ENVOY

@ Technologies

Envoy Connect XIPC Connector
Version 3.4.0

QueSys/MemSys/SemSys
User Guide

Envoy Technologies Inc.

555 Route 1 South
Iselin, NJ 08830

http://www.envoytech.com

Copyright © 2004 Envoy Technologies Inc. All rights reserved

This document and the software supplied with this document are the property of Envoy Technologies Inc. and are furnished
under a licensing agreement. Neither the software nor this document may be copied or transferred by any means, electronic

or mechanical, except as provided in the licensing agreement. The information in this document is subject to change without
prior notice and does not represent a commitment by Envoy Technologies Inc. or it's representatives.

Printed in the United States of America.

Envoy XIPC, Envoy Connect XIPC are either trademarks or registered trademarks of Envoy Technologies Inc. Other
product and company names mentioned herein might be the trademarks of their respective owners.

Envoy Connect XIPC is represented throughout the documentation as X4PC.

1.

111

12

1.3

2.
21

211
21.2
213
2.1.4
2.15
2.1.6
217
2.2

221
2.3

23.1

232

X4|PC VERSION 3.4.0
QUESYS/MEMSYS/SEMSYS

USER GUIDE

Table of Contents

01/22/2004
Rev. No.: 4

INTRODUCTION. ...ttt e e e e et r e e e et e e b e e eaneeenns 1-1
PUI D OSE e e e e e 11
XHUPC SUBSYSTEMS ...ooooummreeeesssmmeeseessssseseesssssssssesssessss s sssssss s sssss s ssssss s ssssssssssessssssssnseeees 1-1
ESToT 0] o1 PP 1-2
Documentation ROAA MaApPoeoiiiiiiiiieiiie e 1-2

QUESYS: THE XA IPC MESSAGE QUEUE SYSTEMcocoiiiiiiinieeeececeeeeen 2-3
QUESYS CONCEPLS ittt 2-3
MESSAGE QUEUEScooootieeeceassseeseessssssesssssss s sssss s sssss st 2-3
MESSAGE QUEUE CAPACITY .oouevviorreviossesssnees 2-5
MESSAGE TEXT POOLooovmiiierieeisssesssnees 2-6
MESSAGE MULTICASTINGcooouieeireeesinsssssssee st sssssssssssessnees 2-7
QUEBURST() - ULTRA-HIGH THROUGHPUT MESSAGING..........coirreeeesnnneeeessssseeseessss 2-7
RPC-LIKE REQUEST-RESPONSE MESSAGING............ommmrviernreeissssssssssssssssssssssssssssssssssssnes 2-7
QUEUE MULTIPLEXING. ...ovvvtrmeiessieeisssnsssens 2-7
QUESYS CONFIQUIALION.....uviiiiii e 2-10
QUESYS CONFIGURATIONoomivvermmieeessaeesssssssssssssssssssssssssssssssssssssssessssssssssssssssssssssssssssssnsssens 2-12
QUESYS FUNCLIONS ...t e e et e e eaaee s 2-15
QUECREATE() - CREATING A NEW QUEUE ...oomnveeereeeeeosnseseeessssessssssssssesssssssssessssssss 2-15
QUEACCESS() - ACCESSING AN EXISTING QUEUEooovvvoeeereeeessessoessssssssssssssssssssssnssons 2-16

X+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

2.3.3
234
235
2.3.6
2.3.7
238
2.3.9
2.3.10
23.11
2.3.12
2.3.13
2.3.14
2.3.15
2.3.16
2.3.17
2.3.18
2.3.19
2.3.20
2.3.21
24
241
242
243
244
245
246
24.7
248

249

QUEWRITE() - WRITING MESSAGE TEXT TO THE TEXT POOL ... 2-16
QUEREAD() - READING MESSAGE TEXT FROM THE TEXT POOL ... 2-18
QUELISTXXX() - QUEUE LIST MANIPULATION FUNCTIONSoiiieereeeseseessseeeesseseeeeseeeeeeee 2-19
QUEPUT() - PUTTING A MESSAGE HEADER ONTO A QUEUEoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 2-25
QUEGET() - GETTING A MESSAGE HEADER FROM A QUEUEooooeoeeeeeeeeeeeeeeeeeeeeeeeeeeeee 2-26
QUEREMOVE() - REMOVE A MESSAGE HEADER FROM A QUEUE..........oooooooooeoeeeeeeeeeeeeeeen 2-30
QUESEND() - SENDING A MESSAGE ONTO A QUEUE..........ccociieeieeeesesssessssssesssessssseeeeeeeseeseeeee 2-31
QUERECEIVE() - RECEIVING A MESSAGE FROM A QUEUEesoeeseseeeeeeeeseeeeeeeeeeeeeeeeeeeeee 2-32
QUESENDRECEIVE() - PERFORM GENERIC REQUEST/RESPONSE.........ooooooeeeeseeeeeeeee 2-33

