

Envoy Connect XIPC Connector
Version 3.4.0

Platform Notes - UNIX

Envoy Technologies Inc.
555 Route 1 South
Iselin, NJ 08830

http://www.envoytech.com

Copyright © 2004 Envoy Technologies Inc. All rights reserved

This document and the software supplied with this document are the property of Envoy Technologies Inc. and are furnished
under a licensing agreement. Neither the software nor this document may be copied or transferred by any means, electronic
or mechanical, except as provided in the licensing agreement. The information in this document is subject to change without
prior notice and does not represent a commitment by Envoy Technologies Inc. or it's representatives.

Printed in the United States of America.

Envoy XIPC, Envoy Connect XIPC are either trademarks or registered trademarks of Envoy Technologies Inc. Other
product and company names mentioned herein might be the trademarks of their respective owners.

Envoy Connect XIPC is represented throughout the documentation as X IPC.

X IPC Version 3.4.0 Platform Notes for UNIX Platforms II

Date: 1/15/2004 - Revision: 5

TABLE OF CONTENTS

1. PREFACE...1

1.1 Purpose ..1

1.2 Audience...1

1.3 Contents ...1

2. INSTALLATION ...2

2.1 Selecting A Target Machine ...2

2.2 Reading X IPC Onto The Target Machine ..2

2.3 Configuring the Platform Kernel ...3

2.4 Configuring the Platform Environment ...4

2.4.1 XIPCROOT...4

2.4.2 Path ...4

2.5 Configuring the Network Environment..4

2.6 Configuring the X IPC Daemon Programs ..4

3. USING X IPC ON UNIX PLATFORMS ..5

3.1 Calculating Resource Requirements..5

3.1.1 UNIX Native IPC Requirements ...5

3.1.2 Requirements for X IPC Network..6

3.2 The X IPC Daemons ..6

3.2.1 Starting and Stopping X IPC Daemons ..7

3.3 Application Development With X IPC on UNIX Platforms..7

3.3.1 Predefined Datatypes ...7

3.3.2 Compiling..7

X IPC Version 3.4.0 Platform Notes for UNIX Platforms III

Date: 1/15/2004 - Revision: 5

3.3.3 Linking ..7

3.3.4 Signals ..9

3.3.5 Trap Functions ..9

3.3.6 Sample Programs...12

3.4 X IPC Advanced Instance Configuration (".cfg" File) ..12

3.4.1 Configuring X IPC for Multiple-CPU (SMP) Systems...12

3.4.2 Configuring to Use a Single Memory Element ...12

3.4.3 Memory-Mapped Files..13

3.5 Using X IPC Threads ...13

3.5.1 Compiling..13

3.5.2 Linking ..13

3.5.3 Examples ..13

4. INDEX...14

X IPC Version 3.4.0 Platform Notes for UNIX Platforms 1

1. PREFACE

1.1 Purpose
The primary objective of these Platform Notes is to provide the information necessary for working with X IPC on a
variety of UNIX Operating Systems. Wherever appropriate, platform-specific information is detailed for the
supported UNIX platforms; these include:

♦ AIX 5.x+ ♦ Solaris 2.6+

♦ Tru64 UNIX ♦ LINUX

♦ HPUX 10.x ♦ HPUX 11.x

♦ SCO OpenServer ♦ SCO UnixWare

The document is divided into three sections: a preface that outlines the purpose of the Platform Notes; detailed step-
by-step instructions to be followed when installing X IPC on UNIX platforms; and information necessary for
developing applications with the current release of X IPC on the various UNIX platform.

1.2 Audience
These instructions are intended as a guide for the person who will be installing the X IPC product on a UNIX
platform. Portions of the installation process require root privileges. The installation may additionally require that
certain kernel parameters be reconfigured. It is therefore required that individuals performing the installation have
the necessary authorization and experience, or should otherwise contact the system administrator for assistance.
These Platform Notes also describe the platform-specific details of actually working with the X IPC tool set. This
section is thus intended for the experienced UNIX software developer. A significant degree of familiarity with 'C'
language program development concepts on the applicable platform is assumed.

1.3 Contents
The balance of these Platform notes consists of the following sections:

• Installation:

• Selecting the machine to install on.
• Reading X IPC from the provided media onto the target machine.

