcstop /projects/local/tpsys

The above command stops the XsIPC instance that had been started using the Instance File Name shown (tpsys).
Programs requiring the instance's XsIPC facilities can no longer be run.

Programs still using an instance at the time that it is stopped receive an error code indicating the stoppage of the
instance.

Here, too, the Instance File Name can be omitted from the command line. In such a case, xipcstop also uses the
value of the XIPC environment variable as the Instance File Name of the instance to stop.

As described in the Advanced Topics section of this book, an instance can also be stopped under program control.

4.8 User-Controlled Configuration

As we have seen, each XsIPC instance is individually configured by the user, without the need to modify the
operating system kernel parameters.

This has a number of obvious advantages:

o Each application's XsIPC environment can be configured and optimized according to its own specific IPC
needs.

o XsIPC configurationchanges can be applied without affecting the XsIPC instances of other applications.

o Special XsIPC instances can be devised for testing various aspects of an application's performance. Such
test instances can be used to verify the correctness of special case logic within a system by artificially
forcing those special situations to "occur." Examples include borderline testing (e.g., insufficient message
headers: create an instance with an artificially low number of headers), and stress testing (e.g., insufficient
shared memory space: create an instance having an artificially small-sized MemSys). In this manner,
obscure paths in a system's code can be thoroughly tested.

o Production copies of a system can be individually tailored for different customer and/or site requirements,
without the need to modify the kernel at each site.

4.9 Multiple XsIPC Instances

XsIPC permits multiple instances to be started and to exist concurrently. In this manner it is possible to have multiple
applications running, each involved with its own XsIPC instance. Multiple active XsIPC instances are completely
segregated from one another.

The ability to define and start multiple XsIPC instances provides significant software management, development and
maintenance benefits:

o It is easy to segregate projects and applications running on a single processor or over a network. Using
XsIPC instances, the IPC resource requirements of each application are drawn from the application's own
local private pool of IPC resources, instead of from some operating system's global pool of IPC resources.
This ensures IPC resource availability for each application, without the need to constantly monitor the
system-wide IPC pool for usage and contention.

o It is possible to run development and production versions of a system concurrently on a single processor
or network. Development and support can occur side-by-side on one machine or network without any
compromises or special adjustments.

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 4—6

4—6

o XsIPC instances are independent of one another. Distinct instances for each application lighten the
management task of allocating IPC resource identifiers. As an example, each application can create and use
its own Test_Queue without ever colliding with some other application's identically named queue.

o Finally, the segregation of instances guarantees that the activities within one instance have no impact on
another. For example, debugging of problems in one instance (perhaps due to abusive use of XsIPC
resources) has no effect on other active XsIPC instances.

4.10 Stand-Alone Instances
An XsIPC instance can be confined to a single processor in one of two ways. One approach is to start such an
instance as a stand-alone instance. (The second approach, using a local instance, is described in the next section.

A stand-alone instance defines an XsIPC environment that is accessible by local processes only. Processes on other
machines have no access to such an instance.

Because an XsIPC /stand-alone instance is not named or registered in any manner within any XsIPC naming catalog, it
is ideal for establishing an XsIPC instance that is:

• inaccessible from any remote node

• invisible (except to programs that use it) within the node on which it is running

• used by intra-nodal XsIPC applications where no networking is involved.

4.10.1 INSTANCE NAMING

As was shown above, an instance that is local to one machine is identified by its instance configuration file name.

Example:

xipcstart /home/sys/email

The above command starts the instance described by the "/home/sys/email.cfg" file. Had the "email.cfg" file been in
the current directory, the following command would have had the same effect.

Example:

xipcstart email

Each active instance is anchored to its host platform through its instance configuration file.

4.10.2 CONFIGURATION

The basic configuration sections [XIPC], [MOMSYS], [SEMSYS], [QUESYS] and [MEMSYS], as
described in the respective subsystem Reference Manuals, are sufficient for starting a stand-alone instance. If a
[REMOTE_USER] (formerly [NETWORK]) section appears in the instance configuration file, it is ignored.

4.10.3 ENVIRONMENT

The only environment variables used in conjunction with a stand-alone XsIPC instance are XIPCROOT, which is
required at all times, and XIPC. When set, XIPC is assumed to contain the Instance File Name of the instance to be
worked with. XsIPC commands requiring an Instance File Name as an argument refer to the XIPC environment
variable when the Instance File Name argument is omitted from the command invocation.

XsIPC Instances

© Envoy Technologies Inc. 4—7

4.10.4 STAND-ALONE COMMANDS

The following commands are used to start, stop and view an XsIPC stand-alone instance. .

4.10.4.1 xipcstart

xipcstart is used without the “-l” flag or "-n" flag which denote local or network instances. The instance started
is based on the Instance File Name specified as an argument. If no Instance File Name argument is given,
xipcstart uses the value of the XIPC environment variable.

4.10.4.2 xipcstop

The instance stopped is based on the Instance File Name specified as an argument. If no Instance File Name
argument is given, xipcstop uses the value of the XIPC environment variable.

4.10.4.3 momview, queview, memview and semview

The instance monitored is based on the Instance File Name specified as an argument. If no Instance File Name
argument is given, the monitor program uses the value of the XIPC environment variable.

4.10.5 PROGRAMMING TO ACCESS A STAND-ALONE INSTANCE

4.10.5.1 Environment

The XIPCROOT environment variable is required by programs that access a stand-alone XsIPC instance.

4.10.5.2 Logging into a Stand-Alone Instance

The XipcLogin() function identifies the target local instance by means of its Instance File Name.

Example:

XipcLogin ("/home/sys/email", "startup");

4.10.5.3 Program Linking

Programs that are to access a stand-alone XsIPC instance may be linked using either the XsIPC Stand-Alone library or
the XsIPC Combined library. The topic of library selection is discussed in detail in the Advanced Topics section of
this Guide.

4.11 Local Instances

An XsIPC /local instance is an XsIPC instance that is named, but whose name is only visible within the bounds of the
node on which it is started.

An XsIPC /local instance is ideal for establishing an XsIPC instance that is:

• inaccessible from any remote node

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 4—8

4—8

• accessible within its platform in an operating system transparent manner (i.e., by its name)

• used to advantage by MomSys programming because that environment most often invokes processes
logging into instances on the local node.

Such an instance may be accessed either by its local name (@InstanceName) or by its Instance File Name.

An instance is given its local characteristic at instance start time. An added argument is specified as part of the
xipcstart command that gives the instance its Instance Local Name . This argument is specified using a "-l" flag.

Example:

xipcstart /usr/demo -lLocalDemo

The above command starts an instance defined by the /usr/demo.cfg instance configuration file, and attaches the
"LocalDemo" local name to it. By binding a local name to an instance, the instance becomes inaccessible from any
remote node and accessible only within its platform. It may be accessed either by its local name (@LocalDemo) or
by its Instance File Name (/usr/demo).

The details of starting, stopping and working within a network instance are given in the Advanced Topics section of
this Guide.

4.11.1 INSTANCE NAMING

An instance is given its local characteristic at instance start time. An argument specified as part of the xipcstart
command assigns an Instance Local Name to the instance. The local name is specified using the "-l" flag as follows:

xipcstart /home/sys/email -l EMail

A local instance can also be named by setting the LOCALNAME parameter in the configuration file. (This is
described in the XsIPC Reference Manual.)

If no naming parameters are specified, the instance is started as a stand-alone instance with no registered name.

4.11.2 CONFIGURATION

The basic configuration sections [XIPC], [MOMSYS], [SEMSYS], [QUESYS] and [MEMSYS], as
described in the respective subsystem Reference Manuals, are sufficient for starting a local instance. If a
[REMOTE_USER] (formerly [NETWORK]) section appears in the instance configuration file, it is ignored.

4.11.3 ENVIRONMENT

The only environment variables used in conjunction with a local XsIPC instance are XIPCROOT, which is required at
all times, and XIPC. When set, XIPC is assumed to contain the Instance Local Name of the instance to be worked
with. XsIPC commands requiring an Instance Local Name as an argument refer to the XIPC environment variable
when the Instance Local Name argument is omitted from the command invocation.

4.11.4 LOCAL COMMANDS

The following commands are used to start, stop and view an XsIPC local instance.

XsIPC Instances

© Envoy Technologies Inc. 4—9

4.11.4.1 xipcstart

xipcstart is used with the “-l” flag which denotes a local instances. The instance started is based on the Instance
Local Name specified as an argument. If no Instance Local Name argument is given, xipcstart uses the value of
the XIPC environment variable. Some examples follow:

xipcstart /home/sys/email -l EMail

xipcstart -lEMail /home/sys/email

xipcstart -l EMail /home/sys/email

4.11.4.2 xipcstop

The instance stopped is based on the Instance Local Name specified as an argument. If no Instance Local Name
argument is given, xipcstop uses the value of the XIPC environment variable. An examp le follows:

xipcstop /home/sys/email

4.11.4.3 momview, queview, memview and semview

The instance monitored is based on the Instance Local Name specified as an argument. If no Instance Local Name
argument is given, the monitor program uses the value of the XIPC environment variable.

4.11.5 PROGRAMMING TO ACCESS A LOCAL INSTANCE

4.11.5.1 Environment

The XIPCROOT environment variable is required by programs that access a local XsIPC instance.

4.11.5.2 Logging Into a Local Instance

An XipcLogin() function call that is targeting a local instance specifies the instance by its local name with an "@"
prefixed to it.

Example:

XipcLogin ("@EMail", "InitPgm");

In the above example, a program identifying itself as "InitPgm" logs into the local instance "EMail."

4.11.5.3 Program Linking

Programs that are to access a local XsIPC instance may be linked using the XsIPC Combined library. The topic of
library selection is discussed in detail in the Advanced Topics section of this Guide.

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 4—10

4—10

4.12 Network Instances

An XsIPC instance that is to support processes which access it over a network is called a network instance.

An XsIPC /network instance is ideal for establishing an instance that:

• must be accessed in a network-transparent manner across the network

• is used, therefore, to advantage by QueSys, SemSys and MemSys programming, where network-
transparent access to an instance is a primary feature

An instance is given its network characteristic at instance start time. An added argument is specified as part of the
xipcstart command that gives the instance its Instance Network Name . This argument is specified using a "-n"
flag.

Example:

xipcstart /usr/demo -nNetDemo

The above command starts an instance defined by the /usr/demo.cfg instance configuration file, and attaches the
"NetDemo" network name to it. By binding a network name to an instance, the instance becomes accessible to
processes across the network. They will refer to the instance by the instance's network name "NetDemo.”

The details of starting, stopping and working within a network instance are given in the Advanced Topics section of
this Guide.

4.12.1 INSTANCE NAMING

An instance that is defined across a network in order to provide XsIPC services between processes spread over the
network is called a network instance.

An instance is given its network characteristic at instance start time. An argument specified as part of the
xipcstart command, assigns an Instance Network Name to the instance. The network name is specified using
the "-n" flag as follows:

Example:

xipcstart /home/sys/email -nEMail

The above command starts the instance defined by the "/home/sys/email.cfg" instance configuration file, and
attaches the "EMail" network name to it. By binding a network name to an instance, the instance becomes accessible
to processes across the network. They refer to the instance by its network name ("EMail").

A network instance can also be named by setting the NETNAME parameter in the configuration file. (This is
described in the XsIPC Reference Manual.)

If no naming parameters are specified, the instance is started as a stand-alone instance with no registered name.

An Instance Network Name can be any ASCII string up to 255 characters in length.

4.12.2 CONFIGURATION

A configuration file that is to be used as part of a network instance requires the inclusion of a [REMOTE_USER]
(formerly [NETWORK]) section, in addition to the basic subsystem sections being used.

XsIPC Instances

© Envoy Technologies Inc. 4—11

4.12.3 NETWORK INSTANCE LOCATION

When working within an XsIPC /Network environment, it is possible to have multiple instances concurrently active on
the network. Each active instance is physically located on the network node where it was started.

It is possible to have some nodes supporting more than one instance and others supporting no instances.

Of course, processes using a network instance have no concern for the instance's physical location since they refer
to the instance by its network name.

4.12.4 NETWORK INSTANCE SEARCH RANGE

XsIPC commands and programs working within a network instance locate the physical position of the target instance
as part of their instance login procedure. The range of machines searched is referred to as the instance search range.

The instance search range can be set in one of three ways:

o By explicitly specifying the instance’s node name in the XipcLogin() call (demonstrated below).

o By specifying the name of one or more hosts (network nodes) where the instance should be searched for
via the XIPCHOST and XIPCHOSTLIST environmental variables.

o By specifying the name of one or more Catalog Nodes where XsIPC maintains a catalog of network
instances, via the XIPCCAT and XIPCCATLIST environmental variables.

Controlling the search range is accomplished using the following environment variables: XIPCHOST,
XIPCHOSTLIST, XIPCCAT and XIPCCATLIST. Each program can set and control its own search range, using
these variables. The order in which instance search range specification parameters are used follows:

1. The XIPCHOST environment variable.

2. The XIPCHOSTLIST environment variable.

3. The XIPCCAT environment variable.

4. The XIPCCATLIST environment variable.

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 4—12

4—12

When more than one search specification is present, XsIPC uses the first one in the order listed above and ignores
the rest. (These environment variables are discussed below.)

4.12.5 SPECIFYING A NODE NAME IN XIPCLOGIN()

When invoking the XipcLogin() verb to log into a network instance, you can specify the specific node name where
the instance resides.

In the following example, the process logs into network instance “ServerInstance” on node “sneezy.”

RetCode = XipcLogin("@sneezy:ServerInstance", "George");

4.12.6 THE XIPCHOST ENVIRONMENT VARIABLE

When the XIPCHOST environment variable is set, it is assumed to contain a list of node names (separated by white
spaces, commas, colons or semicolons) that should be the target of instance searches. Instance searching is limited
to those listed nodes, in the order listed.

Example:

XIPCHOST=sneezy:dopey:sleepy

4.12.7 THE XIPCHOSTLIST ENVIRONMENT VARIABLE

When the XIPCHOSTLIST environmental variable is set, it is assumed to contain the path name of a file in which a
list of node names appears, one name per line. Instance searching is limited to those listed nodes, in the order listed.

4.12.8 THE XIPCCAT ENVIRONMENT VARIABLE

When the XIPCCAT environment variable is set, it is assumed to contain a list of Catalog Node names that should
be queried for the instance discovery.

4.12.9 THE XIPCCATLIST ENVIRONMENT VARIABLE

When the XIPCCATLIST environmental variable is set, it is assumed to contain the path name of a file in which a
list of Catalog Node names appears, one name per line. The catalog nodes should be queried for instance discovery.

4.12.10 INSTANCE SEARCH RANGE SPECIFICATION PRECEDENCE

The following list describes the order of precedence in which instance search range specification parameters are
used:

1. Node name specification in the XipcLogin() verb.

2. The environment variable XIPCHOST.

3. The environment variable XIPCHOSTLIST.

4. The environment variable XIPCCAT.

XsIPC Instances

© Envoy Technologies Inc. 4—13

5. The environment variable XIPCCATLIST.

When more than one search specification is present, XsIPC uses the first one in the order listed above and ignores
the rest.

4.12.11 NETWORK COMMANDS

The following commands are used to start, list, stop and view instances in a networked environment.

4.12.11.1 xipcstart

Starting an instance that is to be used over a network requires that an Instance Network Name be specified as part of
the xipcstart command.

Example:

xipcstart /home/sys/email -n EMail

The above command starts an instance defined by the "/home/sys/email.cfg" instance configuration file and attaches
"EMail" to it as its Instance Network Name.

Other possible forms of the same command include:

Example:

xipcstart /home/sys/email -nEMail

xipcstart -nEMail /home/sys/email

xipcstart -n EMail /home/sys/email

Were an XIPC environment variable set to "/home/sys/email," then the command could have been reduced to:

xipcstart -nEMail

The specified Instance Network Name must be unique within the prescribed search range.

When xipcstart is invoked with the "-n" flag for starting a network instance, it searches the network for the
existence of an active instance having the specified network name. If such an instance is found, the xipcstart
command fails.

It is also possible to start an instance from under program control, using the XipcStart() function call. This function is
described in the Advanced Topics chapter of this Guide and in the XsIPC Reference Manual.

4.12.11.2 xipclist - Listing Active Network Instances

It is occasionally important to know which network instances are active and where they are physically located.
xipclist serves that purpose. It lists all active instances in the defined search range.Example:

xipclist

If a machine name is specified as an argument, then xipclist reporting is limited to that machine. In such a case,
the search range is ignored.

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 4—14

4—14

Example:

xipclist nodeA

4.12.11.3 xipcstop

The xipcstop command for stopping a network instance is identical to the command for stopping a local or stand-
alone instance. Its lone argument is the Instance File Name of the instance being stopped.