QUECOPY() - COPYING ALL OR PART OF A MESSAGE'S TEXT FROM THE TEXT POOL ...2-35

QUEUNGET() - UNGETTING A MESSAGE HEADERcoimrieieseeseeseessssssesssssssssssssssssnsseens 2-36
QUEBROWSE() - BROWSING A MESSAGE QUEUE.........cooovvuriiesiessiessssss s 2-38
QUEUE SPOOLINGoocvvvoesveiesssssessssssssssssss s ssssssssssssssssssss s s ssssssssssssssssssssssssssssnsssons 2-41
QUEPURGE() - PURGING A QUEUE........oooeeeineessssssssssssssssssssssssesssssssssssssssssssssssssssssnsssens 2-44
QUEDELETE() - DELETING A QUEUEoivvireieeeeiss s 2-45
QUEDESTROY() - DESTROYING A QUEUEcossvvourieeieeeisesessssssssssssesssssssssssssssesssss s 2-45
QUEINFOSYS() - INFORMATION ABOUT AN INSTANCE'S QUESYScooosvvvvenrrioennesisnnninns 2-46
QUEINFOUSER() - INFORMATION ABOUT A QUESYS USER..........commrriiimnreiirenseessnsessssnnsenns 2-46
QUEINFOQUE() - INFORMATION ABOUT A QUESYS QUEUEoomvvverrrerriesisessisssssans 2-47
The QueSys On-Line Monitor: QUEVIEWccocvveveeeiiiieeeeiiieeeeeiiea e 2-48
STARTING QUEVIEW ..o.coovmiitiiiee e sssss s s 2-48
QUEVIEW LAYOUT...oootmirvieimisisssessssssssssssssssssssesssnssssns 2-49
MONITORING MODEScomimiriermneissiessssssssssssss st ssnnees 2-51
QUEVIEW ZOOM WINDOWS........ooivvoirrimssiiesssssessasssssssssssesssssns 2-51
ZOOMING IN ON A USER IN BURST MODEcosssvvvrrereeesssons 2-55
BROWSING MESSAGES WITH QUEVIEW.vvvreieinesesssness 2-56
BROWSE FACILITY COMMANDS.......ovvuumeeesiessssessssssessssessnees 2-57
PANNING WITHIN QUEVIEW w.....ooomvvioeiissssisssiessssssssssss s sss s sssssssss s ssssssssssns 2-59
STOPPING QUEVIEW.ooommievivrmaesissiesssssssssssesssnsssens 2-59
01/22/2004

Rev. No.: 4

3.
3.1

311
3.1.2
3.1.3
3.14
3.15
3.1.6

3.17
3.2

3.3
331
3.3.2
3.3.3
3.34
3.35
3.3.6
3.3.7
3.38
3.39
3.3.10
3.3.11
3.3.12
3.3.13
3.3.14
3.3.15
3.3.16
3.3.17