• Configuring the kernel for using X IPC.
• Configuring the network databases for using X IPC in a network environment.

• Using X IPC on UNIX Platforms:

• Calculating the UNIX operating system resources required by X IPC .
• X IPC daemon programs: their functions and how to use them.
• Notes on compiling, linking and other information necessary for developing software applications with

X IPC on UNIX platforms.

Date: 1/15/2004 - Revision: 5

X IPC Version 3.4.0 Platform Notes for UNIX Platforms 2

2. INSTALLATION

2.1 Selecting A Target Machine
Rules for selecting a target machine for the installation revolve around the issues of accessibility and convenience.
The product can be installed on any of the following UNIX platforms covered by the developer license: AIX 5.x+,
Tru64 UNIX, HPUX 10.x, HPUX 11.x, LINUX, SCO OpenServer, SCO UnixWare and Solaris 2.6+. Where
possible, a readily accessible workstation or server should be used as this will simplify the sharing of the multi-user
X IPC tool set.
An important consideration in this regard is that X IPC installation usually requires that the operating system for the
host machine be reconfigured before X IPC can be used. Selecting a machine for which re-configuration is easy and
unconstrained will expedite the installation process.
Installation of the X IPC Network product additionally requires that the selected machine be outfitted with the
appropriate network connectivity.

2.2 Reading X IPC Onto The Target Machine
The X IPC release media includes all the software, sample programs and other related files necessary for working
with the product. Reading X IPC from the provided media onto the target machine should be performed in the
following steps:

❏ Create a directory for X IPC (such as /user/xipc):

 mkdir /user/xipc

❏ Make this directory the current directory:

 cd /user/xipc

❏ Insert the release diskette/tape/CD into the computer.

❏ Set the XIPCDEV environment variable so that it identifies the device being used to read the X IPC
media:

 Example (Bourne or Korn Shell):

 XIPCDEV=/dev/rmt/0
 export XIPCDEV

 Example (C-Shell):

 setenv XIPCDEV /dev/rmt/0

❏ Enter the command:

 tar xvf $XIPCDEV xipc-install

❏ Enter the command:

 ./xipc-install

As a result of this process, the X IPC directory structure will be created and X IPC software will be installed.

Date: 1/15/2004 - Revision: 5

X IPC Version 3.4.0 Platform Notes for UNIX Platforms 3

The directories and files to be installed on the supported UNIX platforms are described below. (Those whose
descriptions are in italic type are not present on all of the platforms.) The table which follows shows the directory
distribution for all supported UNIX platforms.

lib/ a directory containing the X IPC libraries.

lib/shared/ a directory containing shared libraries.

lib/threads/ a directory containing thread-safe libraries.

bin/ a directory containing X IPC commands and shell scripts.

pdb/ a directory containing the platform database files used for data translation.

include/ a directory containing X IPC header files.

samples/ a directory containing X IPC sample programs.

log/ a directory for X IPC log files.

xipc.env a sample environment file for X IPC .

Directories and
Files

AIX
5.x+

Tru64
UNIX

HPUX
10.x

HPUX
11.x

LINUX SCO Solaris
2.6+

lib/ √ √ √ √ √ √ √

lib/shared √ √ √ √ √ X √

lib/threads √ √ √ √ √ X √

bin/ √ √ √ √ √ √ √

Include/ √ √ √ √ √ √ √

samples/ √ √ √ √ √ √ √

log/ √ √ √ √ √ √ √

xipc.env √ √ √ √ √ √ √

2.3 Configuring the Platform Kernel
With the exception of the AIX platforms, which have no kernel configuration requirements, platform kernel
configuration is addressed as follows:

X IPC uses native kernel IPC facilities. The native IPC facilities must therefore be present and configured correctly
in order for X IPC to work properly. Certain kernel parameter values are likely to require adjustment. Formulae for
calculating the exact level of native IPC resource requirements are included later in this document. Ultimately, the
kernel parameter values should be set to meet the overall needs of X IPC and other activity occurring on the machine.

In order to support a reasonable number of users simultaneously, it is necessary to configure the UNIX platform
kernel with a sufficient number of semaphore identifiers (e.g., SEMMNI) and semaphores in the system (e.g.,
SEMMNS). A minimum of 60 is recommended as a starting point for each. For example, on the Solaris platform, in
/etc/system, set:
 semsys:seminfo_semmni=60.
 semsys:seminfo_semmns=60.