Example:

xipcstop /home/sys/email

Of course, the Instance File Name can be omitted, in which case the value of the XIPC environment variable is used.

It is also possible to stop an instance from under program control, using the XipcStop() function call. This function is
described in the Advanced Topics chapter of this Guide and in the XsIPC Reference Manual.

4.12.11.4 momview, queview, memview and semview

The syntax for starting the XsIPC monitors is unchanged when monitoring a network instance. No reference is made
of the instance's network name. Its lone argument is the instance configuration file name of the instance being
monitored.

Example:

queview 250 /home/sys/email

Here, too, the Instance File Name can be omitted, in which case the value of the XIPC environment variable is used.

4.12.12 PROGRAMMING TO ACCESS A NETWORK INSTANCE

4.12.12.1 Environment

The XIPCHOST, XIPCHOSTLIST, XIPCCAT and/or XIPCCATLIST environment variables must define an
instance search range when XsIPC programs are used within a network instance. Specifically, it is required by the
XipcLogin function call that refers to a network instance by its Instance Network Name. These functions conduct a
search for the specified network instance within the indicated search range.

4.12.12.2 Logging Into a Network Instance

An XipcLogin() function call that is targeting a network instance specifies the instance by its network name with an
"@" prefixed to it.

Example:

XipcLogin ("@EMail", "InitPgm");

XsIPC Instances

© Envoy Technologies Inc. 4—15

In the above example, a program identifying itself as "InitPgm" logs into the network instance "EMail." The search
for the "EMail" instance is conducted based on the settings of the XIPCHOST, XIPCHOSTLIST, XIPCCAT
and XIPCCATLIST environment variables.

4.12.12.3 Program Linking

Programs that are to access a network XsIPC instance may be linked using either the XsIPC Network library or the
XsIPC Combined library. The topic of library selection is discussed in detail in the Advanced Topics section of this
Guide.

4.13 Multi-Instance Applications

In many cases, a one-to-one mapping scheme between an application and an XsIPC instance provides a sufficient
level of abstraction for configuring and supporting the application's IPC requirements.

There are, however, situations––particularly when building larger applications––where it makes sense to split the
application's IPC resources along certain physical or logical seams and to employ more than one instance for
supporting the application's IPC activity. Such an application is a multi-instance application.

Issues related to the development of multi-instance applicationsare discussed in the Advanced Topics chapter of
this Guide, in the section entitled "Working With XsIPC Instances."

XsIPC Programming

© Envoy Technologies Inc. 5—1

5. X©IPC PROGRAMMING

5.1 Accessing An X©IPC Instance

5.1.1 XipcLogin() - LOGGING INTO AN INSTANCE

A user program must log into an instance before it can use its XsIPC environment. This is accomplished using the
XipcLogin() function.

XipcLogin() takes the following arguments:

o The identity of the target instance.

o A login name by which the user will be known within the instance.

The target instance is specified in one of the following forms:

o Stand-alone instances are identified by their instance configuration file name.

Example:

 RetCode = XipcLogin("/usr/demo", "myprog");

o Local and Network instances are identified by their Instance Local Name or Instance Network Name. An
'@' character must be prefixed to the name to distinguish it from a stand-alone name.

Example:

 RetCode = XipcLogin("@NetDemo", "myprog");

In the above examples, the calling program attempts to log into the instance named “NetDemo,” using the login name
"myprog.”

Duplicate login names are permitted within an instance. It would thus be possible to have more than one user log in
as "myprog" within the same instance.

XipcLogin() returns a non-negative instance "User Id" as its value when successful. This value is of minor
significance and is generally not needed subsequently.

5.1.2 XipcLogout() - LOGGING OUT OF AN INSTANCE

A user logs out of an instance using XipcLogout(). XipcLogout() severs any connection between the calling user
and the instance it is logged into.

XipcLogout() takes no arguments.

Example:

 RetCode = XipcLogout();

XipcLogout() releases all held resources of the instance before it logs the user out. It is a good programming practice
to have application program termination functions (such as trap handlers) call XipcLogout() before terminating.

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 5—2

5—2

Users that fail to log out of an instance can be forcibly removed from the instance by another logged-in user, using
XipcAbort(). Refer to the Appendix containing the Technical Note on the XsIPC Idle User Detection Mechanism for
further details.

5.1.3 XipcAbort() - ABORTING AN INSTANCE USER - FORCING A LOGOUT

Occasionally a user program that has logged into an instance will fail to log out from the instance before terminating.
In such a situation, instance resources are locked up by the inactive user.

XipcAbort() can be called by a logged in user to forcibly remove another user from the instance. In the case of users
that are no longer executing, XipcAbort() is a useful tool for cleaning up and recovering instance resources.

XipcAbort() can also be called to violently log another active user out of an instance. In most situations this will not
be appropriate, but the capability exists.

XipcAbort() takes the following argument:

o The Uid of the user to be aborted.

Example:

RetCode = XipcAbort(Uid);

XipcAbort() takes as its argument the user id (Uid) of the user that is to be aborted. Recall that the Uid is returned as
the value of a successful XipcLogin() operation.

5.2 X©IPC Blocking Options

Many XsIPC operations have the potential for blocking or completing asynchronously. XsIPC offers a complete set of
synchronous and asynchronous options for controlling such behavior.

5.2.1 SYNCHRONOUS OPTIONS

XsIPC provides three synchronous blocking options.

The NOWAIT Option

The NOWAIT option is the most straightforward. It is in fact a blocking option that directs XsIPC not to block. When
specified as part of a potentially blocking function, it stipulates that the function should not block if the operation
cannot complete.

In such a case, an appropriate error code is returned by the function indicating that the function's operation was not
accomplished and that waiting will not take place.

The WAIT Option

The WAIT option instructs the function to block indefinitely when it cannot complete immediately.

When WAIT is specified, the invoking user becomes blocked when the function cannot complete. The process then
remains blocked until conditions necessary for the function's completion exist, at which time the function completes
and the user is woken up.

XsIPC Programming

© Envoy Technologies Inc. 5—3

The TIMEOUT Option

The TIMEOUT option is identical to the WAIT option except that, when blocking occurs, it is limited to the specified
number of seconds of real time.

Should the blocked operation complete within the timeout period, the user is awakened and allowed to proceed. If,
however, the stipulated time period expires, then the user's blockage is cancelled and an appropriate error code is
returned by the function.

5.2.2 ASYNCHRONOUS OPTIONS

XsIPC additionally provides three asynchronous options for situations where it is desired that an operation complete
in the "background." As such, it is possible–and often desirable–for a program to initiate multiple XsIPC operations
that remain pending in the background until conditions permit them to complete.
The common denominator of the three asynchronous options is that the XsIPC operation does not cause the calling
program to block. It continues unimpeded. The options differ in their method of completion notification. A key
component of these approaches is the usage of a user-declared Asynchronous Result Control Block (ACB) variable.
Each XsIPC operation that is directed to complete asynchronously has a user-specified ACB associated with it. The
ACB allows the tracking (and possible aborting) of the operation if and when it blocks asynchronously. The ACB
structure is additionally used by XsIPC for returning data from the asynchronous operation, when the operation
completes.

Note that an XsIPC operation that is coded with an asynchronous option completes asynchronously whether or not it
is forced to block before completing. This is the default behavior of the asynchronous options.

It is, however, sometimes required that an asynchronous option be applied only if the subject operation is forced to
block, and to otherwise return synchronously if it can complete without blocking. This behavior can be
accomplished by specifying the RETURN option flag together with the asynchronous option. Examples of using this
option are given in the Advanced Topics section of this Guide.

The CALLBACK Option

The CALLBACK option directs XsIPC to notify of an asynchronous operation's completion by means of a user-
defined callback function. The specified callback function is invoked when the blocked operation completes. The
function's single argument is a pointer to the ACB associated with the completing operation. In this way, one
function can be used to serve multiple asynchronous XsIPC operations.

The POST Option

The POST option directs XsIPC to mark the completion of the operation by setting a user-specified XsIPC event
semaphore. The semaphore is set when the operation completes. A typical scenario would have another program or
thread waiting for that semaphore to be set, and then to react appropriately. Alternatively, the semaphore can be
examined at some later point in time by the original calling program or by another program in the instance.

The IGNORE Option

The IGNORE option instructs XsIPC to allow the operation to complete "silently." No explicit notification is given
upon its completion. The original calling program may periodically poll the ACB associated with the pending
operation, until the operation completes. Or it can ignore it entirely.

Refer to the specific function descriptions below and to the XsIPC Reference Manual for additional related
descriptions. Further discussion of working with XsIPC ‘s asynchronous blocking options is presented in the
Advanced Topics section of this Guide.

5.2.3 BLOCKING OPTIONS SUMMARY

The table below summarizes the uses of XsIPC ‘s synchronous and asynchronous blocking options.

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 5—4

5—4

The blocking option parameter accepts one of the following values, as listed in the table below. The characters
"XXX_" in all blocking option codes and return codes should be replaced by MOM_, SEM_, QUE_ or MEM_,

depending on the subsystem called.
All XsIPC functions that have the potential to block or complete asynchronously, have a BlockOpt parameter that is
used to specify the appropriate option for the function call. The asynchronous options refer to a user-declared
Asynchronous Result Control Block structure (ACB). The function of this control block was described above.

SYNCHRONOUS Blocking Options Description

XXX_NOWAIT If the request specified in the function call cannot be satisfied, the
function returns immediately with RC = XXX_ER_NOWAIT.

XXX_WAIT If the request specified in the function call cannot be satisfied, the caller
is blocked until the request is completed.

XXX_TIMEOUT(n) If the request specified in the function call cannot be satisfied, the caller
is blocked until the request is completed or until n seconds have
elapsed after which the function returns with
RC = XXX_ER_TIMEOUT.

ASYNCHRONOUS Blocking Options Description

XXX_CALLBACK (Func, AcbPtr) The function returns immediately with RC = XXX_ER_ASYNC. When
the request is completed, the ACB pointed to by AcbPtr is filled with
the results of the operation and the function Func is called with AcbPtr
passed as its only argument.

XXX_POST(Sid, AcbPtr) The function returns immediately with RC = XXX_ER_ASYNC. When
the request is completed, the ACB pointed to by AcbPtr is filled with
the results of the operation and the event semaphore Sid is set.

XXX_IGNORE(AcbPtr) The function returns immediately with RC = XXX_ER_ASYNC. When
the request is completed, the ACB pointed to by AcbPtr is filled with
the results of the operation.

The three asynchronous options cause all successful operation completions to occur using the prescribed
asynchronous mechanism, including operations that can be completed immediately.

It is sometimes required that operations which complete immediately–without blocking–should return their result
synchronously and have the specified asynchronous option apply only to blocking situations. This behavior can be
achieved by specifying the XXX_RETURN option flag along with the asynchronous options, as in:

XXX_RETURN | XXX_CALLBACK(Func, AcbPtr)

XXX_RETURN | XXX_POST(Sid, AcbPtr)

XXX_RETURN | XXX_IGNORE(AcbPtr)

In each of the above cases, the specified asynchronous mechanism is employed only if the operation cannot
complete immediately. Operations that can complete immediately return synchronously with their results.

5.3 Using XsIPC With Threads

Thread-safe versions of XsIPC are available. This means that it is possible to develop a multithreaded program that
employs threads for XsIPC operations without having to be concerned for the integrity of XsIPC’s internal data

XsIPC Programming

© Envoy Technologies Inc. 5—5

structures. There are, however, rules that must be followed and understood in order to program multithreaded
applications successfully.

This section describes general rules regarding the use of XsIPC within threaded programs. Operating system specific
rules are delineated within the respective XsIPC Platform Notes. The reader is encouraged to refer to those notes after
reading this general section.

5.3.1 XsIPC LOGIN PER THREAD

The first rule is that each thread must explicitly manage its own XsIPC logins, as it needs them. XsIPC logins cannot
be shared across multiple threads. So, for example, an XsIPC program having five threads, each performing XsIPC
operations, must be written so that each of the five threads performs its own XipcLogin() and XipcLogout()
operations as necessary. In our example, that would translate into five separate logins. It is not possible for one
thread to perform one login and have the context of that login shared by the five threads. (Of course, threads not
doing XsIPC work need not log in to an instance.)

The “login per thread” rule has ramifications regarding XsIPC asynchronous programming. This is discussed below.

5.3.2 PROGRAMMING RESTRICTIONS

Following is a list of additional restrictions that are imposed on XsIPC –based threaded applications:

q The following three XsIPC list-building utility functions are not thread-safe: QueList(), SemList(),
MemList(). These functions use internal static data areas which cannot be relied upon in a multithreaded
environment. The other list building functions (e.g., QueListBuild(), QueListAdd(),etc.) are thread
safe.

q Threaded programs, written for the supported UNIX Operating System platforms, cannot perform XsIPC
operations that specify the XXX_TIMEOUT() blocking option.

q The MemSys function MemSection() is not thread-safe. One should use the MemSectionBuild()
function instead.

q XsIPC , by default, cannot support more than 64 threads per process. In order to override this limit, one must set
the external XsIPC variable XipcMaxThreads with the override value before the process performs its first
XipcLogin() call.

5.3.3 ASYNCHRONOUS OPERATIONS

The XipcAsyncEventHandler() function that is called by an application upon completion of an asynchronous
operation must be called by the same thread that issued the original XsIPC operation. It is possible to have another
thread wait for the associated system event to occur (e.g., in UNIX to wait for the I/O descriptor to become set; in
Windows NT to wait for the Event object to become set), but the final processing step of the operation – the calling
of XipcAsyncEventHandler() – must be performed by the thread that init iated the original XsIPC operation.

UNIX-based multithreaded programs that issue XsIPC asynchronous operations are not able to receive notification of
operation completion via system signals. Rather, they must use the I/O descriptor method of asynchronous
notification. See the Technical Note “Using I/O Descriptors for Asynchronous Notification” for details on how this
is programmed.

Each thread within a UNIX-based multithreaded program must set the XIPC_SETOPT_PRIVATEQUEUE option in
order for its asynchronous operations to complete successfully. This is accomplished by having each thread call the
XipcSetOpt() function, as follows, before it logs into XsIPC .

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 5—6

5—6

Example:

 /*
 * Set XIPC option to use a private UNIX queue used for
 * implementing this thread’s asynchronous XIPC activity.
 * Then log in to the XIPC instance ...
 */

 XipcSetOpt(XIPC_SETOPT_PRIVATEQUEUE);

 XipcLogin(..., ...);

5.3.4 PROGRAM LINKING

The method for linking a multithreaded XsIPC program is platform-dependent. On some platforms, the standard XsIPC
libraries are inherently thread-safe (e.g., Windows NT). On other platforms, special reentrant versions of the XsIPC
libraries are provided (e.g., most UNIX platforms). Here, too, one should refer to the specific Platform Notes for
details.

5.4 X©IPC On-Line Monitoring

XsIPC includes full-screen interactive monitors that provide continuous real-time views of the activities occurring
within an XsIPC instance. Monitoring an instance's subsystems is accomplished using the subsystem monitors:
momview, queview, semview and memview. Details for each can be found in the respective subsystem
documentation.

The monitoring facility does not require that applications be specially prepared for monitoring (e.g., "debug" mode).
The facility can be invoked for any active XsIPC instance––including those of production systems out in the field––
without any extra provisions and without incurring performance overhead in the application when monitoring is not
in use.

As such, the monitor can be used by an application's support personnel to remotely (via a remote login) perform
analysis of a dead or dying system, without having to be present at the customer site.

When invoked, monitoring becomes an invaluable tool for identifying problems, particularly when the problems
result from incorrect or misunderstood usage of an application's IPC resources––i.e., semaphores, queues and
segments. The delicate task of application integration testing and debugging is greatly simplified.

5.4.1 STARTING THE X©IPC MONITORS

The XsIPC monitors are started from the command line. The name of the subsystem monitor is followed by two
arguments:

o The first argument is the initial "interval" snapshot setting. It will be described in detail below. Briefly, the
interval defines, in milliseconds, the initial update frequency of the monitor.

o The second argument is the Instance File Name of the instance to be monitored.

Example:

semview 100 /usr/demo

XsIPC Programming

© Envoy Technologies Inc. 5—7

The above command starts the semview monitor for the SemSys of the "/usr/demo" instance. The initial update
frequency is set to 100 milliseconds.

As was the case with xipcstart and xipcstop, the Instance File Name can be omitted from the command line.
In such a case, semview also uses the value of the XIPC environment variable for the Instance File Name of the
instance to start monitoring.