3.3.18

MEMSYS: THE X¢IPC SHARED MEMORY SYSTEMooiiiiiiiiiiiiiieeereeeeees 3-1
MEMSYS CONCEPLES ...utiiiiiiee ettt e et e e e e e e s s narr e e e e e e e e e aannes 3-1
MEMSY'S SEGMENTSovvttmueeessmaeessssaeessssssessssessssssesssssssssssssssssssssssssssssessssssssssssssssssssssssssssssnees 3-1
MEMSYS SECTION OVERLAYScoimiriieineeessneesssssesssssssssssssesesseees 3-1
SEGMENT DATA READ-WRITE ACCESSIBILITY ...cooourreimreeesineeeesseeeesssssesessssessssssssssssseseens 3-3
SEGMENT DATA 'LOCKING' AND "UNLOCKING'......ccorrreemmmrreessereessessesssssessssssessssssesssssssseees 3-9
ATOMIC READ AND WRITE OPERATIONScotiviimerrismeresssnesssssessssssssssssssssssssssessssssessssssnas 3-10
OPERATION BLOCKINGccvvetumeeeesmaeeessssesssssesesssssssssssssesssssssssssssssssssessssssssssssssssssssssssssssssssssess 3-10
IMEMORY POOL w...covieeeeumaeeeessseeeessseeeessseseesssssssssssseesss s esss e ssssasesssssssssessssssssssssessssssssssssssnssssssnnees 3-10
MeMSYS CONFIGUIALION.....cueiiiiiie et 3-11
MEMSYS FUNCLIONS ..ottt 3-13
MEMCREATE() - CREATING A NEW SEGMENTcouriueireeesneeessneeesssesessssesssssssesssssssessssssneees 3-13
MEMACCESS() - ACCESSING AN EXISTING SEGMENTcorvvumrreermnreesseeseesssesssssessesssaeees 3-14
MEMWRITE() - WRITING DATA TO A MEMORY SEGMENTcommmrreirmneeisnneeessessessesssessaees 3-14
MEMREAD() - READING DATA FROM A MEMORY SEGMENT........ovccureeemmnmeeesseeeesseneeessaeee 3-17
MEMSECTION(), MEMSECTIONBUILD() - INITIALIZING A SECTION VARIABLE 3-18
MEMLISTXXX() — FUNCTIONS FOR MANIPULATING SECTION LISTS.....ccocovurrrermnreeerne 3-19
MEMLOCK() - LOCKING MEMORY SECTIONS.......ossrrreerieeesneeesssnesesssssesssssesssssssssssssssssssssnees 3-22
MEMUNLOCK() - UNLOCKING MEMORY SECTIONS.......ccoccureemmmreeesmeeessssessssssesssssssessesssnnees 3-25
MEMORY SECTION PRIMITIVE FUNCTIONScooriiimreeesneeesssseeesssesssssssessssssssssssssessssssseees 3-25
MEMDELETE() - DELETING A SEGMENTcoouuiiuimrmsesesesssssesssseesssssessssssesssssssesssssssssssssenees 3-31
MEMDESTROY() - DESTROYING A SEGMENT w...ccourvuermreeesneeessseeessssessssssssssssssssssssssssssaeees 3-31
MEMINFOSYS() - INFORMATION ABOUT AN INSTANCE'S MEMSYSccooovveerreermnnreeesnee 3-32
MEMINFOUSER() - INFORMATION ABOUT A MEMSYS USER.......cccccreimmnmeemmeseesssseessneee 3-32
MEMINFOMEM() - INFORMATION ABOUT A MEMSYS SEGMENTcoovvveerreerenresseseeeesa 3-33
MEMINFOSEC() - INFORMATION ABOUT AN INSTANCE'S SECTION......coovvecurrrerrnreees 3-34
MEMPOINTER() - ACCESSING A POINTER TO A SEGMENTcccostrvvurmrreermnreesseeeeessesseessaeees 3-34
MEMFREEZE() - FREEZING MEMSY'Sotirutmeesimeesssssssssssssssssssssssssesssssssssssssssssssssssssssssseees 3-38
MEMUNFREEZE() - UNFREEZING MEMSYSccourieineeessneeesssseesssssssssssssssssssssssssssssssaeees 3-38

01/22/2004

Rev. No.: 4

X+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

3.4

34.1
3.4.2
343
3.4.4
3.4.5
3.4.6
3.4.7
3.4.8
3.4.9

3.4.10

4.

411
4.1.2
4.1.3
4.2

4.3

43.1
432
433
4.3.4
4.3.5
4.3.6
4.3.7
4.3.8
4.3.9

4.3.10

The MemSys On-Line Monitor: MemMVIieW.........cccccveeviiieeeeiiiiee e 3-38
STARTING MEMVIEWoooreeeeemsmneeseessssesessesssssssssssssssssssssesssssssss 3-39
MEMVIEW LAY OUT....oieeeettmmeeeeessssseeseessss s sssssss s ssessss s essssss s ssssss s ssss s sesssssss 3-39
MONITORING MODEScooturreeeusmmmneseessssssessssssssssesssessssssesssssss s sssssssssssssssssssssssssssssssesssessssns 3-42
MEMVIEW ZOOM WINDOWScooorumurrreesmmmessssssssessssssssssssessnnns 3-42
WATCHING MEMORY SEGMENT CONTENTS - THE WATCH WINDOWcovvoorreernereennnne 3-44
MONITORING A SEGMENT'S SECTIONS - THE SECTION WINDOW.........ccommmrrrreerrrenreeessnnne 3-46
BROWSING A SHARED MEMORY SEGMENTcccriveuumrereessmnenesesssssneessssssssssesssssssssesssesssnns 3-49
BROWSE FACILITY COMMANDS.......vvctmeeesmeesesssessssssssssssessssssssssssssssssssssssssssssssssssssnsssssssneees 3-50
PANNING WITH MEMVIEW..........oooumeeeeeessseeeeessssessesseessssseessssssssssssssssssesssssssssssssssssssssssesssessssns 3-51
STOPPING MEMVIEWcootreeeessmnreeseessssesesesesssssseessesssse s sssssssessessssssssssessssssssssessssssssssesssssssnns 3-52