Date: 1/15/2004 - Revision: 5

X IPC Version 3.4.0 Platform Notes for UNIX Platforms 4

For the Solaris platform:

The Solaris kernel is by default configured to allow a user to attach to a maximum of six (6) shared memory
segments at one time. To use an instance that needs more than six shared memory segments or to use more than one
instance, it is necessary to configure the kernel appropriately. For example:

 shmsys:shminfo_shmseg=60.

2.4 Configuring the Platform Environment

2.4.1 XIPCROOT
XIPCROOT is an environment variable which must be set to the path of the platform directory in which X IPC was
installed before invoking xipcstart or any other API call.

2.4.2 PATH
It is advisable to add the path of the X IPC bin directory to the PATH environment variable of users that will be
working with the product.

2.5 Configuring the Network Environment
Installing X IPC/Network requires that the network be notified of X IPC's intention to use certain TCP/IP services.
This is accomplished by adding three entries within the /etc/services file. The port numbers in these entries
should be selected so that they relate to unused port numbers.

Example:

xipcetc 4000/udp
xipcetc 4000/tcp
xipcserv 4001/tcp

These entries must be added on each of the platforms using X IPC in a network environment. X IPC/Network will not
work properly on platforms where these entries have not been added. If some form of network directory service
facility is being used for finding network services, the above indicated changes to /etc/services are not
necessary. The network directory services must nonetheless be updated.

2.6 Configuring the X IPC Daemon Programs
As will be described below, X IPC employs daemon programs for certain aspects of its processing. Three of these
programs must run with an effective uid of root. They are xipclad, xipciad and xipcidld.

One approach is to have root own the program files and to limit their execution rights to owner (i.e., root).
Alternatively, setting the setuid bit of the root-owned files will permit the daemons to be started by non-root
users as well.

In the following example, the user has logged on as root:

cd $XIPCROOT/bin
chown root xipclad xipciad xipcidld
chmod 4111 xipclad xipciad xipcidld

Date: 1/15/2004 - Revision: 5

X IPC Version 3.4.0 Platform Notes for UNIX Platforms 5

3. USING X IPC ON UNIX PLATFORMS
The X IPC paradigm is not specific to any particular operating system environment. From the programmer's
perspective the model presented by X IPC 's API is almost entirely portable across environments. The underlying
issues of how X IPC relates to a particular platform and how it utilizes the native operating system resources are,
however, important for understanding how to best use the product on that platform.

3.1 Calculating Resource Requirements

3.1.1 UNIX NATIVE IPC REQUIREMENTS

3.1.1.1 Basic Resource Requirements

A platform that supports any X IPC activity uses the following native IPC resource:

❏ Two message queues.

3.1.1.2 X IPC Instance Requirements

3.1.1.2.1 General Instance Requirements

Each X IPC instance uses the following additional native IPC resources from the platform upon which it is started:

❏ One semaphore identifier (with one semaphore) for each user logging into the instance.

3.1.1.2.2 SemSys Specific Requirements

The SemSys subsystem of an X IPC instance uses the following native IPC resources from the platform upon which
it is started:

❏ Two semaphore identifiers with one semaphore each.

❏ One additional sempahore identifier if the critical section algorithm is SEMAPHORE. (See Section 3.4 on
Advanced Instance Configuration.)

❏ One shared-memory segment for control information whose size is determined by the configuration
parameters and is displayed by xipcstart in the TOTAL line for SemSys.

3.1.1.2.3 QueSys Specific Requirements

The QueSys subsystem of an X IPC instance uses the following native IPC resources from the platform upon which
it is started:

❏ Two semaphore identifiers with one semaphore each.

❏ One additional sempahore identifier if the critical section algorithm is SEMAPHORE. (See Section 3.4 on
Advanced Instance Configuration.)

❏ One shared-memory segment for control information, whose size is determined by the configuration
parameters and is displayed by xipcstart in the TOTAL line for QueSys.

Date: 1/15/2004 - Revision: 5

X IPC Version 3.4.0 Platform Notes for UNIX Platforms 6

❏ One shared-memory segment for the message text pool, whose size is reported by xipcstart in the
TextPool line for QueSys.