5.4.2 MONITOR FUNCTIONS AND LAYOUT

The XsIPC monitors are very similar in layout and function, sharing the same general "look and feel.” Information is
presented in a matrix-like display, where the users and the IPC entities make up the axes of the matrix. Interaction
between users and IPC entities is displayed within the body of the matrix.

Asynchronously blocked XsIPC operations are treated as pseudo-users and receive an Asynchronous Uid (AUid)
while they are pending. Information regarding AUids is displayed on the XsIPC monitors in the same manner as
ordinary users. This provides a consistent means of monitoring pending asynchronous operations.

Monitor
Status

IPC Resources...

Users
...
...
...

Interaction

Matrix

Command

Trace Operation

Capacity

Important subsystem capacity data is displayed at the lower right portion of the screen. Monitor status data is shown
at the top left of the screen. The command entry window is at the lower left of the screen. The same format is used for
all four subsystem monitors.

The trace window (located at the bottom of the command window) is active when the monitor is in one of the trace
update modes (Flow or Step). It reports the next XsIPC operation to be executed and the Uid of the user performing
the operation.

5.4.3 MONITOR MODES

XsIPC monitors operate in one of two modes:

o Update Mode

o Command Mode

5.4.3.1 Update Mode

When in Update Mode, the monitor updates the display of XsIPC activity in one of the following ways:

o "Interval Snapshot Mode" causes the monitor display to be refreshed at a user-specified interval rate
(specified in milliseconds). Activity occurring between snapshots is not shown. This mode is useful for
observing the general ebb and flow of activity occurring within an XsIPC instance.

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 5—8

5—8

 The interval value is user-defined and controls how frequently the snapshots occur. Setting the interval to
50, for example, results in 50 millisecond intervals between snapshots.

 A small interval value causes screen updates to occur frequently. Increased screen update activity often
results in significant performance overhead for the instance being monitored and its client programs. This
should be considered when monitoring XsIPC activity of real-time systems.

o "Trace Flow Mode" results in the monitor being refreshed before every XsIPC operation in the monitored
subsystem. The trace operation window reports the next XsIPC operation to be executed and the identity
of the Uid performing the operation. The monitor then pauses for "interval" milliseconds, after which it
continues.

 Trace flow mode is often used for watching an instance's activity in "slow motion.” Setting "interval" to
1000 while within trace flow mode can produce such an effect.

o "Trace Step Mode" causes activity in the monitored subsystem to completely stop after each XsIPC
operation is performed. There too the trace operation window reports the next XsIPC operation to be
executed and the Uid performing the operation. The user must depress a key to perform the next XsIPC
operation. This mode is useful when the slow motion provided by the trace flow mode is still too fast. This
is likely to be the case during intense logic debugging sessions.

When first activated, the monitor is in "Interval Snapshot Mode.” The initial interval value is set to the value
specified on the command line.

Note that monitoring an instance's subsystem (in any mode) has no effect on the performance of other subsystems in
the instance or on other concurrently active instances.

5.4.3.2 Command Mode

In order to enter commands to the monitor it must first be temporarily taken out of Update Mode and placed in
Command Mode. The exact keystrokes to be used are operating system dependent and are specified in the
appropriate Platform Notes.

Once in Command Mode, the user is prompted with:

Command> _

After a command is entered, the monitor automatically returns to Update Mode.

5.4.4 BASIC COMMANDS

The XsIPC monitors are very similar in their basic functionality, with several basic commands common to all XsIPC
monitors (momview, queview, semview, memview). Specific capabilities particular to the individual
monitors and their appropriate commands are described below and in the subsystem documentation.

5.4.4.1 Setting the Interval Value

Setting the interval value is accomplished using the command:

Command> iN

where N specifies the new interval value in milliseconds. N must be greater than or equal to zero.

Examples:

XsIPC Programming

© Envoy Technologies Inc. 5—9

Command> i2000
Command> i50

The first example sets interval to 2000 milliseconds, or two seconds. The second example sets "interval" to 50
milliseconds.

Very low interval settings will often cause performance degradation in the monitored instance subsystem.

5.4.4.2 Entering Trace Flow Mode
Entering Trace Flow Mode is accomplished by entering:

Command> tf

5.4.4.3 Entering Trace Step Mode

Entering Trace Step Mode is accomplished by entering:

Command> ts

5.4.4.4 Exiting Trace Mode

Leaving either Trace Mode returns the monitor to Interval Snapshot Mode. This is achieved by entering the Trace
Off command:

Command> to

5.4.5 ZOOMING

XsIPC monitors provide a set of facilities for examining aspects of an instance with additional scrutiny. One of these
tools is the monitor "zoom window.” The other facility, the "browse screen,” will be described shortly.

The monitor Zoom Window allows the developer to watch general XsIPC instance activity and at the same time focus
on the activity of a specific aspect of the instance subsystem being viewed.

Monitor
Status

IPC Resources...

Users
...
...
...

Interaction

Matrix

Zoom
Window

Command

Trace Command

Capacity

Each of the subsystem monitors provides a wide array of Zoom Window options from which to choose. The specific
option codes and their applications are outlined in the subsystem specific sections below and in the XsIPC Reference
Manual.

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 5—10

5—10

All zooming commands begin with the letter z. The remaining characters specify which Window to activate.

Examples:

Command> zs5

The above semview command activates a Zoom Window for observing, in detail, the activities of the semaphore
having an 'Sid' of 5. (We will see later that an 'Sid' is a handle used for identifying and manipulating a specific XsIPC
semaphore.)

Command> zp

This command activates a Zoom Window for observing, in detail, the activities of the message text pool of a QueSys
instance.

5.4.6 UN-ZOOMING

Zooming in on a particular aspect or entity within an instance can be stopped in three ways:

o The easiest approach is to enter the UnZoom command:

 Command> uz

o A second possibility is to start zooming on a new aspect of the instance. This will replace the current zoom
data.

o Third, deleting the resource being zoomed automatically brings down the zoom window.

5.4.7 BROWSING

A second and more powerful means of monitoring the status of an XsIPC instance is via the "browsing" facility.
Browsing is possible from within the momview, queview and memview monitors for scanning the contents
of message queues and shared memory segments.

The general layout of the browse screen is as follows:

Status Time

Offset
....
....
....

Hex
Representation
...
...

ASCII
........
........
........

Command Line

5.4.8 WATCHING

Within memview, a third form of monitoring is provided: Watching. Memory segment watching allows the
developer to observe the contents of shared memory segments in real-time. An additional section watching facility
lets the developer monitor the lock status of segment data down to the byte level.

XsIPC Programming

© Envoy Technologies Inc. 5—11

5.4.9 PANNING

As we have seen, XsIPC monitors are matrix-like in their layout. As such, they can be manipulated as on a
spreadsheet when certain "off the screen" portions of the matrix are required for viewing. This is accomplished by
Panning.

Panning can be performed horizontally or vertically. The exact format of the panning commands are subsystem
specific and are provided in the susbsystem volumes.

5.4.10 EXITING THE MONITOR

Monitoringof an XsIPC instance is terminated using the q command. This is true for all subsystem monitors:
momview, queview, semview and memview.

Example:

Command> q

Of course, bringing down an XsIPC monitor has no effect on the underlying instance, its ongoing activities or its
client programs.

When monitoring is off, there is virtually no overhead to the performance of the instance (one additional machine
instruction per XsIPC operation). This removes any need for building separate "debug" and "production" versions of
a system. XsIPC production systems are automatically subject to XsIPC monitoring, even out in the field. It is thus
possible for technical support personnel to remotely log into installed systems for analysis purposes using XsIPC
monitors, if and when there are problems.

5.5 X©IPC Function Return Codes - Using XipcError()

XsIPC functions return negative integer codes whenever they do not complete successfully. These codes and their
interpretations are described in the XsIPC Reference Manual and in appropriate sections of the subsystem-specific
documentation.

By testing for a negative return value, it is immediately possible to check on a function's success or failure.

The XipcError() function is used for translating an error code returned by a failed XsIPC function call.

XipcError() takes one argument:

o The XsIPC error code whose translation is desired.

XipcError() returns a pointer to a static string containing a brief translation of the error code it is passed. It returns a
pointer to an appropriate message for undefined error codes.

Example:

RetCode = QueCreate(...);

if (RetCode < 0)
{
 /* Error handling code */
 printf("QueCreate Error: %s\n", XipcError(RetCode));
}

Advanced Topics

© Envoy Technologies Inc. 6—1

6. ADVANCED TOPICS

This section of the XsIPC User Manual presents in-depth discussions of several advanced topics that can
be central to optimizing your use of XsIPC . Most of the topics are presented from the perspective of the
QueSys, SemSys and MemSys subsystems. Advanced Topics that are especially pertinent to MomSys are
presented in the MomSys User Guide and MomSys Reference Manual.

6.1 Advanced Instance Configuration

This section describes instance configuration parameters that can be employed for making an XsIPC
application take advantage of the specific hardware and operating system environment that it is running on.

The behavior of an XsIPC instance – and consequently of applications using the instance – can be
influenced by a number of platform resources. The most critical platform resources involved are:

q The number of CPUs (processors) running on the platform

q The manner in which the instance’s underlying memory sharing is implemented

XsIPC provides instance configuration parameters that can be used for influencing how an instance uses
these resources.

6.1.1 CONFIGURING XsIPC FOR MULTIPLE-CPU (SMP) SYSTEMS

An XsIPC instance that will run on a multi-CPU platform such as a Symmetric Multiprocessor (SMP)
computer should be configured differently than a single-CPU platform. The parameter that is involved is the
CSEC_ALGORITHM instance configuration parameter. This parameter, found within the [XIPC] section,
has two alternative values: Gate and Semaphore. (Some platforms support only one of these values,
however; see the Platform Notes regarding your particular platform.)

The usual default value for CSEC_ALGORITHM is Gate . This setting is optimal for single-CPU systems.
Multi-CPU systems should have their instances configured with CSEC_ALGORITHM set to Semaphore
to override the default value.

Example:

 [XIPC]
 CSEC_ALGORITHM Semaphore

The alternative value, Semaphore, can in certain circumstances be the default value. On certain UNIX
platforms (e.g., HP-UX, Solaris and AIX 4.1 and higher), XsIPC is able to detect whether the underlying
hardware is an SMP, or not. If it detects more than one processor active, then the CSEC_ALGORITHM
parameter is set to a default value of Semaphore, which can be overridden to Gate. See the Platform
Notes for details.

6.1.2 CONFIGURING AN INSTANCE’S MEMORY UTILIZATION

An XsIPC instance uses the operating system’s underlying memory resources for supporting the activities
of the instance. Exactly how this is accomplished depends on the operating system involved. The following
table summarizes the default mechanisms used for implementing an instance’s memory sharing
requirements.

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 6—2

6—2

Operating System Instance Memory Elements
(Default)

Single / Multiple
(Default)

UNIX Shared memory Multiple

Win32 Memory-mapped files Multiple

VMS Global sections Multiple

To understand the above table let us examine the entries for UNIX. An instance is by default implemented
on UNIX using multiple shared memory segments. The exact meaning of the word multiple depends on the
combination of subsystems configured for the instance.

The following table describes how each subsystem contributes to this value:

MomSys QueSys SemSys MemSys

2 2 1 2

Thus, a full (four-subsystem) instance on UNIX will, by default, consume seven shared memory segments.
(Note that this number does not include the resources used by the XsIPC Platform Environment which
typically consumes an extra four elements.)

6.1.2.1 Configuring to Use a Single Memory Element

XsIPC permits the user to stipulate that the instance will use a single memory sharing element instead of the
default multiple element approach. This is useful for situations where it is preferred that the system not
create multiple elements when starting the instance, but rather implement all necessary memory sharing
within a single memory element.

One example where this is important is for configuring instances on certain UNIX platforms that limit the
number of shared memory segments that a process can attach to at one time. If a limit of six segments
existed, then it would be impossible for a process on that platform to log into an instance having all four
subsystems. (See the respective UNIX XsIPC Platform Notes for details on such limitations.)

The SHARED_MEM configuration parameter is used for controlling whether a single or multiple memory
element approach is used by the instance.

Example:

In the following example, SHARED_MEM is set in the [XIPC]
section causing all subsystems within the instance to
consolidate their underlying shared memory elements into
a single element. This instance will thus use one memory
elements instead of four.

[XIPC]
SHARED_MEM SINGLE

[QUESYS]

[MEMSYS]

Advanced Topics

© Envoy Technologies Inc. 6—3

6.1.2.2 Configuring to Use Memory Mapped Files on UNIX

XsIPC instances that run on UNIX have the added flexibility that they may be configured to employ memory-
mapped files instead of shared memory as the mechanism for supporting the instance’s memory sharing
elements. This is useful in situations where the UNIX system places size limitations on the size of shared-
memory segments that can be created, thus inhibiting the size of the instances that can be run.

The MAPFILE_CTL and MAPFILE_POOL configuration parameters are used for specifying that the
instance should use memory-mapped files instead of shared memory. The parameter is configured by
specifying a file-system path name for the memory-mapped file that is to be created. The MAPFILE_CTL
parameter defines where the shared control data should be created. The MAPFILE_POOL is only relevant
for subsystems that have a text pool.

Example:

 [QUESYS]
 MAPFILE_CTL /usr/harvey/quesys.ctl
 MAPFILE_POOL /usr/harvey/quesys.pool

The following table lists the map-file configuration parameters that are valid in the respective instance
configuration sections.

Section Memory-Map Parameters (UNIX only)

[XIPC] MAPFILE

[MOMSYS] (Not Supported)

[QUESYS] MAPFILE_CTL, MAPFILE_POOL

[SEMSYS] MAPFILE_CTL

[MEMSYS] MAPFILE_CTL, MAPFILE_POOL

Note that the configuring MAPFILE within the [XIPC] section is only valid when the SHARED_MEM
parameter is also specified in that section. Such a configuration directs XsIPC to configure the entire
instance as a single memory element, where the memory element is to be implemented as a memory mapped
file.

Example:

In the following example all subsystems within the instance
consolidate into a single element that is implemented as a
memory mapped file.

[XIPC]
SHARED_MEM SINGLE
MAPFILE /usr/projects/foo/xipc.ctl

[QUESYS]

[MEMSYS]

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 6—4

6—4

6.1.2.3 Configuring to Use Memory-Mapped Files on Windows NT, 2000 and
VMS

XsIPC instances that run on Win32 or VMS platforms always employ the operating system’s native memory-
mapping facilities for implementing an instance’s underlying shared-memory elements. XsIPC by default
chooses names for these memory-sharing elements that should normally be left untouched.

In those cases where it is necessary to override these default names, XsIPC allows this to be accomplished
using the MAPNAME, MAPNAME_CTL and MAPNAME_POOL instance configuration parameters. Their rules
of usage are identical to the MAPFILE, MAPFILE_CTL and MAPFILE_POOL parameters described
above, except that instead of specifying a file-system path name for a memory mapped file, one specifies a
valid memory element name. The syntax for these names is operating system dependent.

Example:

In the following, all subsystems within the instance
consolidate into a single entity that is implemented as a
native memory mapped entity having the name “xipcstuff”.

[XIPC]
SHARED_MEM SINGLE
MAPNAME xipcstuff

[QUESYS]

[MEMSYS]

Example:

In the following, the QueSys subsystem is implemented as
native memory mapped entities.

[QUESYS]
MAPNAME_CTL quesys.ctl
MAPNAME_POOL quesys.pool

Advanced Topics

© Envoy Technologies Inc. 6—5

6.2 Asynchronous Operations

6.2.1 INTRODUCTION

XsIPC operations that can block can complete synchronously or asynchronously. The WAIT and TIMEOUT
synchronous blocking options actually block the program that initiated the XsIPC operation until the
operation completes–either successfully or in failure–at which time the program becomes unblocked and
continues its processing.

XsIPC asynchronous options provide a more powerful set of alternatives. Unlike the synchronous options,
asynchronous options indicate that the subject XsIPC operation should complete in the background,
without blocking the calling program. The program is allowed to proceed. When the operation completes,
some form of notification is given by XsIPC, depending on the asynchronous option specified at the start of
the operation.

XsIPC supports three asynchronous options. Each describes a different form of notification to be given by
XsIPC at the completion of the operation.

o The CALLBACK option directs XsIPC to execute a user-specified callback function upon
completion.

o The POST option directs XsIPC to set a SemSys event semaphore when the operation completes.

o The IGNORE option directs XsIPC to allow the operation to complete "silently" with no explicit
form of notification.

The three options are described in more detail below. An operation that is invoked asynchronously returns
the MOM_ER_ASYNC, QUE_ER_ASYNC, SEM_ER_ASYNC or MEM_ER_ASYNC return code, as
appropriate. It is important to note that flags must always be ORed to the left of (before) the blocking
option.