THE X" IPC SEMAPHORE SYSTEM (SEMSYS) ..ouviiiiiiiiiiiie e 4-1
SEMSYS CONCEPLS. ..ttt s 4-1
EVENT SEMAPHORESooutirreeettmmeeeeeessssesessssssssssseessssssss st sssss s ssssss s sssssssesssssssss 4-1
RESOURCE SEMAPHORES.......cooorreeeesimmesessssssssessesssssssssesssss s sssssss s sssssssssssssssssssesssesssnns 4-1
MULTIPLE SEMAPHORE OPERATIONScooorieessmneesessssssessssssssssssssssssssssssssssssesssssssss 4-1
SemMSYS CONFIGUIALIONooiiiiiiiiie e e e 4-2
SEMSYS FUNCHIONS ...t 4-2
SEMCREATE() - CREATING A NEW SEMAPHOREcimireeinreesineesssssesesssssssssssssssssessens 4-2
SEMACCESS() - ACCESSING AN EXISTING SEMAPHORE.............coommreeeisnnneeeesssssseeseesssns 4-3
SEMLISTXXX() — MANIPULATING SEMAPHORE LISTS......coimrreeemmnneeeeessinenesssssssseessesssns 4-3
SEMACQUIRE() - ACQUIRING RESOURCE SEMAPHOREScccnmmrrreemmnnsssssssssessesssns 4-5
SEMRELEASE() - RELEASING RESOURCE SEMAPHORESccvcureetieeessnnesessneessssnneeens 4-7
SEMSET() - SETTING EVENT SEMAPHOREScovveuureeeessinenesesssssssessssssssssessssssssssesssesssns 4-8
SEMCLEAR() - CLEARING EVENT SEMAPHORESovvvieuireeeeisnnessssssssssssssssssssssessss 4-9
SEMWAIT() - WAITING ON EVENT SEMAPHORES.......ovcmreerneeesnesisssnesesssssssssssssssssssssens 4-9
SEMCANCEL() - CANCEL BLOCKED SEMSYS OPERATIONScommrreeurressnreessrnessssnneeens 4-12
SEMDELETE() - DELETING A SEMAPHOREorvveetmeeeeessissssssssssssesssssssssssssssssssssesssesssn 4-13

01/22/2004

Rev. No.: 4

4.3.11
4.3.12
4.3.13
4.3.14
4.3.15
4.3.16
4.4
441
442
4.4.3
444
445

4.4.6

5.1

511
512
51.3
51.4
515
516
517
5.1.8

519

5.2

5.2.1
5.2.2
5.2.3

524

SEMDESTROY() - DESTROYING A SEMAPHOREccocvitiirieeinesieie et 4-13

SEMINFOSYS() - INFORMATION ABOUT AN INSTANCE'S SEMSYScoommmmreeemimnreereensnn 4-13
SEMINFOUSER() - INFORMATION ABOUT A SEMSYS USERccosmmmrrreemmnnneeeesssssseessessss 4-14
SEMINFOSEM() - INFORMATION ABOUT A SEMSYS SEMAPHOREoovcrmmmrreernreeesnneeens 4-15
SEMFREEZE() - FREEZING SEMSYS....oiiiureeiireesssneeessssesssens 4-16
SEMUNFREEZE() - UNFREEZING SEMSY'S.....oouireveetmneeeeeesssnseesesssssssesssssssssessssssssssesssssssn 4-16
The SemSys On-Line Monitor: SEMVIEW........ccccccieeiiiiieeeiiiiee e 4-17
STARTING SEMVIEW......ccoorireeeessameeeseesssseseessessssssesesesssss s sssssss s sssssss s sssss s ssssssssesssesssnns 4-17
SEMVIEW LAY OUT ..ooorirveermeressseesessssessssssessesssssssssssssssssssssssssssssssssess 4-17
MONITORING MODEScoourreemmmeeessseeesssseesssssessssssessssssssssssssesssssssssssssssssssssessssssssssssssnssssssnneees 4-20
SEMVIEW ZOOM WINDOWScooouumrreeessmmeeesesssssseeesessssssseessssssssssssssssssssesssssssssssssssssssnsesssssssnns 4-20
PANNING WITHIN SEMVIEW.......coorriveemmmneeeesssssseeessessssssessesssssssssssssssssssssssssssssssssssssssesssesssnns 4-22
STOPPING SEMVIEWcooomiietrmesessseeessessssssssssssssssssssssssssssssssssees 4-22