3.1.1.2.4 MemSys Specific Requirements

The MemSys subsystem of an X IPC instance uses the following native IPC resources from the platform upon which
it is started:

❏ Two semaphore identifiers with one semaphore each.

❏ One additional sempahore identifier if the critical section algorithm is SEMAPHORE. (See Section 3.4 on
Advanced Instance Configuration.)

❏ One shared-memory segment for control information, whose size is determined by the configuration
parameters and is displayed by xipcstart in the TOTAL line for MemSys.

❏ One shared-memory segment for the memory segment pool, whose size is reported by xipcstart in the
MemoryPool line for MemSys.

3.1.1.2.5 MomSys Specific Requirements

MomSys subsystem requirements are equivalent to QueSys. In addition, each X IPC instance uses the following
additional native IPC resources from the platform upon which it is started:

❏ One semaphore identifier (with one semaphore) for each user logging into the instance.

3.1.2 REQUIREMENTS FOR X IPC NETWORK

The following network resources are used by the X IPC Network environment:

❏ One transport end point (socket) is used for each process logged into a network instance.

❏ An additional two to seven end points are used by the platform's xipciad daemon, depending on the
amount of network X IPC asynchronous activity involving the platform.

❏ MomSys requires two sockets per instance-link. In addition, if the xipcicd catalog server daemon is
being employed - usually the case for MomSys - then an additional socket is utilized.

3.2 The X IPC Daemons
The following is a list of daemons that are installed:

Daemon Program Function
xipcisd X IPC 's TCP/IP server
xipclad X IPC 's Local asynchronous server
xipcicd X IPC 's TCP/IP catalog server
xipciad X IPC 's TCP/IP asynchronous server
xipcidld X IPC 's Idle user detection mechanism

The xipcisd daemon is the TCP/IP Server program that handles remote XipcLogin() and XipcList()
requests. xipcisd reports any errors in the $XIPCROOT/log/xipcisd.log log file.

Date: 1/15/2004 - Revision: 5

The xipclad daemon is used by any platform employing X IPC asynchronous functionality. xipclad reports
any errors in the $XIPCROOT/log/xipclad.log log file.

X IPC Version 3.4.0 Platform Notes for UNIX Platforms 7

The xipciad daemon is used by: any platform employing X IPC asynchronous functionality in a network
environment; XipcPing(); XipcAbort(); and MomSys, in a local or network instance. xipciad reports any
errors in the $XIPCROOT/log/xipciad.log log file.

The xipcicd daemon is used by MomSys in order to access the X IPC catalog. xipcicd reports any errors in the
$XIPCROOT/log/xipcicd.log log file.

The xipcidld daemon is used whenever an X IPC instance needs to be monitored against idle users. xipcidld
reports any errors on the file $XIPCROOT/log/xipcidld.log log file. Refer to the X IPC User Guide
Appendix for the Technical Note on the Idle User Detection Mechanism for a complete description of this service.

3.2.1 STARTING AND STOPPING X IPC DAEMONS
The X IPC daemons are started and stopped whenever the xipcinit and xipcterm commands are used to initialize and
terminate the platform for X IPC activity. The xipcisd, xipclad, xipcicd, xipciad and xipcidld daemons are started by
default. This list can be overridden by editing the $XIPCROOT/xipc.env file. Refer to the X IPC User Guide
and the X IPC Reference Manual for further details.

3.3 Application Development With X IPC on UNIX Platforms
Divergent methods of program development, specific to each Operating System environment, affect how X IPC is
used in that environment, most notably in the areas of Compiling, Linking and Trap Handling. These topics are
examined in this section.

3.3.1 PREDEFINED DATATYPES
Much of X IPC 's documentation refer to predefined datatypes such as XINT, CHAR, etc. The mapping between
these types and the underlying "C" language datatypes is machine-dependent. For the UNIX platforms, type XINT is
defined as a 32-bit signed integer and CHAR is defined as char.

It is recommended that programs making X IPC function calls use these definitions for declaring parameter variables
that are passed to the X IPC functions. This will ensure portability across different hardware platforms.

The definitions are in the file mmcos.h and are included automatically by any program that includes xipc.h.