6.2.2 THE ASYNCRESULT CONTROL BLOCK (ACB)

Tracking of an asynchronous XsIPC operation is achieved using an Asynchronous Result Control Block
(ACB). An ACB is a user-declared structure (of type ASYNCRESULT) that is associated with an
asynchronous XsIPC operation. Each XsIPC operation that is coded with an asynchronous blocking option is
required to specify an ACB (actually, a pointer to an ACB) along with the option. (Examples are provided
below.) The ACB is the vehicle by which XsIPC transmits return data when the operation completes.

An ACB also contains a number of fields that support the tracking of asynchronous operations while they
are still pending.

When an XsIPC operation executes asynchronously, the operation's ACB is set with information for tracking
the operation.

o An asynchronously blocked operation is treated as a pseudo-user within the subsystem that it
blocked. As such, the pending operation is recorded as an entry in the subsystem's user table
and is assigned its own User ID––or, more precis ely, an Asynchronous User Id (AUid). The AUid
field of the ACB is set with the blocked operation's AUid.

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 6—6

6—6

 User information functions that accept a Uid as an argument, such as SemInfoUser(), accept an
AUid as well. XsIPC 's subsystem monitors present status on AUid's in the same manner as for
ordinary Uid's. This provides the developer with the means for tracking all pending
asynchronous operations occurring within an instance, without having to "invent" specialized
async monitoring tools. Asynchronous operations that succeed without blocking have the AUid
field of their associated ACB set to zero.

o The AsyncStatus field remains set as XIPC_ASYNC_INPROGRESS as long as the operation is
pending comp letion. When the operation completes, the field is set to
XIPC_ASYNC_COMPLETED. This is most useful for asynchronous operations started with the
IGNORE option. In that case, the AsyncStatus field being set to XIPC_ASYNC_COMPLETED is
the only direct indication given by XsIPC that the operation has completed.

o The User Data fields are useful for passing application information between the point where the
asynchronous operation is initiated and the logic that handles its notification of completion. The
information passed is application-dependent.

o The OpCode field is set to the appropriate XIPC_OPCODE_APINAME macro value that
identifies the XsIPC function call associated with the ACB. Examples include
XIPC_OPCODE_SEMWAIT, XIPC_OPCODE_QUESEND, etc.

The remaining elements within the ACB are a union of structures, one structure per blockable XsIPC API.
The appropriate structure is set with return data from the completing asynchronous operation with which it
is associated.

Definition of the ASYNCRESULT structure follows:

/*
 * The ASYNCRESULT Control Block (ACB) structure is used to examine the
 * results of an asynchronous operation. The structure contains a union
 * that defines returned fields for every XIPC operation that can block.
 */

/***
** Macros
***/

#define XIPC_ASYNC_INPROGRESS 1
#define XIPC_ASYNC_COMPLETED 2

#define ACB_FIELD(AcbPtr, Function, Field) AcbPtr->Api.Function.Field

/***
** 'ACB' - ASYNCRESULT Control Block ---
***/

struct _ASYNCRESULT /* Result of Async API call */
{
 XINT AUid; /* Async Uid "receipt" */
 XINT AsyncStatus; /* XIPC_ASYNC_INPROGRESS or XIPC_ASYNC_COMPLETED */
 XINT UserData1; /* ------ user defined usage ---- */
 XINT UserData2; /* ------ user defined usage ---- */
 XINT UserData3; /* ------ user defined usage ---- */
 XINT OpCode; /* Async operation, key to union */

Advanced Topics

© Envoy Technologies Inc. 6—7

 union
 {
 struct
 {
 XINT RetSid;
 XINT RetCode; /* of completed async operation */
 }
 SemWait;

 struct
 {
 XINT RetSid;
 XINT RetCode; /* of completed async operation */
 }
 SemAcquire;

 struct
 {
 MSGHDR MsgHdr; /* The resultant MsgHdr */
 CHAR FAR *MsgBuf;
 XINT RetCode; /* of completed async operation */
 }
 QueWrite;

 struct
 {
 MSGHDR MsgHdr; /* The resultant MsgHdr */
 XINT RetQid;
 XINT RetCode;
 }
 QuePut;

 struct
 {
 MSGHDR MsgHdr; /* The resultant MsgHdr */
 XINT Priority;
 XINT RetQid;
 XINT RetCode;
 }
 QueGet;

 struct
 {
 CHAR FAR *MsgBuf;
 XINT RetQid;
 XINT RetCode;
 }
 QueSend;

 struct
 {
 CHAR FAR *MsgBuf;
 XINT MsgLen;
 XINT Priority;
 XINT RetQid;
 XINT RetCode;
 }

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 6—8

6—8

 QueReceive;

 struct
 {
 /*
 * Only used for passing error info re
 * failed QueBurstSend() operation.
 /
 XINT SeqNo; /* of burst-send message that failed */
 XINT TargetQid;
 XINT Priority;
 XINT RetQid;
 XINT RetCode;
 }
 QueBurstSend;

 struct
 {
 /*
 * Only used for handling an asynchronous
 * QueBurstSendSync() operation.
 */
 XINT SeqNo; /* of last burst-send msg enqueued */
 XINT RetCode;
 }
 QueBurstSendSync;

 struct
 {
 XINT Mid; /* of target */
 XINT Offset; /* of target */
 XINT Length; /* of target */
 CHAR FAR *Buffer;
 XINT RetCode;
 }
 MemWrite;

 struct
 {
 XINT Mid; /* of target */
 XINT Offset; /* of target */
 XINT Length; /* of target */
 CHAR FAR *Buffer;
 XINT RetCode;
 }
 MemRead;

 struct
 {
 SECTION RetSec;
 XINT RetCode;
 }
 MemSecOwn;

 struct
 {

Advanced Topics

© Envoy Technologies Inc. 6—9

 SECTION RetSec;
 XINT RetCode;
 }
 MemLock;

 struct
 {
 MOM_MSGID MsgId;
 XINT RetCode;
 }
 MomSend;

 struct
 {
 CHAR FAR *MsgBuf;
 XINT MsgLen;
 MOM_MSGID MsgId;
 XINT ReplyAppQueue;
 XINT RetCode;
 XINT TrackingLevel;
 }
 MomReceive;

 }
 Api;

};

6.2.3 ACB RETURN VALUES

The results of an asynchronously blocked operation are returned within the ACB of the completed
operation. The one important exception to this is the treatment of what can be generalized as "text data."

When an XsIPC operation that specifies a text buffer as an argument blocks asynchronously and then
subsequently completes, the originally specified user text buffer is used when the operation completes. So,
for example, a completing QueReceive() operation receives data into the text data buffer that was specified
when the QueReceive() was initially called. This is true for all of the XsIPC functions that manipulate "text
data." They are: MomSend(), MomReceive(), QueRead(), QueWrite(), QueSend(), QueReceive(), MemWrite()
and MemRead().

It is therefore a dangerous practice to pass stack space variables as text data arguments to asynchronously
blocking XsIPC functions calls. Static or heap storage variables should be used instead.

6.2.4 THE CALLBACK OPTION

The CALLBACK option directs XsIPC to interrupt the calling program when the asynchronously blocked
operation completes by having it execute a user-specified callback function. This form of completion
notification is the most severe in terms of "rudeness" and should be used in situations where the indicated
urgency is called for.

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 6—10

6—10

Example:

/*
 * Wait for any one of three event semaphores to become
 * set. A callback function will execute when the
 * operation completes.
 */

ASYNCRESULT Acb;
VOID Funct();
XINT RetSid;
XINT RetCode;

RetCode = SemWait (SEM_ANY,
 SemList(Sid1, Sid2, Sid3, SEM_EOL),
 &RetSid,
 SEM_CALLBACK(Funct, &Acb)
);

if (RetCode == SEM_ER_ASYNC)
{
 /*
 * Operation executing asynchronously.
 */

 printf ("SemWait executing asynchronously, AUid = %d\n",
 Acb.AUid);
}
else
{
 /*
 * Error !!
 */
}
...
...

VOID
Funct (Acb)
ASYNCRESULT *Acb;
{
 printf ("SemWait completed.\n");
 printf ("RetCode = %d\n", Acb->Api.SemWait.RetCode);
 printf ("RetSid = %d\n", Acb->Api.SemWait.RetSid);

 ...
}

Because it is sometimes important that an operation return synchronously if it can complete without
blocking, you should resort to the asynchronous option only when the operation cannot immediately
complete.

Advanced Topics

© Envoy Technologies Inc. 6—11

The preceding example could be modified as follows to force such behavior:

/*
 * Wait for any one of three events semaphores to become
 * set. Block asynchronously, if necessary. Otherwise,
 * return immediately with the operation's result.
 */

ASYNCRESULT Acb;
VOID Funct();
XINT RetSid;
XINT RetCode;

RetCode = SemWait (SEM_ANY,
 SemList(Sid1, Sid2, Sid3, SEM_EOL),
 &RetSid,
 SEM_RETURN | SEM_CALLBACK(Funct, &Acb)
);

if (RetCode == SEM_ER_ASYNC)
{
 /*
 * Operation blocked asynchronously.
 */

 printf ("SemWait blocked asynchronously, AUid = %d\n",
 Acb.AUid);
}
else
{
 /*
 * Operation completed immediately. Process results in-line.
 */
 ...
 ...
}
...
...

VOID
Funct (Acb)
ASYNCRESULT *Acb;
{
 printf ("SemWait completed.\n");
 printf ("RetCode = %d\n", Acb->Api.SemWait.RetCode);
 printf ("RetSid = %d\n", Acb->Api.SemWait.RetSid);

 ...
}

It is often convenient to have a single callback function serve multiple pending asynchronous operations. In
that case, the application could utilize the various ACB User Data fields to distinguish between the pending
operations as they complete. One possibility would be to assign an identifying code to each ACB, using
one of the User Data fields.

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 6—12

6—12

6.2.5 THE POST OPTION

The POST option directs XsIPC to set the specified SemSys event semaphore upon completion of the
specified operation. This form of completion notification is less intrusive than the CALLBACK option in that
no program is directly interrupted as a result of the operation's completion.

Example:

/*
 * Receive message having Priority = 100.
 * Semaphore "PostSid" is to be set when the message is received.
 */

RetCode = QueReceive (QUE_Q_ANY,
 QueList(QUE_M_PREQ(Qid1, 100), QUE_EOL),
 MsgBuf,
 MsgLen,
 &RetPrio,
 &RetQid,
 QUE_POST(PostSid, &Acb)
);

if (RetCode == QUE_ER_ASYNC)
{
 /*
 * Operation executing asynchronously.
 */

 printf ("QueReceive executing asynchronously, AUid = %d\n",
 Acb.AUid);
 ...
 ...
}
else
{
 /*
 * Error !!
 */
}

This example may also be modified to return synchronously if the operation succeeds without blocking:

Advanced Topics

© Envoy Technologies Inc. 6—13

/*
 * Receive message having Priority = 100. Block
 * asynchronously if necessary. Otherwise, operation
 * results are returned immediately.
 */

RetCode = QueReceive (QUE_Q_ANY,
 QueList(QUE_M_PREQ(Qid1, 100), QUE_EOL),
 MsgBuf,
 MsgLen,
 &RetPrio,
 &RetQid,
 QUE_RETURN | QUE_POST(PostSid, &Acb)
);
if (RetCode == QUE_ER_ASYNC)
{
 /*
 * Operation blocked asynchronously.
 */

 printf ("QueReceive blocked asynchronously, AUid = %d\n",
 Acb.AUid);
}
else
{
 /*
 * Operation completed immediately. Process results in-line.
 */
 ...
 ...
}

Reacting to a completed asynchronous operation that specified the POST option can be handled by the
original calling program at some later point in its logic when it is convenient for it to issue a SemWait call
regarding the post semaphore, or possibly by a second program waiting for the post semaphore to become
set.

In fact, the wait for the post semaphore can be asynchronous as well. It is plain to see how a domino-effect
can very easily be created between processes.

6.2.6 THE IGNORE OPTION

The IGNORE option directs XsIPC to complete the subject operation silently, if it blocks asynchronously.
This form of notification is the most passive of the asynchronous options in that no explicit notice of the
operation's completion is given by XsIPC. The ACB's AsyncStatus field is set to
XIPC_ASYNC_COMPLETED when the operation it represents completes. The field may be examined
periodically to determine when this has occurred.

Consider the following example: If segment Mid is locked at the time of the MemWrite() calls, then the two
operations will remain pending asynchronously until the segment is unlocked and the MemWrite()
operations are permitted to complete. No explicit notice is given by XsIPC when the operations complete.
The two ACB's can be examined later to confirm completion.

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 6—14

6—14

Example:

/*
 * Write two records to a shared memory table.
 * The operations complete silently in the background.
 */

XINT Mid, Offset1, Offset2;
XINT Size1, Size2, RetCode;
ASYNCRESULT Acb1, Acb2;

RetCode = MemWrite (Mid, Offset1, Size1, MEM_IGNORE(&Acb1));

if (RetCode != MEM_ER_ASYNC)
 /*
 * Error !!
 */
...
...

RetCode = MemWrite (Mid, Offset2, Size2, MEM_IGNORE(&Acb2));

if (RetCode != MEM_ER_ASYNC)
 /*
 * Error !!
 */

...
...

Here again the MemWrite function calls could have been coded to return synchronously, if they complete
without blocking, by specifying the MEM_RETURN flag logically ORed to the left of the MEM_IGNORE
option.

Example:

RetCode = MemWrite(..., MEM_RETURN | MEM_IGNORE(...));

6.2.7 ABORTING A PENDING ASYNCHRONOUS OPERATION

It is occasionally necessary for a program to abort a pending asynchronous operation before it completes.
The functions MomAbortAsync(), QueAbortAsync(), SemAbortAsync() and MemAbortAsync() can be
used to cancel blocked asynchronous operations in their respective subsystems.

The functions take one argument:

o The AUid of the asynchronous operation to abort.

Advanced Topics

© Envoy Technologies Inc. 6—15

Example:

if (SemWait (SEM_ANY,
 SidList,
 &RetSid,
 SEM_IGNORE(&Acb)) == SEM_ER_ASYNC)
{
 /*
 * Do other work ...
 */

 ...
 ...

 /*
 * If operation is still pending, then
 * abort it.
 */

 if (Acb.AsyncStatus == XIPC_ASYNC_INPROGRESS)
 SemAbortAsync(Acb.AUid);
}

6.2.8 MIXING ASYNCHRONOUS AND SYNCHRONOUS OPERATIONS

The current version of XsIPC employs an interrupt mechanism for implementing asynchronous functionality
on most of its supported platforms. Exceptions include MS-Windows 3.x, Windows NT and X-Windows.
This means that a process that issues an XsIPC asynchronous operation must be prepared to be silently
interrupted by XsIPC when the operation completes. At that time, XsIPC internally reacts to the operation's
completion.

This is an important consideration if the process can block synchronously at points within its logic. Calls to
such synchronous operations should be coded so that they are restarted if interrupted.

The interrupt mechanisms employed are platform-specific. Information about each mechanism can be found
within the relevant Platform Notes.

6.2.9 CONCLUSION

Using XsIPC 's asynchronous blocking options it is possible to have a single program initiate multiple
parallel XsIPC operations and to react to them individually as they complete. When used in conjunction with
XsIPC 's asynchronous trigger mechanism it becomes possible to build elaborate event-driven network
applications of immense capability–and to do so with relative ease.

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 6—16

6—16

6.3 Network Timeout Detection

6.3.1 DESCRIPTION

XsIPC ‘s Network Timeout Detection feature makes network clients aware that a server is not responding
(e.g., someone “powers off” the server machine). For this feature to work, the xipciad daemon must be
running on the server platform.

The following parameters are used by the XsIPC Network Timeout Detection Mechanism:

RECVTIMEOUT This value determines the network receive timeout.
There is no default value for this parameter.

PINGTIMEOUT This value determines the network ping timeout.
The default value for this parameter is 0 milliseconds.

PINGRETRIES This value determines the network ping retry number.
The default value for this parameter is 3.

PINGFUNCTION This value identifies the ping function used to find out the remote host status.
By default, PINGFUNCTION is a pointer to an internal XsIPC function. The
user has the option of writing his own ping routine that can be installed as the
ping function, as described in the description of the XipcSetOpt() function in
the XsIPC Reference Manual. In this case, a pointer to a string containing the
IP address of the remote connection, in the base-256 notation “d.d.d.d”, is
passed as an argument to the routine.