ADVANCED TOPICS ... 5-1
ASYNCNIoNOUS OPEratiONS........ciiuiiiiiiieiiee ettt 5-1
INTRODUGCTION L..ootvetuumeeesssaeeeessseeeesssseesssssesssssseessssesesss s ssssesesssssssssssssssssssssessssssssssssssssssssnnees 5-1
THE ASYNCRESULT CONTROL BLOCK (ACB) w..ccoouurrreeesmsenesessssssesssesssssseesssssssssssssssssanseeees 5-1
ACB RETURN VALUESooottiieiessimseeeeesssssssesssssssssssssssssss s ssssss st sssssnns 5-6
THE CALLBACK OPTIONcoootuiietsmmeeesssesessssesssssssssssssssssssssassssssssssssssssssssssssssssssssssssssesssssssssesens 5-6
THE POST OPTION ...ouureetumeeeessaeesessseeeessseessssssessssssessssssssssssssssesssssssssssssssssssssssssssssssssssnsesssssssssess 5-8
THE IGNORE OPTION ..cootureeeetsssaeeeeesssssseesesssssssaseessessssssessssssssss s sessss s sssssssssesssssssssssssssssssnseeees 5-10
ABORTING A PENDING ASYNCHRONOUS OPERATIONcoocurrreemmmnesssisssesssesssnssssseenes 5-11
MIXING ASYNCHRONOUS AND SYNCHRONOUS OPERATIONS........cc.ommreernrreesnneeesse 5-12
CONCLUSION <. ceeettteeeeeessseeeeeeeesss st e8RS 5-12
)G | O I o Lo = PRSPPI 5-13
QUETRIGGER() - DEFINING A QUESYS TRIGGERvveeetinneeeeesnnsesssessssssesssssssssssesssessss 5-13
QUEUNTRIGGER() - UNDEFINING A QUESYS TRIGGERovvvvveernereeessseeessesssssseessessss 5-14
MEMTRIGGER() - DEFINING A MEMSYS TRIGGERcovvvviereeereeeessseessnsssssssssssssnssssssnes 5-15
MEMUNTRIGGER() - UNDEFINING A MEMSYS TRIGGERccmmreeeireeemnneeesnsssessesseesseees 5-16

01/22/2004

Rev. No.: 4

X+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

5.2.5
5.3

5.3.1
5.3.2
533
5.3.4
535
5.4

54.1
5.4.2
55

5.5.1
5.5.2
5.6

5.6.1
5.6.2
5.6.3
5.7

5.7.1

572

6.

TRIGGER PERFORMANCE CONSIDERATIONS........oiivvveeessesssessssssssssssssssssssssssssssesssssnsssons 5-16
Using Message Select Codes and Queue Select Codes.......ccccceecvveeeenns 5-18
DISPATCHING MESSAGES ONTO QUESYS QUEUES.........coovvvvoeereeeeenesessssesssssssssssesessisee 5-18
RETRIEVING MESSAGES FROM QUESYS QUEUES.............ooimrevvvesssssssssssssssssssssssssesssssss 5-19
EXPRESSION SIMPLIFICATION ..ooovuiivvieumumeecisssssesssesssssess 5-21
PRIORITY SPECIFICATION DURING RETRIEVALcosvvvvooneeeoesseeoesssesisssssssssssssssesessssseee 5-21
CONCLUSION ..ot ssssssss s sssssse s sssssss s ssssssssssesssssss s sssssss 5-22
Understanding QueSys Message Sequence Numbers............ccccoeeeenee. 5-23
THE QUESYS SEQUENCE NUMBERc.ovvoooeeeeveeessessessssssssssesssssssssesssssssssssesssssssssssssssssssssneees 5-23
THE QUEUE SEQUENCE NUMBERomivvveoieeeesssssnssssssssssssssssssssssssssssssssessssssssssssssssssssneees 5-24
QueSys Message MUltICASTINGcccociiieeeiiiie e 5-26
THE “QUE_REPLICATE” APPROAGCH............ccomireviisieeseesesesssssssssssssessssssssssssssssssssssesssssssssssssnsssons 5-26
THE “SLIDING QUEUE WINDOW?” APPROACH...........ccosivrvreressersssssssssssssssssssssssssssssssssssssssnsssons 5-26
Using Messages That Have No Text —i.e., Headers Only...........cccccueenne 5-28
SMALL DATA MESSAGESoooooooeesvvosseesssn 5-28
“EVENT” MESSAGES.....ooervvveosinessssssesseees 5-29
PROGRAMMING SEMANTICS........oooimevorssesssiseessssesssnees 5-29

THE SEND-BURST ...ttt ettt n e n e 5-30

SEND-BURST FUNCTIONS ...t 5-31

IN D E X . ettt ettt e e et e e e e et e e e ear e een 6-1
01/22/2004

Rev. No.: 4

Introduction 1-1

1. INTRODUCTION

1.1 Purpose

This document presents User and Programming guidance for Verson 3.0 of the QueSys,
MemSys and SemSys subsystems of X¢IPC, the Extended Interprocess Communication
Facilities product from Momentum Software Corporation.