3.3.2 COMPILING
X IPC currently comes with a "C" language binding. While other languages may also be used to invoke X IPC , that
may require preparation of function prototypes and data type definitions for that language.

When compiling a "C" program using X IPC , the header files directory should be made known to the compiler by
specifying it in the -I compiler option.

Example:

cc -c foo.c -I/$(XIPCROOT)/include ...

3.3.3 LINKING
The X IPC API library comes in three flavors, each of which address a specific class of application. The libraries
are:

❏ The X IPC Stand-Alone Library

❏ The X IPC Network Library

❏ The X IPC Combined Library

Date: 1/15/2004 - Revision: 5

X IPC Version 3.4.0 Platform Notes for UNIX Platforms 8

Date: 1/15/2004 - Revision: 5

Refer to the "Using X IPC Libraries" section of the X IPC User Guide for a detailed discussion of when each library is
appropriate.

This section presents technical instructions for using the X IPC libraries to develop applications on the AIX 3.2.x
platform.

3.3.3.1 X IPC Libraries

The following libraries are included in the lib directory:

libsxipc.a The X IPC Stand-Alone Library

If you have installed the network version of the tool set, the following libraries are also included:

libnxipc.a The X IPC Network Library

libxipc.a The X IPC Combined Library

Programs that link with the Network or Combined API Library need to additionally be linked with the following
protocol support library:

libnxipctcp.a The X IPC TCP/IP protocol support library

A set of shared libraries is included in the lib/shared directory.

3.3.3.2 Linking

Examples of platform-specific compile/link options are provided below for the X IPC Stand-Alone, Network and
Combined libraries:

For the AIX Platform:

Stand-Alone: cc -o foo foo.o –L/$(XIPCROOT)/lib –lsxipc

Network: cc -o foo foo.o -L/$(XIPCROOT)/lib -lnxipc -lnxipctcp -lbsd -ldl

Combined: cc -o foo foo.o -L/$(XIPCROOT)/lib -lxipc -lnxipctcp -lbsd -ldl

For the HPUX 10.x and HPUX 11.x Platforms:

Stand-Alone: cc -o foo foo.o –L/$(XIPCROOT)/lib –lsxipc –lV3

Network: cc -o foo foo.o -L/$(XIPCROOT)/lib -lnxipc -lnxipctcp –lV3

Combined: cc -o foo foo.o -L/$(XIPCROOT)/lib -lxipc -lnxipctcp –lV3

For the SCO Platform:

Stand-Alone: cc -o foo foo.o –L/$(XIPCROOT)/lib –lsxipc –lsocket -lx

Network: cc -o foo foo.o -L/$(XIPCROOT)/lib -lnxipc -lnxipctcp –lsocket -lx

Combined: cc -o foo foo.o -L/$(XIPCROOT)/lib -lxipc -lnxipctcp –lsocket -lx

X IPC Version 3.4.0 Platform Notes for UNIX Platforms 9

For the Solaris Platform:

Stand-Alone: cc -o foo foo.o –L/$(XIPCROOT)/lib –lsxipc –lsocket -lnsl

Network: cc -o foo foo.o -L/$(XIPCROOT)/lib -lnxipc -lnxipctcp –lsocket -lnsl

Combined: cc -o foo foo.o -L/$(XIPCROOT)/lib -lxipc -lnxipctcp –lsocket -lnsl

For the Tru64 UNIX and LINUX Platforms:

Stand-Alone: cc -o foo foo.o –L/$(XIPCROOT)/lib –lsxipc

Network: cc -o foo foo.o -L/$(XIPCROOT)/lib -lnxipc -lnxipctcp

Combined: cc -o foo foo.o -L/$(XIPCROOT)/lib -lxipc -lnxipctcp

3.3.4 SIGNALS
X IPC uses SIGUSR1 in the course of its asynchronous operations. Programs that issue X IPC asynchronous
operations cannot use this signal for other purposes. I/O descriptors can be used as an alternative to signals for
asynchronous X IPC operations. For details, refer to the X IPC User Guide Appendix for the Technical Note, Using
I/O Descriptors for Asynchronous Operations.

X IPC catches and ignores the SIGPIPE signal; however, X IPC‘s handling of SIGPIPE can be overridden by a user
application that has a signal header for this purpose.