6.3.2 CHANGING DEFAULT BEHAVIOR

By default, the XsIPC Network Timeout Detection Mechanism is not active. If an application wants to
activate this feature, it should set both the PINGTIMEOUT and RECVTIMEOUT parameters to non-zero
values by using the XipcSetOpt()function (discussed in the XsIPC Reference Manual). To deactivate the
Network Timeout Detection Mechanism, set the RECVTIMEOUT value to zero.
The XsIPC user has the option of changing the network timeout detection parameter values to his needs
either before or after a login (with two exceptions, as noted in the Reference Manual). If the parameters are
modified before login, then it will affect all the corresponding logins for that specific thread. If the
parameters are changed after login then only that particular login will be affected by this change.

Please refer to the XipcGetOpt(), XipcSetOpt() and XipcPing() function descriptions in the XsIPC Reference
Manual for further information.

Advanced Topics

© Envoy Technologies Inc. 6—17

6.4 Working With XsIPC Instances

Central to any application built using XsIPC is the role of XsIPC instances. This section describes the issues
related to working with XsIPC instances, as they relate primarily to the QueSys, SemSys and MemSys
subsystems. Refer to the MomSys User Guide for detailed discussion of MomSys’ utilization of XsIPC
instances.

6.4.1 XsIPC INSTANCES: THE APPLICATION PERSPECTIVE

The role of instances in an XsIPC -based application can be understood from an application perspective
and from a process perspective, as described in the following sections. At a high level, XsIPC instances are
building blocks for defining an application's IPC environment. This environment can be monolithic or it may
be divided into a number of parts. Strictly speaking, an application built using XsIPC is comprised of one or
more XsIPC instances.

6.4.1.1 Single-Instance Applications

In many situations the level of abstraction provided by one XsIPC instance is sufficient for an application's
IPC requirements. In such situations there is a one-to-one relationship between application and instance.
Such an application is a single-instance application. The following diagram schematically presents an
example of a single-instance application.

Of course, there is no restriction on the number of single-instance applications that can coexist on a single
node or on a network, nor is there any restriction as to the type of instance (stand-alone or network) used in
such applications.

Single-instance applications are the most basic way of using XsIPC to provide segregated IPC environments.
Multiple applications sharing a machine or a network are automatically insulated from one another at the IPC
level.

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 6—18

6—18

As an example, consider the following diagram depicting an environment in which three independent single-
instance applications are active. The environment may be a single node or a multi-node network.

6.4.1.2 Multi-Instance Applications

There are situations, particularly when larger applications are involved, when it is desirable to split an
application's IPC environment along certain physical or logical seams within the application. Such
applications are multi-instance applications.

Building an application using multiple instances allows the application architect to strategically position the
IPC components of the application where they fit best. Working with multiple instances further encourages
the logical division of the application's IPC resources according to the application's varying internal IPC
constraints.

Advanced Topics

© Envoy Technologies Inc. 6—19

The multi-instance application model broadens the class of applications requirements that can be met using
XsIPC . A large application having a hierarchical structure of processes can have its IPC environment
constructed along similar hierarchical lines.

The actual physical positioning of the application's IPC components can then be determined in a manner
that addresses the application's topological characteristics The following diagram offers two alternatives for
positioning the previous application's processes and XsIPC instances. Either selection would have no effect
on the XsIPC portion of the application.

Application architects may further employ the multi-instance application model to incorporate varying
degrees of redundancy within their application's IPC environment. Critical elements of the IPC environment
may be duplicated by using multiple instances in a primary (I) and backup (I') role. By duplicating its IPC
activity, the application can be designed to recover if an outage occurs on the primary instance platform.

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 6—20

6—20

This form of redundancy can be isolated to only the most critical portions of the application's IPC
environment, thus limiting the costs of such a capability to where it is truly necessary. Consider the
following example. The topmost instance is duplicated on a second node because of its critical role within
the overall application. The application may thus be engineered to recover from a failure within the primary
instance.

6.4.2 XsIPC INSTANCES: THE PROCESS PERSPECTIVE

The flip side of the XsIPC instance paradigm is an understanding of how a process interacts with an
application's XsIPC environment, specifically, the application's XsIPC instance(s).

6.4.2.1 Logging Into An Instance

Before a process can engage in an instance's IPC activity, it must first log into that instance. This is
accomplished by the process issuing an XipcLogin() function call to the target instance. The XipcLogin()
operation establishes a login session between the process and the instance. A User Id (Uid) integer
returned by XipcLogin() uniquely identifies the process’s new session with the instance.

Advanced Topics

© Envoy Technologies Inc. 6—21

In fact, a process may log into an instance more than once, with each XipcLogin() operation establishing an
independent logical session having a unique Uid within the instance. Examples of this appear later in this
section.

A login session between a process and an instance may be expressed schematically as:

or algebraically as:

login = (I, Uid)

Thus, for example, when a process successfully logs into instance "xyz" and is assigned a Uid of 5 within
the instance, this can be expressed as:

login = ("xyz", 5)

Processes that are part of a single-instance application will generally establish one login session with that
application's one instance.

6.4.2.2 A Process’s Working Set of Logins

Basic utilization of the XsIPC toolset typically involves processes that log in to a single XsIPC instance.
This, in fact, is a limited usage of a much broader capability.

As indicated above, a process may establish multiple login sessions with a single instance or, for that
matter, with multiple instances. Such is usually the situation regarding processes in a multi-instance
application. Processes there will typically log into more than one of the application's instances.

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 6—22

6—22

A process having multiple logins into one or more instances can be expressed schematically as:

Algebraically, such a process is said to have a working set of logins, connoted as:

L = { login1, login2, login3}

L = { (I1, Uid1), (I2, Uid2), (I3, Uid3) }

As an example, when a process successfully logs into three instances–"xyz," "abc" and "qrs"–with 10, 20
and 30 being the respective login Uid's, the situation may be expressed as:

L = { ("xyz", 10), ("abc", 20), ("qrs", 30) }

The earlier case of a process logging into a single instance had a working set of logins containing a single
element:

L = { ("xyz", 5) }

Advanced Topics

© Envoy Technologies Inc. 6—23

The above notation is extremely useful for describing relationships between user processes and XsIPC
instances.

6.4.2.3 Some Examples

The following examples essentially cover the gamut of possible cases:

o Not Logged In Anywhere

 A process that is not logged into any instance, such as when it first starts executing, is defined as
having a working set of logins that is empty:

L = { }

o Multiple Logins/Multiple Instances

 An example of a process that has logged into multiple instances one or more times is:

L = { ("xyz", 2), ("xyz", 3), ("xyz", 10), ("abc", 20), ("qrs", 30) }

o Single Login/Instance

 A process that logs into mu ltiple instances, one login per instance:

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 6—24

6—24

L = { ("xyz", 2), ("abc", 5), ("qrs", 2) }

o Multiple Logins/Single Instance

 A process that establishes multiple login sessions with a single instance:

L = { ("xyz", 2), ("xyz", 5), ("xyz", 4) }

This form of utilization is usually associated with a server process that is required to multiplex between
multiple independent login sessions within a single instance.

Advanced Topics

© Envoy Technologies Inc. 6—25

6.4.2.4 A Process’s Current Login

A process that has established multiple login sessions is actually connected to at most one of the logins at
any point in time. That login session is referred to as the process’s Current Login. XsIPC function calls that
access and/or manipulate XsIPC objects do so using the context of the calling process’s current login (i.e.,
its instance and Uid). As such, a process’s current login defines, for that process, the instance being dealt
with and the Uid being used within that instance, when XsIPC function calls are issued. It is thus generally
an error for a process to execute an XsIPC function call while its current login is not defined. This is
elaborated on below.

Consider the following example. Process P has established login sessions with two XsIPC instances. Two
login sessions (Uids 3 and 14) are with instance "xyz." A third is with instance "abc." The process’s current
login is highlighted.

L = { ("xyz", 3), ("xyz", 14), ("abc", 5) }

current_login = ("xyz", 14)

A process can control which login (from its working set of logins) is its current login by means of calls to
the XipcLogin(), XipcLogout(), XipcConnect() and XipcDisconnect() functions. This is now demonstrated.

6.4.2.5 Modifying a Process’s Working Set of Logins, Current Login

As was mentioned earlier, a process’s working set of logins is initially empty:

L = { }

In addition, the process’s current login is initially undefined:

current_login = ?

The means for adding and deleting logins from the working set and for setting the current login is by calls to
XipcLogin(), XipcLogout(), XipcConnect () and XipcDisconnect(). The best vehicle for describing how
these functions are employed for such activity is to present an example.

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 6—26

6—26

Example:

/*
 * The following example demonstrates how calls to XipcLogin(), XipcLogout(),
 * XipcConnect() and XipcDisconnect() affect the calling process’s
 * working set of logins and its current login. The comments along
 * the side provide a running trace of the changing contents of the
 * working set of logins. The login from the working set that is the current
 * login (if one is defined) is highlighted. If no login is highlighted,
 * then the process’s current login is undefined.
 */

VOID
 main()

{

 CHAR *I1 = "@abc";
 CHAR *I2 = "@xyz";
 CHAR *I3 = "@qrs";
 CHAR *Name = "Example";
 XINT Uid1, Uid2, Uid3;

 /* {Working Set Logins: initially empty} */

 Uid1 = XipcLogin (I1, Name); /* { (I1, Uid1) } */
 XipcDisconnect (); /* { (I1, Uid1) } */

 Uid2 = XipcLogin (I2, Name); /* { (I1, Uid1), (I2, Uid2) } */
 XipcDisconnect (); /* { (I1, Uid1), (I2, Uid2) } */

 Uid3 = XipcLogin (I3, Name); /* { (I1, Uid1), (I2, Uid2), (I3, Uid3) } */
 XipcDisconnect (); /* { (I1, Uid1), (I2, Uid2), (I3, Uid3) } */

 XipcConnect (I1, Uid1); /* { (I1, Uid1), (I2, Uid2), (I3, Uid3) } */

 XipcLogout (); /* { (I2, Uid2), (I3, Uid3) } */

}

The above example demonstrates a number of points:

o A process’s working set of logins is initially empty.

o A process’s current login is initially undefined.

o XipcLogin() adds a login to the calling process’s working set of logins and sets the process’s
current login to that login.

o XipcDisconnect() resets the calling process’s current login, leaving it undefined.

o XipcConnect() sets the calling process’s current login to the specified login.

o XipcLogout() deletes the calling process’s current login from its working set of logins. It also
resets the process’s current login, leaving it undefined.

Advanced Topics

© Envoy Technologies Inc. 6—27

Functional descriptions follow for the XipcConnect() and XipcDisconnect() function calls as well as
supplementary descriptions of XipcLogin() and XipcLogout(), describing how they affect a process’s
working set of logins and current login.

6.4.2.5.1 XIPCCONNECT() - Connect to a Login Session

The XipcConnect() function call sets the calling process’s current login to the login session specified by the
function's arguments. It is an error to call XipcConnect() when the process’s current login is defined. In
such a situation the process’s current login must first be reset either by a call to XipcDisconnect() or by a
call to XipcLogout(). These functions are described below.

XipcConnect() takes the following arguments:

o The instance name of the targeted login.

o The Uid of the targeted login.

The two arguments passed to XipcConnect() uniquely identify the login to connect to. Recall that an XsIPC
login session is connoted as the pair (Instance, Uid). The specified login must be a member of the calling
process’s working set of logins.

Example:

Uid = XipcLogin ("@xyz", "AnyUser");
XipcDisconnect();
 ...
 ...
XipcConnect ("@xyz", Uid);

6.4.2.5.2 XIPCDISCONNECT() - Disconnect from the Current Login Session

The XipcDisconnect() function call resets the calling process’s current login, leaving it undefined. It is an
error to call XipcDisconnect() when the process’s current login is not defined.

It is generally an error to issue an XsIPC function call when a process’s current login is undefined. The
exceptions to this rule are:

o XipcConnect() - to set the current login to an existing login session

o XipcLogin() - to establish a new login session, setting the current login to the new login

o XipcStart() - to start an XsIPC instance

o XipcStop() - to stop an XsIPC instance

o XipcInfoLogin() - to query information about the process’s working set of logins. This function is
described below.

XipcDisconnect() takes no arguments.

Example:

Uid = XipcLogin ("@abc", "AnyUser");
XipcDisconnect();

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 6—28

6—28

6.4.2.5.3 XIPCLOGIN() - Effect on Working Set of Logins, Current Login

The XipcLogin() function call is the basic entry point for working with an XsIPC instance. A successful call
to XipcLogin() adds the newly established login session to the calling process’s working set of logins. It
additionally sets the process’s current login to the new login session.

It is an error to issue an XipcLogin() call while the calling process’s current login is defined.

Example:

/*
 * INCORRECT ...
 */

Uid1 = XipcLogin ("@qrs", "AnyUser");
Uid2 = XipcLogin ("@xyz", "AnyUser");
/*
 * CORRECT ...
 */

Uid1 = XipcLogin ("@qrs", "AnyUser");
XipcDisconnect();
Uid2 = XipcLogin ("@xyz", "AnyUser");

6.4.2.5.4 XIPCLOGOUT () - Effect on Working Set of Logins, Current Login

The XipcLogout() function call is the basic exit point from working with an XsIPC instance. A successful call
to XipcLogout() deletes the current login session from the calling process’s working set of logins. It also
resets the process’s current login, leaving it undefined.

The rule against issuing XsIPC function calls while a process’s current login is undefined (as stipulated
regarding XipcDisconnect()) applies here as well.

6.4.2.6 Programming Within a Multi-Instance Environment

An important tool for coding programs that are to operate within multiple instance environments is the
XipcInfoLogin () function call. Using the XipcInfoLogin() function in conjunction with the other login-
related functions (XipcLogin(), XipcLogout(), XipcConnect() and XipcDisconnect()), it is possible to build
high levels of XsIPC object transparency. This is shown in the following sections.

6.4.2.6.1 XIPCINFOLOGIN() - Access Information About the Working Set of
Logins

The XipcInfoLogin() function call returns information about the calling process’s working set of logins.
Using this function it is possible to access information about one or more of the logins currently in the
calling process’s working set of logins.

In its most basic form, this function takes three arguments that allow for a wide range of flexibility in
specifying the subset of logins about which information should be returned. There are, however, a number
of convenient macro definitions that may be specified as arguments to the function for querying common
XipcInfoLogin() operations.

Advanced Topics

© Envoy Technologies Inc. 6—29

The basic interface to the XipcInfoLogin() function is presented below, followed by the more important
interface which uses predefined macros as arguments.

XipcInfoLogin(), when used in its basic form, takes the following arguments:

o A pointer to a user-declared structure (or perhaps to the first element of an array of structures) of
type XIPCINFOLOGIN, in which the requested login information is returned. This data type is
described below. If this argument is NULL, then the function returns the number of elements
currently in the working set of logins.

o The number of entries in the specified array.

o A pointer to a cursor variable used by XsIPC when using XipcInfoLogin() to enumerate the
elements within the working set of logins. If the cursor pointer variable is NULL, information
about the calling process’s current login is returned.

XipcInfoLogin() generally returns as its value the number of login information structures filled and returned
by the function call. XipcInfoLogin() returns a zero when no login information is returned.

A high-level interface to the XipcInfoLogin() function is provided by means of predefined macros that may
be used as arguments to the function:

o The XIPC_LOGIN_CURRENT macro may be used to access information about the calling
process’s current login.

 Example:

 XIPCINFOLOGIN InfoLogin;

 XipcInfoLogin (&InfoLogin, XIPC_LOGIN_CURRENT);

 When called using the XIPC_LOGIN_CURRENT macro, the function returns information about
the calling process’s current login within the XIPCINFOLOGIN structure.

o The XIPC_LOGIN_COUNT macro may be used for accessing the size of the calling process’s
working set of logins.

 Example:

 XINT SetSize;

 SetSize = XipcInfoLogin (XIPC_LOGIN_COUNT);

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 6—30

6—30

o The XIPC_LOGIN_INIT_ENUMERATION and XIPC_LOGIN_NEXT macros may be used for
enumerating the logins currently in the calling process’s working set of logins.

 Example:

 XIPCINFOLOGIN InfoLogin;
 XINT c;

 c = XIPC_LOGIN_INIT_ENUMERATION;
 while (XipcInfoLogin(&InfoLogin, XIPC_LOGIN_NEXT(c)))
 {
 /* Process InfoLogin */
 }

6.4.2.6.2 THE XIPCINFOLOGIN DATA TYPE

An XIPCINFOLOGIN structure, when used in conjunction with the XipcInfoLogin() function call, is returned
with login information about one of the logins in the calling process’s working set of logins.

The XIPCINFOLOGIN data type definition includes the following:

typedef struct _XIPCINFOLOGIN /* Login Information */
{
 ...