X+IPC isatoal kit for developing software systems employing Interprocess
Communication (IPC). X¢IPC comprises the following subsystems:

O QueSys, the Message Queue System

O MemSys, the Shared Memory System

O SemSys, the Semaphore System

O MomSys, the Message Oriented Middleware System
The present document describes the concepts, configuration and programming
congderations relevant to the firg three subsystems; there is a companion Reference
Guide for these three subsystems. MomSysis documented in its own User Guide and
Reference Manual.
In addition, there is separate documentation for the over-all X¢IPC product, including an
X+IPC User Guide and an X¢IPC Reference Manual; these two system-level documents
can be considered prerequisite to the subsystem documentation and should be read first,
in order to become familiar with general X+IPC concepts and for general programming
guidance.
X4PC isasa of libraries and support utilities that greatly smplifies software
development efforts involving sand-alone and network 1PC. Used together or
individualy, X +IPC subsystems provide sgnificant enhancements to the native IPC
fecilities of the supported operating systems. X+IPC provides the systems devel oper with
a dtate-of-the-art |PC development environment, including: on-line interactive IPC
monitoring and debugging; extended basic and advanced functiondity; immediate inter-
operating system IPC source-code portability; guaranteed message ddivery; complete
network transparency; and dynamic configuration.

1.1.1 XelPC Subsystems

X+IPC is comprised of four IPC subsystems, each of which includes alibrary of functions
and support utilities, the first three subsystems are addressed in the present document:
" QueSys, the Message Queue System
The X+IPC message queue system is known as QueSys. QueSys is a complete memory-
based, high-performance message queuing facility. Many advanced features are included
(eg., individuaized queue sizing, dynamic queue spooling, queue multiplexing, etc.) to
facilitate most necessary message queuing requirements.

MemSys, the Shared Memory System
The X+IPC shared memory system is known as MemSys. MemSys is a complete shared-
memory management system. It includes memory alocation as well as access control,
synchronization, locking and protection at the byte level.

01/22/2004
Rev. No.: 4

1-2 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

SemSys, the Semaphore System
The X+IPC semaphore subsystem is known as SemSys. SemSysincludes a
comprehensve implementation of event and resource semaphores. Its wide range of
operations and the various waiting and acquiring aternatives ensures that dmost every
semaphore-related system requirement can be easily implemented.

MomSys, the Message Oriented Middleware subsystem
The X+IPC message oriented middleware subsystem is known as MomSys. MomSysisa
highly scalable, dynamicaly configurable, guaranteed message delivery facility. 1deal
for misson-critical, enterprise-wide applications, MomSys ensures the constant
trackability of al messages.

1.2 Scope

This QueSygMemSys/'SemSys User Guide is for experienced software developers, who
are familiar with the basic concepts of IPC aswell as with common software

development practices, and who need the enhancements provided by X+IPC for easng and
expediting their development of qudity, portable, multi-tasking or distributed

applications.

For ease of use and to facilitate presentation, this volume repeats some materia that
agopearsaswell in the X¢IPC User Guide, as noted above, the X¢IPC User Guide should
be read before the present document.

1.3 Documentation Road Map

Thefollowmg publications are available to support X+IPC Verson 3.4.0:

Geting Started with X¢+IPC is a brief introduction to the product which givesthe user a
"fadt track” to select the relevant documentation, ingtall the software and rapidly

beginusng X+IPC .
X+IPC Patform Notes provide platform-specific information regarding product
ingalation, program compilation, program linking and, where gppropriate,
configuration and adminigtration guidance. The supported environments are
individually documented

X0IPC system level documentation:
The X¢IPC User Guide describesin detail how to employ X+IPC for distributed
gpplication development. This document is generic in that it presents X¢IPC - without
regard to any particular hardware platform, operating system or network protocol.
Theinformation is presented a an X+IPC -system-leve, i.e, it isX¢IPC -subsystem+
independent.
The X¢+IPC Reference Manua provides X¢+IPC (system level) commands, functions
and macros, as well as function caling sequences and possible return codes. Included
are code segments and sample programs.

QueSysMemSys/SemSys documentation:

" The QueSygMemSys'SemSys User Guide-this document—describesin detail how to
use these three X +IPC subsystems for distributed gpplication development. It includes
API decriptions aswell as topica presentations on specid subsystem features.

01/22/2004
Rev. No.: 4

Introduction 2-3

The QueSygMemSys/SemSys Reference Manua details subsystem-level parameters,
functions and macros, interactive commands and sample programs, as well function
caling sequences and possible return codes.

MomSys documentation

" TheMomSys User Guide describesin detail how to use the MomSys subsystem for
distributed application development. It includes API descriptions as well as topical
presentations on speciad subsystem features.
The MomSys Reference Manud details subsystem+level parameters, functions and
macros, interactive commands and sample programs, aswell function caling
sequences and possible return codes.

2. QUESYS: THE X4 IPC MESSAGE QUEUE SYSTEM

2.1 QueSys Concepts

To understand X+IPC QueSys, the user should be familiar with some basic QueSys
concepts. The following sections introduce these idess.

2.1.1 Message Queues

The most important abstraction within QueSysis that of a QueSys message quele.
QueSys queues are memory-based, high-performance mechanismsfor supporting
network transparent message-based distributed applications.