3.3.5 TRAP FUNCTIONS
Programs built with the X IPC tool set have the full capability of handling signal interrupts. This is described in the
Section 6.7 on Trap Handling in the X IPC User Guide. Reading that description is a prerequisite for understanding
this Section. This section provides the specific details of working with UNIX signals.

3.3.5.1 Test Macro for UNIX Platforms (SVR 4)

The calling sequence for the trap function test macro XIPC_TRAP_FUNCTION_TEST()is as follows:

XIPC_TRAP_FUNCTION_TEST(
 TrapName, /* Trap function name */
 SigNum /* Signal number */
);

Date: 1/15/2004 - Revision: 5

X IPC Version 3.4.0 Platform Notes for UNIX Platforms 10

Example:

/*
 * A simple startup program that creates a queue and a semaphore
 * for usage by other programs. The program traps SIGINT and
 * SIGTERM signals. Note: no error checking is performed.
 */

#include <xipc.h>

main()
{

 VOID TrapFunction();

 /*
 * Trap the SIGINT and SIGTERM signals to execute the
 * "TrapFunction" function.
 */

 sigset(SIGINT, TrapFunction);
 sigset(SIGTERM, TrapFunction);

 /*
 * Login into the "DownLoad" network instance
 * and create necessary XIPC objects.
 */

 XipcLogin("@DownLoad", "InitTask");

 QueCreate("DownQueue", QUE_NOLIMIT, 32767);

 SemCreate("DownLoadDone", SEM_CLEAR);

 ...
 ...

 XipcLogout();

} /* main */

Date: 1/15/2004 - Revision: 5

VOID
TrapFunction (SigNum)
INT SigNum;

{

 /*
 * Check that it is safe to run trap handler function.
 */

 XIPC_TRAP_FUNCTION_TEST(TrapFunction, SigNum);

 /*
 * Run the trap function.
 */

 printf("Received signal %d\n", SigNum);

X IPC Version 3.4.0 Platform Notes for UNIX Platforms 11

 /*
 * The rest of the trap handling logic goes here.
 */

 return;

} /* TrapFunction */

3.3.5.2 Test Macro for UNIX Platforms (BSD)

The calling sequence for the trap function test macro XIPC_TRAP_FUNCTION_TEST()is as follows:

XIPC_TRAP_FUNCTION_TEST(
 TrapName, /* Trap function name */
 SigNum /* Signal number */
);

Example:

/*
 * A simple startup program that creates a queue and a semaphore
 * for usage by other programs. The program traps SIGINT and
 * SIGTERM signals. Note: no error checking is performed.
 */

#include <xipc.h>

main()
{

 VOID TrapFunction();

 /*
 * Trap the SIGINT and SIGTERM signals to execute the
 * "TrapFunction" function.
 */

 nsig.sv_handler = TrapFunction;
 nsig.sv_mask = 0;
 nsig.sv_flags = 0;
 sigvec(SIGINT, &nsig, (struct sigvec *)NULL);
 sigvec(SIGTERM, &nsig, (struct sigvec *)NULL);

 /*
 * Login into the "DownLoad" network instance
 * and create necessary XIPC objects.
 */

 XipcLogin("@DownLoad", "InitTask");

 QueCreate("DownQueue", QUE_NOLIMIT, 32767);

 SemCreate("DownLoadDone", SEM_CLEAR);

 ...
 ...

 XipcLogout();

Date: 1/15/2004 - Revision: 5

X IPC Version 3.4.0 Platform Notes for UNIX Platforms 12

} /* main */

VOID
TrapFunction (SigNum)
INT SigNum;

{

 /*
 * Check that it is safe to run trap handler function.
 */

 XIPC_TRAP_FUNCTION_TEST(TrapFunction, SigNum);

 /*
 * Run the trap function.
 */

 printf("Received signal %d\n", SigNum);

 /*
 * The rest of the trap handling logic goes here.
 */

 return;

} /* TrapFunction */

3.3.6 SAMPLE PROGRAMS
A number of sample programs and makefiles are included with the X IPC product. They are installed under the
$XIPCROOT/samples directory.

3.4 X IPC Advanced Instance Configuration (".cfg" File)
For a complete description of the configuration file, please refer to the X IPC User Guide and X IPC Reference
Manual which provide all general information. If pertinent, operating system-specific information on certain file
options is provided below.