 CHAR *InstanceName; /* Pointer to Instance Name */
 XINT UserId; /* User Id within instance */
}
XIPCINFOLOGIN;

where:

o InstanceName - is a character pointer that is set by XipcInfoLogin(), pointing to an internal (user
space) string containing the instance name of the login session, and

o UserId - is the login session's Uid within the instance.

Working with XipcLogin(), XipcLogout(), XipcConnect(), XipcDisconnect() and XipcInfoLogin(), it is
possible to build a layer of XsIPC object transparency for working in a multi-instance programming
environment.

Consider the situation in which a program is to send messages onto various queues within a multi-instance
application, where the queues are specified by their names. The queues may in fact be defined on any of the
application's instances, but this is to be hidden from the main program. The following example outlines one
method of addressing this problem.

[Note that, for the sake of concept clarity, error checking is not included as part of the coding example.]

Advanced Topics

© Envoy Technologies Inc. 6—31

Example:

/*
 * The following sample program demonstrates a mechanism for performing
 * queue dispatch operations within a multi-instance XIPC environment.
 * The application's XIPC environment involves three instances: "abc",
 * "xyz" and "qrs". The application accesses two message queues named
 * "EMailQueue" and "DataBaseQueue". The application is not required to
 * know in which instance each queue is.
 */

VOID
main()

{

 CHAR *I1 = "@abc";
 CHAR *I2 = "@xyz";
 CHAR *I3 = "@qrs";
 CHAR *Name = "Example";
 XINT Uid1, Uid2, Uid3;

 Uid1 = XipcLogin (I1, Name);
 XipcDisconnect ();

 Uid2 = XipcLogin (I2, Name);
 XipcDisconnect ();

 Uid3 = XipcLogin (I3, Name);
 XipcDisconnect ();

 SendMsg ("EMailQueue", "This is an EMail message", 100);
 SendMsg ("DataBaseQueue", "This is a database message", 200);

 XipcConnect (I1, Uid1);
 XipcLogout ();

 XipcConnect (I2, Uid2);
 XipcLogout ();

 XipcConnect (I3, Uid3);
 XipcLogout ();
}

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 6—32

6—32

XINT
SendMsg (QueueName, Message, Priority)
CHAR *QueueName;
CHAR *Message;
XINT Priority;

{
 /*
 * This function calls FindQueue() to connect to the login session
 * whose instance contains the targeted queue. It then sends the
 * message. It finally disconnects the process from the login.
 */

 XINT Qid;
 XINT RetQid;

 Qid = FindQueue (QueueName);

 QueSend (QUE_ANY, QueList(Qid, QUE_EOL), Message, strlen(Message)+1,
 Priority, &RetQid, QUE_WAIT);

 XipcDisconnect();
}

XINT
FindQueue (QueueName)
CHAR *QueueName;

{
 /*
 * This function traverses the logins in the calling process’s
 * working set of logins, searching each login session to see whether
 * its instance has an XIPC message queue of the specified name. If it
 * finds such a queue, the process remains connected to that login and
 * returns the Qid found. Otherwise, it returns -1, indicating that no
 * such queue was found.
 */

 XIPCINFOLOGIN InfoLogin;
 XINT c;
 XINT Qid;

 c = XIPC_LOGIN_INIT_ENUMERATION;

 while (XipcInfoLogin(&InfoLogin, XIPC_LOGIN_NEXT(c)))
 {
 XipcConnect(InfoLogin.Instance, InfoLogin.Uid);
 if ((Qid = QueAccess(QueueName)) >= 0)
 return(Qid);
 XipcDisconnect();
 }

 return (-1);
}

Advanced Topics

© Envoy Technologies Inc. 6—33

This approach can be employed to provide transparent multi-instance access to XsIPC semaphores and
shared-memory segments as well. Enhancements can be added to optimize for situations where repeated
accesses are to occur, such as building a table of accessed objects within the FindQueue() function. One
approach is included as part of an example that is presented later in this section.

6.4.2.7 Asynchronous Operations in a Multi-Instance Environment

Ongoing XsIPC asynchronous activity related to a particular process is not affected by the current login
setting of that process.

Specifically, a process working within a multi-instance environment may initiate numerous asynchronous
operations within these instances and, when the operations complete, the process will be notified of each
completion in the manner that was specified when the operation was started (i.e., callback function, post
semaphore or ignore), regardless of the process’s current login at the time the operation completes.

This can be described by means of the following diagram. Process P is currently logged into three instances
"xyz", "abc" and "qrs" (twice to "xyz"). The process has initiated a number of asynchronous XsIPC
operations in the course of its work within the three instances. Perhaps it is waiting asynchronously for
certain events to occur, or for certain messages to arrive within those instances. It is currently connected to
login ("qrs", 3). Otherwise stated, the login ("qrs", 3) is the process’s current login.

The process will be notified of each asynchronous operation completion as it occurs within any of the three
instances, regardless of the fact that the process is currently connected to a login session within instance
"qrs." In fact, it would work as well if the process had not been connected to any of its login sessions at the
time that the asynchronous operation(s) completed.

Essentially, notification of asynchronous XsIPC events is passed to a process regardless of the process’s
current login status.

As an example of this concept, consider a modified version of the previous example where the process now
issues asynchronous QueReceive() operations using queues that are defined within the multi-instance
environment.

Example:

/*
 * The following sample program demonstrates a mechanism for performing

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 6—34

6—34

 * asynchronous queue retrieval operations in a multi-instance environment.
 */

VOID
main()

{

 CHAR *I1 = "@abc";
 CHAR *I2 = "@xyz";
 CHAR *I3 = "@qrs";
 CHAR *Name = "Example";
 XINT Uid1, Uid2, Uid3;
 CHAR DataBaseMsgBuf[100];
 CHAR EMailMsgBuf[100];
 ASYNCRESULT EMailAcb;
 ASYNCRESULT DataBaseAcb;

 /*
 * Establish logins into the application's XIPC instances.
 */

 Uid1 = XipcLogin (I1, Name);
 XipcDisconnect ();

 Uid2 = XipcLogin (I2, Name);
 XipcDisconnect ();

 Uid3 = XipcLogin (I3, Name);
 XipcDisconnect ();

 /*
 * Issue two asynchronous requests: one for any incoming EMail messages,
 * and one also for incoming DataBase transactions. Both operations are to
 * run asynchronously so that the process can do other work while the
 * requests are pending.
 */

 RecvMsgAsync ("EMailQueue", EMailMsgBuf, 100, EMailCallBack, &EMailAcb);

 RecvMsgAsync ("DataBaseQueue", DataBaseMsgBuf, 100, DataBaseCallBack,
 &DataBaseAcb);
 /*
 * Do other work while operations are
 * completing asynchronously ...
 */
 ...
 ...

 XipcConnect (I1, Uid1);
 XipcLogout ();

 XipcConnect (I2, Uid2);
 XipcLogout ();

Advanced Topics

© Envoy Technologies Inc. 6—35

 XipcConnect (I3, Uid3);
 XipcLogout ();

}

XINT
RecvMsgAsync (QueueName, MsgBuf, MsgBufSize, CallBack, Acb)
CHAR *QueueName;
CHAR *MsgBuf;
XINT MsgBufSize;
VOID (*CallBack)();
ASYNCRESULT *Acb;

{
 /*
 * This function calls FindQueue() to connect to the login session
 * whose instance contains the desired queue. It then issues the receive
 * operation. It then disconnects the process from the login.
 */

 XINT Qid;
 XINT RetQid;
 XINT Priority;

 Qid = FindQueue (QueueName);

 QueReceive (QUE_EA,
 QueList(Qid, QUE_EOL),
 MsgBuf,
 MsgBufSize,
 &Priority,
 &RetQid,
 QUE_CALLBACK(CallBack, Acb));

 XipcDisconnect();

}

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 6—36

6—36

XINT
FindQueue (QueueName)
CHAR *QueueName;

{
 /*
 * This function traverses the logins in the calling process’s
 * working set of logins, searching each login session to see
 * whether its instance has an XIPC message queue of the specified
 * name. If it finds such a queue, the process remains connected to that
 * login and returns the Qid found. Otherwise, it returns -1, indicating
 * that no such queue was found.
 */

 XIPCINFOLOGIN InfoLogin;
 XINT c;
 XINT Qid;

 c = XIPC_LOGIN_INIT_ENUMERATION;

 while (XipcInfoLogin(&InfoLogin, XIPC_LOGIN_NEXT(c)))
 {
 XipcConnect(InfoLogin.Instance, InfoLogin.Uid);
 if ((Qid = QueAccess(QueueName)) >= 0)
 return(Qid);
 XipcDisconnect();
 }

 return (-1);
}

VOID
EMailCallBack (Acb)
ASYNCRESULT *Acb;

{
 /*
 * Process EMail message that has arrived asynchronously ...
 */
}

VOID
DataBaseCallBack (Acb)
ASYNCRESULT *Acb;

{
 /*
 * Process DataBase message that has arrived asynchronously ...
 */
}

Advanced Topics

© Envoy Technologies Inc. 6—37

6.5 Starting and Stopping Instances Under Program Control

6.5.1 XipcStart() - STARTING AN INSTANCE

The XipcStart() function call is used for starting an XsIPC instanceError! Reference source not found. from
within a program. This form of instance control is needed for situations in which using the xipcstart
command is not appropriate.

The XipcStart() function call takes the following arguments:

o The Instance File Name of the instance to be started. Recall that the Instance File Name identifies
the configuration file (excluding the ".cfg" extension) to be used when starting the instance.

o The Instance Name (Local or Network) to be assigned to the instance. In the case that the
instance is being used in a stand-alone environment, this parameter must be set to NULL. If
NULL, the name will be taken from the parameter specified in the [XIPC] section of the Instance
Configuration File If no naming parameters are specified within the .cfg file either, then the
instance is started as a Stand-Along instance having no registered name. Such an instance is
only accessible via its Instance File Name. (See the XsIPC Reference Manual for further
information.)

o An Options parameter to indicate reporting, testing, initializing and other options.

Example:

/*
 * Start an instance that is based on the
 * "/projects/tpsys.cfg" configuration file.
 * Assign it the network name: "TPSYS".
 * The startup report is generated on 'stdout'.
 */

 XipcStart ("/projects/tpsys", "TPSYS",
XIPC_START_REPORT|XIPC_START_NETWORK);

Example:

/*
 * Start the same instance as in the previous example,
 * but this time as a stand-alone instance. Also, suppress
 * the startup report.
 */

 XipcStart ("/projects/tpsys", NULL, 0);

XipcStart() creates the IPC environment as described within its Instance Configuration File. As such, it must
be called before any program can log into the instance and use its IPC environment.

The XipcStart() function will only succeed when called as part of an XsIPC /Stand-Alone program to start a
local instance. It will otherwise return XIPC_ER_NOTLOCAL.

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 6—38

6—38

6.5.2 XipcStop() - STOPPING AN INSTANCE

The XipcStop() function call is used for stopping an XsIPC instance from within a program. This form of
instance control is needed in situations where using the xipcstop command is not appropriate.

The XipcStop() function call takes the following arguments:

o The Instance File Name of the instance to be stopped. The Instance File Name identifies the
configuration file (excluding the ".cfg" extension) that was used when starting the instance.

o An Options parameter to indicate whether a report that lists stopped subsystems should be
written to standard output; whether an instance should be "force" stopped; or neither.

Example:

/*
 * Stop the instance started above.
 */

 XipcStop ("/projects/tpsys", XIPC_STOP_REPORT);

The XipcStop() function will only succeed when called as part of an XsIPC /Stand-Alone or XsIPC /Local
program to stop a local instance. It will otherwise return XIPC_ER_NOTLOCAL.

Advanced Topics

© Envoy Technologies Inc. 6—39

6.6 Using XsIPC Libraries

6.6.1 INTRODUCTION

The XsIPC toolset includes a number of libraries for building applications using the XsIPC API. Technical
instructions for using these libraries are generally platform-specific in nature and are therefore included as
part of the Platform Notes for each of the platforms supported by XsIPC.

This section presents a high-level discussion of the issues relating to the usage of the different XsIPC API
libraries, focusing on the advantages and disadvantages of using each of the libraries in various application
settings. The term library, as used in this section, is applied in its generic sense. Some of the platforms that
support the XsIPC toolset refer to collections of object modules using different terminology. For the sake of
simplicity, this section will use the term library.

The XsIPC API library can be used in three modes, each of which addresses a specific application class. The
three modes are generally referred to as:

o The XsIPC Stand-Alone Library

o The XsIPC Network Library

o The XsIPC Combined Library

The determining factor in deciding which library to use for linking a program is the program's intended
proximity relative to the XsIPC instance(s) that it will be working with. Examples of different scenarios that
cover the range of possible situations are presented below.

6.6.2 THE XsIPC STAND-ALONE LIBRARY

Consider the following situation:

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 6—40

6—40

In the above scenario, XsIPC instances I1 and I2 have been started on a stand-alonecomputer platform.
Programs P1, P2 and P3 are to log into the instance(s) to access and manipulate their IPC objects.
Specifically, P1, P2 and P3 are to log into I1. P3 is also to log into instance I2. A common aspect of these
programs is that they are all accessing XsIPC instance(s) that are local to them. Because of this locality, the
programs can be linked using the XsIPC Stand-Alone Library. Such programs are said to belong to the class
of XsIPC Stand-Alone programs.

Using the XsIPC Stand-Alone Library guarantees that the process–instance interaction is performed directly,
without any network activity.

Programs that will always run on the same platform as the XsIPC instance(s) they work with may be linked
with the XsIPC Stand-Alone Library. As shown below, such programs may also be linked with the XsIPC
Combined Library.

To summarize, the advantage of using the XsIPC Stand-Alone Library is that:

o The executables that are produced make no reference to any networking capabilities and can
therefore be linked and run on platforms on which there is no network installed.

The disadvantage of using the XsIPC Stand-Alone Library is that:

o The resulting executables can only interact with local instances.

6.6.3 THE XsIPC NETWORK LIBRARY

Programs that are intended to interact with remote XsIPC instances exclusively may be linked using the
XsIPC Network Library. Such programs are said to belong to the class of XsIPC Network programs .

Consider the following situation:

Programs P1, P2 and P3 (on nodes N1 and N2) are intended to access XsIPC instances I1 and I2, where the
instances are started on remote platforms (nodes N3 and N4). In such a situation, the programs may be
linked with the XsIPC Network Library. As shown below, these programs may also be linked using the XsIPC
Combined Library.

Advanced Topics

© Envoy Technologies Inc. 6—41

The advantage of using the XsIPC Network Library is that:

o It produces a smaller executable than those produced by either the XsIPC Stand-Alone Library or
the XsIPC Combined Library.

The disadvantage of using the XsIPC Network Library is that:

o The resulting executables can only interact with remote XsIPC instances.

6.6.4 THE XsIPC COMBINED LIBRARY

Maximum flexibility is achieved using the XsIPC Combined Library. Programs that are intended to interact
with local and/or remote XsIPC instances should be linked using the XsIPC Combined Library. Such programs
are said to belong to the class of XsIPC Combined programs.

Consider the following situation:

Program P1 is linked with the XsIPC Combined Library. It can therefore interact with either or both of
instances I1 and I2, even though I1 is local and I2 is remote. In addition, the interaction between P1 and I1 is
carried out in a manner as direct as if the program were linked using the XsIPC Stand-Alone Library (i.e.,
avoiding the network environment entirely).

The same P1 executable would work without relinking (assuming N1 and N2 are homogeneous platforms) in
the following three situations:

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 6—42

6—42

The advantage of using the XsIPC Combined Library is that:

o The produced executables can interact with local and/or remote instances. This flexibility allows
for simplified application run-time configuration. The positioning of an application's processes
can be determined at run-time, regardless of the location of the application's XsIPC instance(s).
This flexibility is visible in the above diagram.

The disadvantages of using the XsIPC Combined Library are that:

o Linking and running programs that use the XsIPC Combined Library generally require the
availability of a networking environment on the platform. This makes it all but impossible to use
the XsIPC Combined Library on platforms that have no network capabilities, where XsIPC is being
used for its intra-nodal IPC capabilities.

o Executables that are produced using the XsIPC Combined Library are larger than those produced
using the Stand-Alone or Network libraries.

Advanced Topics

© Envoy Technologies Inc. 6—43

6.6.5 CONCLUSION

The three types of XsIPC API Library provide a wide range of flexibility for using the XsIPC toolset under
different application settings.

In most situations, linking with the XsIPC Combined Library is a safe choice–unless there is no network
available whatsoever, in which case the XsIPC Stand-Alone Library is required. As an application evolves,
its individual programs can subsequently be linked using either of the other XsIPC libraries to benefit from
their advantages, where possible.