2.1.1.1 Time and Priority Ordering

A QueSys message queue is a set of messages that are ordered both by "arrival time" and
"message priority." The two orderings are referred to as the time and priority "strands' of
the queue.

In asense, amessage queue has two persondities. Traversing the queue chronologicaly
one encounters its messages in the order in which they were placed on the queue.
Traversing the queue by priority presents the messages in order of decreasing priority.

Of course, each message actudly exists only once on the queue.

2.1.1.2 Message Headers

Beyond the issue of queue strands, there is the question of what exactly is a QueSys
message? In fact, the objects actualy on a queue are not messages at dl but rather data
structures called "message headers.”

A QueSys message is composed of two components:

0 A message header structure that moves about on QueSys queues

O The actual message text that resides in a message text pool area
A message header is a structure that completely describes a QueSys message. It contains
al rdevant information about a message, including:

O The message's user assigned priority
O The message'stime of arriva on the queue

01/22/2004
Rev. No.: 4

2-2 X+PC Version 3.4.0: QueSys/MemSys/SemSys User Guide

O The length of the message text

O A pointer to the message text
Breaking up messages into separate "header” and "text" componentsis efficient for a
number of reasons. For one, the management of a message's text gpace is independent of
which queue the messageis currently on.
More important, messages can be manipulated and moved among queues without any
need to copy the message'stext as part of each move. The only portion that needsto be
moved from queue to queue is the message header. The message text can remain in one
place throughout the message's existence.

Message ‘A’ can be transferred from queue O to queue 1 by moving the header done and
not touching its text.

X+IPC |ets the devel oper manipulate messages at two levels:
O At alower levd: headers and texts separately.

The programmer views message headers and their texts as separate items under
his control. A message is digpatched to a queue in two steps using this gpproach:

01/22/2004
Rev. No.: 4

QueSys 2-3

- Fird, the text is written into the QueSys message text pool. This produces a
message header that references the written text.

- Then, the message header is placed onto the appropriate message queue.
For message retrieva, the processis reversed:

Firdt, the appropriate message header is removed from a queue.

- Then, its corresponding text isread.

In fact, amessage header can be moved on and off numerous queues beforeits
text isactudly read (i.e., purged) from the text pool. This can be an important
consderation for an application that employs complex message routing schemes, before
messages actudly get "consumed.” Thisis especidly important if large-Szed messages
are involved.

O At ahigher levd: headers and texts as single units.

Message dispatch and retrieva operations are accomplished as single operations
with the details of message headers and text pool reads and writes hidden from the
programmer.

The message dispatch operation writes the user's text to the message text pool and
then immediately places the header onto the appropriate queue.

The message retrieval operation accesses the desired header and then immediatdy
reads its text out of the text pool.

The choice of gpproach depends on the level of flexibility needed at a particular point in a
program. It will sometimes make sense to mix the two methods, using, for ingance, high
level operations at the terminds of a message's journey and low level header operations
for intermediate inter-queue moves.

2.1.1.3 Message Text

A message header contains two fields that relate to a message's text: a message length
fidd and a pointer to the actua text. These two fields provide the necessary information
for working with a message's text.

Ohbvioudy, using the text pointer to modify a message's text while it is still resdent in the
message text pool is fraught with danger. If the message's heaeder is fill on aqueue, then
there is no guarantee that it will remain there. And, if the header has been removed from
aqueue, “invading” the instance's message text pool is an indication of poor design, at
best.

An even greater danger arises when working within a network instance. In that case, there
is no certainty that the text pointer contained in the message header references atext pool
on the loca machine. It may in fact refer to atext pool residing on a different network
node.

For these reasons, it is recommended that a program generally avoid attempting to
directly modify a message's text once it has been written to the message text pool.
However, examining al or part of amessage's text via its message header can be
accomplished using the QuePointer() and QueCopy() functions. This can be very useful
for determining the importance of a message to a program without removing the entire
text from the text pool.

01/22/2004
Rev. No.: 4

2-4 X+PC Version 3.4.0: QueSys/MemSys/SemSys User Guide

2.1.1.4 Multiple Text References

One of the more interesting features of X«Pc 's QueSysisthat it adlows asngle message-
text block (i.e, asingle dlocated text-pool block) to be referenced by more than one
QueSys message header.

This can be useful when there is aneed to move alarge message through two separate
queues (e.g., replication to separate server programs). Using QueSys, it is possible to set
up asngle text-pool block with the data and to have multiple headers reference the block,
asin thefollowing diagram:

QueSys autometically manages the reference counts to the text-pool blocks and frees it
when the last reference is removed.

An example of this mechanism's use is when QueSend() or QuePut() are employed with
the QUE_REPLI CATE option for multicasting message copies to multiple recipients via
asngle QueSysfunction cal. QueSys verbsthat can cause such multiple referencing to
occur are. QueSend(), QuePut() and QueMsgHdArDup(). Refer to each of the respective
decriptions in this Guide and in the accompanying Reference Manudl.