3.4.1 CONFIGURING X IPC FOR MULTIPLE-CPU (SMP) SYSTEMS
Information on configuration for multiple-CPU (SMP) systems is found in Section 6.1.1 of the X IPC User Guide.
Exceptions are described below.

AIX, HPUX and Solaris Platforms:

X IPC is able to detect whether the underlying hardware is an SMP or not. If it detects more than one processor
active, then the CSEC_ALGORITHM parameter is set to a default value of Semaphore. If it detects that only one
processor is active, then the CSEC_ALGORITHM is set to the default value of GATE.

Tru64 UNIX and LINUX Platforms:

The Semaphore value is used by default because CSEC_ALGORITHM’s GATE option is not supported.

3.4.2 CONFIGURING TO USE A SINGLE SHARED MEMORY SEGMENT
Information on configuration for a single shared memory segment is found in Section 6.1.2.1 of the X IPC User
Guide. Exceptions are described below.

Date: 1/15/2004 - Revision: 5

X IPC Version 3.4.0 Platform Notes for UNIX Platforms 13

AIX Platforms:

The AIX platforms limit a process to attaching to ten (10) shared memory segments. Therefore the SINGLE option
should be selected for the SHARED_MEM parameter in the [XIPC] section of the configuration file.

3.4.3 MEMORY-MAPPED FILES
Information on configuration for memory-mapped files is found in Section 6.1.2.2 of the X IPC User Guide.

3.5 Using X IPC Threads
This section contains information on writing X IPC applications that employ UNIX threads and pertains solely to the
current release. Subsequent releases are subject to updates. Be sure to review Section 5.3 on Threads in the “X IPC
Programming” chapter of the X IPC User Guide before you begin using X IPC threads.

The following platforms support X IPC threads:

• AIX 4.x (or higher)

• Tru64UNIX 3.2 (or higher)

• HPUX 10.x (or higher)

• LINUX

• Solaris 2.5 (or higher)

Other UNIX platforms do not support X IPC threads.

3.5.1 COMPILING
There are no changes to the compiling information provided earlier in these Platform Notes.

3.5.2 LINKING
For applications using threads, thread-safe libraries have been added. They are located in the lib/threads
directory.

The reentrant versions of the libraries are:

1. libxipc_r.a

2. libsxipc_r.a

3. libnxipc_r.a

4. libnxiptcp_r.a

Applications that use threads with X IPC should link with these libraries. Refer to the sample makefile for an
example of linking with the threaded libraries.

3.5.3 EXAMPLES
For actual examples, please refer to the $XIPCROOT/samples/threads subdirectory.

Date: 1/15/2004 - Revision: 5

X IPC Version 3.4.0 Platform Notes for UNIX Platforms 14

4. INDEX

Bourne shell setting, 2

Compiling, 7

Threads, 13

Configuration

Daemon Programs, 4

Platform environment, 4

C-shell setting, 2

Daemon programs, 4

Installation, 2

Korn shell setting, 2

Libraries, 7

Threads, 13

Linking

Threads, 13

MemSys

Resource requirements, 6

MomSys

Resource requirements, 6

PATH, 4

QueSys

Resource requirements, 5

Resource requirements

Instance, 5

IPC, 5

Network, 6

SemSys

Resource requirements, 5

Signals, 9

Target machine, 2

Threads, 13

Trap handling, 9

xipciad, 4, 7

XIPCICD, 7

xipcidld, 4, 7

xipcinit, 7

xipcisd, 6

xipclad, 4, 7

xipcterm, 7

Date: 1/15/2004 - Revision: 5

	PREFACE
	Purpose
	Audience
	Contents

	INSTALLATION
	Selecting A Target Machine
	Reading X(IPC Onto The Target Machine
	Configuring the Platform Kernel
	Configuring the Platform Environment
	Configuring the Network Environment
	Configuring the X(IPC Daemon Programs

	USING X(IPC ON UNIX PLATFORMS
	Calculating Resource Requirements
	The X(IPC Daemons
	Application Development With X(IPC on UNIX Platforms
	X(IPC Advanced Instance Configuration (".cfg" File)
	Using X(IPC Threads

	INDEX