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 6—44

6—44

6.7 Trap Handling

Applications using XsIPC can be designed to react promptly to asynchronous interrupt situations. There is
no conflict between XsIPC 's implementation and underlying operating system signal or trap mechanisms.

Trap service functions can be written to respond to operating system level signals or traps. Such functions
can include XsIPC function calls as well. For example, a trap function may respond to an asynchronous
interrupt signal or trap by setting a SemSys semaphore or by issuing QueSys messages.

The use of trap functions in conjunction with XsIPC requires, however, that the trap functions be coded with
a call to the XIPC_TRAP_FUNCTION_TEST() macro inserted at the start of the function.

The macro should be placed as the first executable statements in the trap function–possibly preceded only
by the necessary operating system calls required to re-enable the signal or trap, if so desired. The
XIPC_TRAP_FUNCTION_TEST() macro prevents trap service function execution at times when XsIPC
trap masking is in effect.

A user's trap function mask becomes active in two situations:

o XsIPC automatically activates a user's trap function mask to prevent trap function execution at
times when the user is executing internally within one of XsIPC 's critical regions. Trap function
execution, when prevented for these situations, is delayed momentarily.

o An application program can explicitly mask traps on its own at other times as well, using the
XipcMaskTraps() and XipcUnmaskTraps() function calls. Trap function execution, when
prevented with this approach can be delayed for as long as the program wishes. In this manner,
an application can prevent trap function execution during critical moments in its execution.

Both XipcMaskTraps() and XipcUnmaskTraps() take no arguments.

Example:

/*
 * Prevent trap handling.
 */

XipcMaskTraps();

/*
 * Do work that is uninterruptable.
 */

...
...

/*
 * Restore trap handling. Any functions that
 * were prevented from running while the mask
 * was active are now run.
 */

XipcUnmaskTraps();

Advanced Topics

© Envoy Technologies Inc. 6—45

The XIPC_TRAP_FUNCTION_TEST() macro requires arguments that are operating system specific. Refer
to the appropriate Platform Notes for details of its calling sequence.

As an example, consider the following body of a trap service function:

{

 /*
 * System call to reset the operating system 'signal'
 * or 'trap' flag should go here (if required).
 */

 XIPC_TRAP_FUNCTION_TEST(...);

 /*
 * The remainder of the function can safely
 * service the asynchronous 'signal' or 'trap'.
 */

 ...
 ...
 ...

 return;
}

A note regarding trap service functions and the SemList(), QueList() and MemList() functions: Recall that
these list functions build their lists in their own internal static memory. Calling these functions from within a
trap service function is thus dangerous, since the interrupted process might have been in the middle of
using this same static area.

It is therefore much safer to use the SemListBuild(), QueListBuild() and MemListBuild() functions instead,
because they build their lists using user-specified list variables. These list variables (of type SIDLIST,
QIDLIST or MIDLIST) should ideally be automatic (i.e., stack) variables; as such, they would avoid the
above-stated problem.

Two important notes regarding XipcMaskTraps() are:

o It only prevents the complete execution of trap handling functions (assuming they are coded with
the XIPC_TRAP_FUNCTION_TEST() macro at their start). It does not control whether signals
arrive at the process. A process that can receive a signal while traps are masked should be coded
to restart interrupted synchronous operations executed during that period.

o Asynchronous XsIPC operations that complete while traps are masked are prevented from having
their completion processing performed (e.g., running a callback function), until the mask is lifted
via a call to XipcUnmaskTraps().

It is therefore advisable to use XipcMaskTraps() and XipcUnmaskTraps() to mask traps for limited periods
of time and only when necessary.

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 6—46

6—46

6.8 XipcFreeze(), XipcUnfreeze() - Freezing and Unfreezing an Instance

The ability to freeze activity within an instance is most often only necessary at the subsystem level. Thus,
for example, a process can call QueFreeze() to freeze activity in an instance's QueSys for the purpose of
browsing message queues, etc.

For situations where the entire instance must be frozen, XsIPC provides the XipcFreeze() and XipcUnfreeze()
function calls. These functions call their three respective subsystem functions as a unit, the result being the
freezing or unfreezing of the entire instance.

Neither XipcFreeze() nor XipcUnfreeze() take any arguments:

Example:

/*
 * Freeze the instance. This gives the caller exclusive
 * access to all subsystems of the instance.
 */

XipcFreeze();

/*
 * Do exclusive work.
 */

...
...

/*
 * Unfreeze the instance. Other users are now permitted
 * to execute XIPC operations within the instance.
 */

XipcUnfreeze();

Advanced Topics

© Envoy Technologies Inc. 6—47

6.9 Extending X©IPC 's Functionality

XsIPC provides the developer with the means for extending XsIPC’ s capabilities beyond its basic
functionality. User-written functions, built upon the XsIPC API, can provide greatly expanded and
specialized forms of IPC functionality.

Examples of extending XsIPC’ s functionality could include user-written functions that:

o Increment a word of shared memory "atomically."

o Analyze the contents of all the messages on a message queue.

o Collect IPC statistics as part of a user-designed IPC monitoring system; collected data can be
used for display purposes or for dynamic system intervention.

o Capture periodic images of message queue, shared memory contents or event semaphore
settings.

6.9.1 INCREMENT A SHARED MEMORY WORD ATOMICALLY

Consider writing a user function that increments a four-byte "word" of XsIPC shared memory "atomically."
The target memory word is to be identified by Mid and Offset. The function should return the value of the
incremented word.

By masking MemSys traps and then freezing the subsystem, a series of MemSys operations can be issued
that are guaranteed to be run as an "atomic" unit, without trap function interruption and without other
MemSys user operations executing interwoven within.

This is a basic requirement for coding a user-defined atomic operation that issues multiple XsIPC function
calls.

Example:

/*
 * MemIncr() --- Version 1.
 */

XINT
MemIncr (Mid, Offset)
XINT Mid;
XINT Offset;
{
 XINT Data;

 /*
 * Stop everything.
 */

 XipcMaskTraps();
 MemFreeze();

 /*
 * Perform the necessary MemSys operations.
 */

 MemRead (Mid, Offset, (CHAR *)&Data, 4L, MEM_NOWAIT);

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 6—48

6—48

 Data ++;

 MemWrite (Mid, Offset, (CHAR *)&Data, 4L, MEM_NOWAIT);

 /*
 * Restart everything.
 */

 MemUnfreeze();
 XipcUnmaskTraps();

 return (Data);
}

The above example is sufficient for situations where it is known that the MemRead() and MemWrite()
function calls will always have read/write access to the targeted area.

For situations where this is not the case, a more generalized solution can be built. MemLock() and
MemUnlock() are resorted to if the targeted area is not read/write accessible.

Example:
/*
 * MemIncr() --- Version 2.
 */

XINT
MemIncr (Mid, Offset)
XINT Mid;
XINT Offset;
{
 XINT Data;
 XINT RC;

 /*
 * Stop everything.
 */

 XipcMaskTraps();
 MemFreeze();

 /*
 * Attempt without locking.
 */

 RC = MemRead(Mid, Offset, (CHAR *)&Data, 4L, MEM_NOWAIT);

 if (RC == MEM_ER_NOWAIT)
 {
 MemUnfreeze();
 XipcUnmaskTraps();
 return(MemIncrLock(Mid, Offset));
 }

 Data ++;

 RC= MemWrite(Mid, Offset, (CHAR *)&Data, 4L, MEM_NOWAIT);

 if (RC == MEM_ER_NOWAIT)
 {
 MemUnfreeze();
 XipcUnmaskTraps();
 return(MemIncrLock(Mid, Offset));
 };

Advanced Topics

© Envoy Technologies Inc. 6—49

 /*
 * Restart everything.
 */

 MemUnfreeze();
 XipcUnmaskTraps();
 return (Data);
}

/*...*/
/*
 * MemIncrLock() --- Performs increment operation using
 * MemLock and MemUnlock.
 */

XINT
MemIncrLock(Mid, Offset)
XINT Mid;
XINT Offset;
{
 SECTION TempSec, RetSec;
 MIDLIST MidList;
 XINT Data;

 /*
 * Perform the MemIncr operation
 * using MemLock/MemUnlock to wait
 * for target to become accessible.
 */

 XipcMaskTraps();

 MemListBuild(MidList,
 *MemSection(&TempSec, Mid, Offset, 4L),
 MEM_EOL);

 MemLock (MEM_ALL, MidList, &RetSec, MEM_WAIT);
 MemRead (Mid, Offset, (CHAR *)&Data, 4L, MEM_NOWAIT);

 Data ++;

 MemWrite (Mid, Offset, (CHAR *)&Data, 4L, MEM_NOWAIT);
 MemUnlock (MidList, &RetSec);

 XipcUnmaskTraps();
 return (Data);
}

This version will perform like the first example, so long as the calling user has read/write access to the
targeted memory area. If the area is found inaccessible by either MemRead() or MemWrite() then the
operation is performed using a memory locking approach by a call to MemIncrLock().

To summarize, the ability to extend XsIPC’ s functionality greatly broadens the range of IPC application
requirements that can be addressed using the XsIPC product.

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 6—50

6—50

6.10 Info Function List Manipulation

6.10.1 INTRODUCTION
Many of the Information functions provided within XsIPC 's subsystems return list data in addition to
identification and statistical information. The method for accessing list data is uniform across all "Info"
functions providing such information.

This section describes in detail how to request and receive complete representations of the various internal
XsIPC lists, using the Information function calls. The method that is demonstrated applies in a similar vein to
all "Info" function list data.

6.10.2 INFORMATION VERBS

XsIPC provides a number of verbs that allow a user to extract information regarding subsystem
activity within an instance. The major information verbs are:

MOMSYS

♦ MomInfoSys() - Provides general, message repository and communication manager
information

♦ MomInfoAppQueue() - Provides application queue information

♦ MomInfoUser() - Provides user information; also used for providing information about
pending asynchronous operations and MomSys events

♦ MomInfoMessage() - Provides the latest information regarding a message

♦ MomInfoLink() - Provides information about MomSys links to other XsIPC instances

QUESYS

♦ QueInfoQue() - Provides queue information

♦ QueInfoSys() - Provides QueSys information

♦ QueInfoUser() - Provides user information; also provides information about pending
asynchronous operations and QueSys events.

MEMSYS

♦ MemInfoMem() - Provides memory segment information

♦ MemInfoSec() - Provides section information

♦ MemInfoSys() - Provides MemSys information

♦ MemInfoUser() - Provides user information; also provides information about pending
asynchronous operations and MemSys events.

SEMSYS

♦ SemInfoSem() - Provides semaphore information

♦ SemInfoSys() - Provides SemSys information

Advanced Topics

© Envoy Technologies Inc. 6—51

♦ SemInfoUser() - Provides user information; also provides information about pending
asynchronous operations and SemSys events.

Other secondary information verbs are provided as well for reporting less significant information occurring
within the specified subsystem.

Using these verbs it is possible to build customized monitor processes within an application that oversee
the internal operations of the application. It is additionally possible to build customized GUI-based
application monitors that display data retrieved from these functions in a customized display format.

6.10.3 UNDERSTANDING XsIPC INFORMATION VERBS

Within the family of Information verbs, all of the verbs listed above can be employed to obtain information
about a series of subsystem data items. The programming method for looping through the series of items in
this group, using a MomSys example, is:

1. Initially, call MomInfoXxx(MOM_INFO_FIRST, &...) .

2. Subsequently, call MomInfoXxx(MOM_INFO_NEXT(...), &...) .

3. Stop when the return code is MOM_ER_NOMORE .

Two other verbs in the MomSys subsystem -- MomInfoAppQueueWList() and
MomInfoUserAlist() -- can be used to report more detailed MomSys information. The programming
method looping through the series of items in this group is:

1. Initially, call the corresponding MomInfoXxx() verb, and use its output parameter both to
initialize a cursor variable (e.g., MyCursor) to the position of the first element of the XList, and
also to obtain information about that element

2. Then, call MomInfoXxxXList(..., &MyCursor, &...). This advances MyCursor to
the position of the next element of the XList and obtains information about that element.

3. Stop when the return code is MOM_ER_NOMORE.

6.10.4 CODING EXAMPLES OF MOMSYS INFORMATION VERBS
The following two code templates illustrate the two styles of information-gathering loops (including error
checking).

Example 1:

 /*
 * Sample of MomInfoXxx()verb usage - e.g. for MomInfoAppQueue().
 * Loop through all the app-queues in the current instance,
 * retrieving and processing the status data of each app-queue.
 */

 MOMINFOAPPQUEUE MyInfoAppQueue;
 XINT RC, MyAQid;

 for (RC = MomInfoAppQueue(MOM_INFO_FIRST, &MyInfoAppQueue);
 RC != MOM_ER_NOMORE;
 RC = MomInfoAppQueue(MOM_INFO_NEXT(MyAQid), &MyInfoAppQueue))
 {
 if (RC < 0)
 {
 /* Take appropriate error action for MyInfoAppQueue */
 . . .
 break;

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 6—52

6—52

 }

 MyAQid = MyInfoAppQueue.AQid;

 /* Process MyInfoAppQueue data for MyAQid */
 . . .
 } /* for */

Example 2:

 /*
 * Sample of MomInfoXxxXList() verb usage - e.g. for MomInfoAppQueueWList().
 * Loop through the entire wait-list for the specific app-queue
 * identified by MyAQid, retrieving and processing the status
 * data of each wait-list element.
 */

 XINT RC, MyAQid, MyCursor;
 MOMINFOAPPQUEUE MyInfoAppQueue;
 MOM_APPQUEUEWLISTITEM MyWListItem;

 MyAQid = ...; /* AQid of app-queue whose wait-list is to be traversed */

 if ((RC = MomInfoAppQueue(MyAqid, &MyInfoAppQueue)) < 0) /
 {
 if (RC != MOM_ER_NOMORE)
 {
 /* Take appropriate error action for MomInfoAppQueue() */
 . . .
 }
 }
 else /* we have at least one element in the wait-list */
 {
 for (MyCursor = MyInfoAppQueue.WListInitialCursor,
 MyWListItem = MyInfoAppQueue.WListFirstItem;
 RC != MOM_ER_NOMORE;
 RC = MomInfoAppQueueWList(MyAQid, &MyCursor, &MyWListItem))

 {
 if (RC != MOM_ER_NOMORE)
 {
 /* Take appropriate error action for MomInfoAppQueueWList */
 . . .
 break;
 }

 /* Process MyWListItem data */
 . . .

 } /* for */

 } /* else */

Advanced Topics

© Envoy Technologies Inc. 6—53

If one wanted to loop through all the app-queues' wait-lists, then the second code segment above would be
nested within the first segment, so that the processing of each app-queue would entail traversing its wait-
list.
Refer to the respective Reference Manual pages for additional details on the usage of these verbs.

6.10.5 SAMPLE QUESYS FUNCTION

Consider the QUEINFOSYS data structure. A pointer to such a structure is passed as a parameter to the
QueInfoSys() function for accessing status information about an instance's QueSys.

The QUEINFOSYS structure returns with assorted identification and statistical data that describe the status
of the QueSys subsystem. QueInfoSys() additionally returns with Wait List data relating to the subsystem's
Message Text Pool. The Wait List identifies the list of QueSys users currently blocked on QueWrite()
operations to the Message Text Pool.

The QUEINFOSYS data type includes the following fields:

typedef struct
{
 /*
 * Identification and statistical data.
 */

 ...
 ...

 /*
 * List data.
 */

 XINT WListTotalLength;
 XINT WListOffset;
 XINT WListLength;
 QUE_SYSWLISTITEM; WList[QUE_LEN_INFOLIST];

} QUEINFOSYS;

where the QUE_SYSWLISTITEM data type is defined as:

typedef struct
{
 XINT Uid;
 XINT MsgSize;

} QUE_SYSWLISTITEM;

The WListOffset field of the QUEINFOSYS structure should be set before QueInfoSys() is called. Setting it to
zero instructs the function to return with WList data, starting with the first element on the list.

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 6—54

6—54

Example:

/*
 * Report all blocked QueWrite operations
 * currently occurring in QueSys.
 */

QUEINFOSYS InfoSys;
XINT i;

/*
 * Set offset to zero so that WList data is returned
 * from the start of the list.
 */

InfoSys.WListOffset = 0;

QueInfoSys (&InfoSys);

for (i=0; i < InfoSys.WListLength; i++)
 printf("Uid %d is blocked on QueWrite of %ld bytes",
 InfoSys.WList[i].Uid, InfoSys.WList[i].MsgSize);

The WList is defined so that it may hold up to QUE_LEN_INFOLIST elements. The above example
assumes that the Wait List of blocked QueWrite() operations is within this limit. In such a case,
InfoSys.WListLength will equal InfoSys.WListTotalLength, and the entire list will be printed.

It is, however, possible that the current Wait List has more than QUE_LEN_INFOLIST elements. In such a
situation, the value of InfoSys.WListTotalLength will be set to the total number of blocked QueWrite()
operations, and InfoSys.WListLength will be equal to QUE_LEN_INFOLIST.

Getting the entire Wait List would then require a loop of QueInfoSys() calls.

Advanced Topics

© Envoy Technologies Inc. 6—55

Example:

/*
 * Report all blocked QueWrite operations
 * currently occurring in QueSys.
 */

QUEINFOSYS InfoSys;
XINT i;

/*
 * Set offset to zero so that WList data is returned
 * from the start of the list.
 */

InfoSys.WListOffset = 0;

do
{
 QueInfoSys (&InfoSys);

 for (i=0; i < InfoSys.WListLength; i++)
 printf("Uid %d blocked on QueWrite of %ld bytes",
 InfoSys.WList[i].Uid, InfoSys.WList[i].MsgSize);

 InfoSys.WListOffset += InfoSys.WListLength;

} while (InfoSys.WListOffset < InfoSys.WListTotalLength);

The problem with issuing multiple calls to QueInfoSys() to report on Wait List status is one of data
variability. Things can happen between the calls.

This can be prevented by freezing QueSys and masking traps for the duration of the reporting loop. This will
guarantee that the collected Wait List data is complete, accurate and consistent.

The method outlined in the next example for acquiring Wait List data can be applied in a similar manner to all
of XsIPC 's "Info" function list data.

In summary, by using the "Info" function calls in conjunction with the XxxFreeze() and XipcMaskTraps()
function calls, it is possible to build customized IPC reporting and monitoring capabilities into your product,
tailored to the specific real-time reporting needs of the application. An example of this approach follows:

Example:

/*
 * Report all blocked QueWrite operations
 * currently occurring in QueSys.
 */

QUEINFOSYS InfoSys;
XINT i;

/*
 * Stop everything.
 */

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 6—56

6—56

XipcMaskTraps();
QueFreeze();

/*
 * Set offset to zero so that WList data is returned
 * from the start of the list.
 */

InfoSys.WListOffset = 0;

do
{
 QueInfoSys (&InfoSys);

 for (i=0; i<InfoSys.WListLength; i++)
 printf("Uid %d blocked on QueWrite of %ld bytes",
 InfoSys.WList[i].Uid, InfoSys.WList[i].MsgSize);

 InfoSys.WListOffset += InfoSys.WListLength;

} while (InfoSys.WListOffset < InfoSys.WListTotalLength);

/*
 * Restart everything.
 */

QueUnfreeze();
XipcUnmaskTraps();

Advanced Topics

© Envoy Technologies Inc. 6—57

6.11 The XsIPC Command Interpreter

The XsIPC toolset provides the application developer with the ability to manipulate an XsIPC instance and its
IPC objects interactively. This is accomplished using the xipc interactive command interpreter.

xipc provides an interactive interface to all the XsIPC API's. xipc is most useful in situations where
access to an instance and its IPC objects are required on an ad-hoc basis. This need can arise throughout
the application development process.

With xipc it is possible, for example, to:

o Create or delete XsIPC objects (queues, app-queues, semaphores, segments)

o Set or clear event semaphores

o Initialize the contents of a shared memory segment

o Extract arbitrary messages from a message queue

o Lock (or otherwise set the access privileges of) areas in shared memory

o Clean up after "untidy" user programs

o Insert messages onto one or more message queues

o Control a queue's overflow spooling activity

o Set or reset XsIPC triggers

o Initiate an asynchronous XsIPC operation that, when completed, executes another XsIPC
command or native operating system command

o Log into a corrupted XsIPC instance to examine its status

o etc.

The xipc interactive interpreter is based on a language of commands. The exact syntax and details of using
the xipc interactive command language are described in the chapter on XsIPC Commands in the XsIPC
Reference Manual.

6.11.1 SAMPLE USAGE OF THE XsIPC INTERACTIVE COMMAND
INTERPRETER

This section presents a selection of sample xipc sessions. The examples demonstrate the types of
situations where using xipc can provide important time-saving development assistance.

 XsIPC Version 3.4.0 User Guide Date: 1/20/2004 - Revision: 2

© Envoy Technologies Inc. 6—58

6—58

Sample 1 : Run a native Operating System command.

xipc> # UNIX example of operating system command
xipc> !date
 Thu May 21 10:58:20 EDT 1996

xipc> # VMS example of operating system command
xipc> !show time
 21-May-1996 10:58:20

xipc> # OS/2 example of operating system command
xipc> !date
 The current date is: Thu 5-21-1996
 Enter the new date: (mm-dd-yy)

Sample 2 : Initiate an asynchronous operation and arrange that its completion runs a second XsIPC
command.

xipc> # Assign callback variable cba with xipc command to send
xipc> # an application shutdown message into queue 0
xipc> callback cba "quesend any 0 999 \"Shutdown\" wait"
 Command saved
xipc> # Initiate an asynchronous operation that waits for
xipc> # three events to occur. When they all have occurred,
xipc> # callback cba is run, i.e., the above xipc command
xipc> # is executed.
xipc> semwait all 0,1,2 callback(cba,a)
 RetCode = -1097
 Operation continuing asynchronously

Sample 3 : Initiate an asynchronous operation and arrange that its completion runs a native operating
system command to print report xyz.

xipc> # Assign callback variable cbz with xipc "!" command
xipc> # which will execute an operating system command to
xipc> # produce report xyz
xipc> callback cbz "! print xyz"
 Command saved
xipc> # Initiate an asynchronous operation that waits for
xipc> # any of events 10,20,30 to occur. When this happens,
xipc> # callback cbz is run, i.e., the above operating system
xipc> # command is executed.
xipc> semwait any 10,20,30 callback(cbz,c)
 RetCode = 0

Advanced Topics

© Envoy Technologies Inc. 6—59

Sample 4 : Log into two instances.

xipc> xipclogin /proj/xipc/demo Jack
 Uid = 11
xipc> xipcdisconnect
 RetCode = 0
xipc> xipclogin @DB Jack
 Uid = 15
xipc> xipcinfologin
 Uid Instance
 --- --------
 15 @DB
 11 /proj/xipc/demo

A brief note regarding this last example: The superuser capability, in providing a means for logging into
an otherwise inaccessible instance, also returns the instance to a state where it may be accessed on a
general basis (such as by the XsIPC monitor programs).

There is no guarantee, however, that the instance is in complete working order. The superuser login is
most useful for ascertaining the identity of the program that last accessed the instance, i.e., the one that was
the likely cause of the instance becoming corrupted.

INDEX

© Envoy Technologies Inc. 7—1

7. INDEX

.cfg file. See Instance Configuration File
Aborting asynchronous operations, 6—13
ACB, 5—3, 5—4, 6—5, 6—6

AsyncStatus Field, 6—5
AUid Field, 6—5
Opcode Field, 6—5
Return values, 6—8
UserData Fields, 6—5, 6—11

Asynchronous blocking options, 6—5
Asynchronous blocking options, 5—3
Asynchronous operations, 6—37, 6—40, 6—53

Mixing with synchronous, 6—14
Asynchronous operations, 2—3

 Multi-instance environment, 6—30
Asynchronous User Id. See AUid
ASYNCRESULT Control Block. See ACB
AUid, 5—7, 6—5
Blocking options, 5—2, 5—3, 5—4

Forced blocking, 6—10
BlockOpt. See Blocking options
Browsing, 5—10
CALLBACK option, 5—3, 6—5, 6—9
CALLBACK option, 6—9
Combined library, 6—37
Command Interpreter. See Interactive Command

Interpreter
Configuration File. See Instance Configuration

File
Connectivity, 1—3
Daemon/service programs, 3—3
Daemon/service programs, 3—1
Debugging, 2—2
Distributed computing, 1—2
Distributed processes, 1—2
Error codes, 5—11
Extended functionality, 6—43
FindQueue(), 6—29, 6—31
IGNORE option, 5—3, 6—5
Interactive Command Interpreter, 6—52
Info Functions. See Information Verbs
Information Verbs, 6—46
Installation, 1—4
Instance, 4—1.

Application perspective, 6—16
Configuration, 4—4
Local. See Local instance
Network. See Network instance
Process perspective, 6—19
Program Control, 6—34
Special, 4—5
Stand-alone. See Stand-alone instance

Starting an, 4—3, 6—34
Stopping an, 4—4, 6—35
Test Starting an, 4—4
Working with, 6—16

Instance Configuration File, 4—3
Instance File Name, 4—7, 4—14
Instance Configuration File, 4—1
InstanceFileName , 4—1
Interprocess Communication, 2—1. See IPC
Interrupts, 6—40
Interval Snapshot Mode, 5—7
IPC, 2—1–2—3, 2—1, 6—16
Libraries, 6—36.

Combined, 4—9, 6—37
Network, 4—14, 6—37
Stand-Alone, 6—36

Local instance, 4—7
Commands, 4—8
Configuration, 4—8
Environment, 4—8
Login, 5—1
Naming, 4—8
Programming, 4—9

Logging
Daemon/service programs, 3—6
Instance, 3—7, 6—19
Platform environment, 3—6

Login
Current, 6—22, 6—23
Modify working set, 6—23
Multiple, 6—21
Process working set, 6—20
Single, 6—21

MEM_CALLBACK, 5—4
MEM_ER_ASYNC, 6—5
MEM_IGNORE, 5—4
MEM_NOWAIT, 5—4
MEM_POST, 5—4
MEM_RETURN, 5—4
MEM_TIMEOUT, 5—4
MEM_WAIT, 5—4
MemAbortAsync(), 6—13
MemIncrLock(), 6—45
MemInfoMem(), 6—46
MemInfoSec(), 6—46
MemInfoSys(), 6—46
MemInfoUser(), 6—46
MemList(), 6—41
MemListBuild(), 6—41
MemLock(), 6—44
MemLogin(), 4—7

© Envoy Technologies Inc. 7—2

Memory segment watching, 5—10
MemRead(), 6—9, 6—44, 6—45
MemSys, 1—1, 4—1, 4—9, 6—43, 6—46
MemUnlock(), 6—44
MemView, 4—7, 4—9, 4—14, 5—6
MemWrite(), 6—9, 6—12, 6—44, 6—45
Multi-instance application, 6—17
MomAbortAsync(), 6—13
MomInfoAppQueue(), 6—46
MomInfoLink(), 6—46
MomInfoMessage(), 6—46
MomInfoSys(), 6—46
MomInfoUser(), 6—46
MomInfoUserAList(), 6—47
MomReceive(), 6—9
MomSend(), 6—9
MomSys, 1—1, 3—2, 4—1, 4—7, 6—1, 6—16,

6—46, 6—47
MomView, 5—6
Monitor modes

Command, 5—8
Trace Flow, 5—8
Trace Step, 5—8
Update, 5—7

Monitor modes, 5—7
Monitoring

Basic Commands, 5—8
Monitoring, 4—7, 4—9, 5—6
Monitoring, 2—2, 4—13
Monitoring, 5—11
Multi-instance applications, 4—14
Multi-instance applications, 6—25
Multiple instances, 4—5
multitasking, 2—1
Network application development, 1—2
Network instance

Commands, 4—12
Configuration, 4—10
Environment, 4—14
Location, 4—10
Login, 5—1
Naming, 4—10
Programming, 4—14
Search range, 4—11
Search range specification, 4—12

Network library, 6—37
Network programming, 2—3
Network resources, 1—4
Network transparency, 2—3
Network instance, 4—9
NOWAIT option, 5—2
Null Subsystem, 4—2
Operating system platforms, 1—3
Operating system resources, 1—4

OS/2, 2—1
Panning, 5—11
Platform Commands, 3—4
Platform configuration, 3—1

Client, 3—3
Server, 3—1

Portability, 2—3
POST Option, 6—11
POST option, 5—3, 6—5
Platform environment, 3—1
Pseudo-user, 6—5
QUE_CALLBACK, 5—4
QUE_ER_ASYNC, 6—5
QUE_IGNORE, 5—4
QUE_NOWAIT, 5—4
QUE_POST, 5—4
QUE_RETURN, 5—4
QUE_SYSWLISTITEM, 6—49
QUE_TIMEOUT, 5—4
QUE_WAIT, 5—4
QueAbortAsync(), 6—13
QueFreeze(), 6—42
QueInfoQue(), 6—46
QUEINFOSYS, 6—49
QueInfoSys(), 6—46, 6—48
QueInfoUser(), 6—46
QueList(), 6—41
QueListBuild(), 6—41
QueLogin(), 4—7
QueRead(), 6—9
QueReceive(), 6—9, 6—30
QueSend(), 6—9
QueSys, 1—1, 4—1, 4—9, 6—46, 6—48
QueView, 4—7, 4—9, 4—14, 5—6
QueWrite(), 6—9, 6—49
Return codes, 5—11
RETURN option, 5—3
SEM_CALLBACK, 5—4
SEM_ER_ASYNC, 6—5
SEM_IGNORE, 5—4
SEM_NOWAIT, 5—4
SEM_POST, 5—4
SEM_RETURN, 5—4
SEM_TIMEOUT, 5—4
SEM_WAIT, 5—4
SemAbortAsync(), 6—13
SemInfoSem(), 6—46
SemInfoSys(), 6—46
SemInfoUser(), 6—47
SemList(), 6—41
SemListBuild(), 6—41
SemLogin(), 4—7
MOM_ER_ASYNC, 6—5
SemSys, 1—1, 4—1, 4—9, 5—7, 6—46

INDEX

© Envoy Technologies Inc. 7—3

SemView, 4—7, 4—9, 4—14, 5—6

Shareable Images. See Libraries
Signals, 6—40
Spooling, 6—52
Single-instance application, 6—16
Stand-alone instance, 4—5
Synchronous blocking options, 5—2
Stand-alone instance

Commands, 4—6
Configuration, 4—6
Environment, 4—6
Login, 5—1
Naming, 4—6
Programming, 4—7

Stand-alone library, 6—36
START parameter, 3—2, 3—3
Superuser, 6—54
Synchronous blocking options, 5—3
Synchronous operations

Mixing with asynchronous, 6—14
Synchronous Operations, 2—3
System design, 1—2
System maintenance, 1—2
System integration, 1—2
TIMEOUT option, 5—2, 6—5
Trace Flow Mode, 5—8, 5—9
Trace step mode, 5—8
Trace Step Mode, 5—9
Trap handling, 6—43
Trap handling, 6—40
Triggers, 6—52
Testing, 4—5
UNIX, 2—1
UnZooming, 5—10
VMS, 2—1
Wait List, 6—49, 6—50
Wait List, 6—50
WAIT option, 5—2, 6—5
Watching, 5—10
Window, 6—14
Windows, 2—1
WList. See Wait List
Working set of logins, 6—20
Working set of logins, 6—27
xe, 5—7
XE, 2—1
XIPC environment variable, 4—7
xipc.env file, 3—1, 3—3, 3—4, 4—3

default, 3—2
XIPC_LOGIN macros, 6—26
XIPC_TRAP_FUNCTION_TEST(), 6—40
XipcAbort(), 5—2

XIPCCAT environment variable, 4—11, 4—12,
4—14

XIPCCATLIST environment variable, 4—11,
4—12

XIPCCATLIST environment variable, 4—14
XipcDisconnect(), 6—23, 6—24, 6—25, 6—27
XipcError(), 5—11
XipcFreeze(), 6—42
XIPCHOST environment variable, 4—11, 4—14
XIPCHOSTLIST environment variable, 4—11,

4—12, 4—14
XIPCINFOLOGIN, 6—26
XIPCINFOLOGIN data type, 6—27
XipcInfoLogin(), 6—25, 6—26, 6—27
xipcinit, 3—1
xipcinit command, 3—4, 4—3
xipcinit command, 3—5
xipclist command, 4—13
XipcLogin(), 4—7, 4—9, 4—11, 4—14, 5—1, 6—

23, 6—25, 6—27
XipcLogout(), 5—1, 6—23, 6—24, 6—25, 6—27
XipcMaskTraps(), 6—40, 6—50
XIPCPATH parameter, 3—5
XIPCROOT environment variable, 3—4, 4—3,

4—7, 4—9
XIPCROOT environment variable, 3—5, 3—6
xipcstart command, 4—3, 4—4, 4—6, 4—7,

4—8, 4—12
xipcstop command, 4—4, 4—6, 4—8, 4—13
xipcsys.log file, 3—6
xipcterm command, 3—4
xipcterm command, 3—6
XipcUnfreeze(), 6—42
XipcUnmaskTraps(), 6—40
XxxFreeze(), 6—50
Zooming, 5—9