2.1.1.5 Message Priority

A priority is assigned to amessage when the message is placed onto a queue. The priority
vaueis pecified by the user as part of the message dispatch operation.

As dated earlier, a queue's messages are kept in priority order viathe queug's priority
strand. Every QueSys message has a priority value associated with it. QueSys priorities
are long pogtive integers.

Priorities are most useful for sdlective message retrieva operations. A wide range of
priority specification capabilitiesis available for retrieving a message from a queue.
Theseinclude:

O Specific priority (e.g., priority == 100).

O Priority range specification (e.g., priority between 200 and 300).
[0 Basic boolean operations (e.g., priority != 25, priority < 100).
O Extreme vaues (e.g., maximum or minimum priority on aqueue).

01/22/2004
Rev. No.: 4

QueSys 2-5

In addition, a number of QueView monitor capabilities refer to message priority. For
example, browsing a queue's messages can proceed in priority order; watching front and
rear messages of a queue can be done from a priority perspective, etc. These capabilities
are described later in this chapter.

2.1.1.6 Message Time/Sequence Stamp

Messages on a queue are also kept in chronologica order viathe queue'stime strand.
Each message is automaticaly samped with an interna sequence number wheniit is
placed onto a queue. Thisrdative "time samp” vaueis used for kegping messages on
queues ordered by arrival. Each message queue has its own sequencing of messages. The
Seguence number of the first message on aqueueisone” Every subsequent message on
that queue receives the next sequentia number.

Sequence numbers can be used as akey for selecting messages from aqueue. We will
see later that QueSys provides the means for sdlecting a particular message from a queue,
based on its sequence number. Thisis discussed in detail in the Advanced Topics
chapter.

Here, too, QueView refers to message chronology in a number of ways. Browsing a
queue's messages can proceed chronologically; viewing front and rear messages of a
gueue can be done from amessage arrival perspective, etc.

One QueSys operation that makes particular use of a message's "time stamp” isthe
QueUnget() function. QueUnget() returns a message to a queue, placing it
chronologicaly precisdy where it was taken from. Thisis accomplished using the
message's "time stamp.”

2.1.2 Message Queue Capacity

An important aspect of X«pc QueSysisits gpproach to queue Szing. A number of
innovations are introduced in this area.

2.1.2.1 Individual Queue Capacity Specifications

QueSys queues are creeted with individualized capacity limits. The capacity of each
queue is specified as part of the queue create operation.
A queuge's capacity can be specified in one of four way:

O Maximum messages, maximum bytes.

O Maximum messages, unlimited bytes.

O Unlimited messages, maximum bytes.

O Unlimited messages, unlimited bytes.
Using this capability, it is possible to throttle message traffic within an gpplication.
Runaway message-roducing programs can be controlled by setting alimit on the amount
of traffic their outbound queues can hold—in terms of messages, bytes or both. Thisaso
alows the programmer to protect an instance's message text pool from being
monopolized by the same over-producing programs.
Specific queue capacity limits provide the flexibility and control needed within queue-
intensve goplications.
2.1.2.2 Dynamic Queue Overflow Spooling
Complementing the specific sizing capability is the ability to start overflow message
spooling on a queue- by-queue bass.

01/22/2004
Rev. No.: 4

2-6 X+PC Version 3.4.0: QueSys/MemSys/SemSys User Guide

When spooling for aqueueis™on,” the queue can absorb messages beyond its normal
cgpacity limitations. This adticity is made possible via an overflow message spooling
mechanism. Messages attempting to enter the full queue are temporarily spooled out to
disk until space on the queue becomes available, a which time the messages are
automatically absorbed into the queue.

Using this option, a system can impose a memory usage cap on amessage queue (via
queue capacity limits) even if its producing programs cannot be blocked from producing
messages. A network feed such as a stock ticker is one such example. Heavy bursts of
messages are not lost. Instead, they are temporarily kept on their destination queue's
overflow spoal.

Overflow spooling can be started and stopped dynamically by program contral, in
response to changing traffic loads.

Detalls of the spooling mechanism are described later in this chapter.

2.1.3 Message Text Pool

The actud text of every QueSys message spends its entire existence in the indance's
message text pool. Configuring an instance's message text pool properly can make the
difference between a good system and one that performs poorly.

There are two aspects to message text pool configuration:

O The sze of the poal.

O The dlocation unit used by the pooal.
2.1.3.1 Sizing

The message text pool size defines the tota amount of memory dlocated to the ingtance
for holding QueSys messages (i.e,, thelr text). It is important that the given vaue be
reasonably close to the actud memory requirement.

Too large avaue will result in wasted memory; too smdl avauewill result in poorly
performing programs. Programs requiring alocations of pool space that are not available
will usudly wait until the required memory blocks become free. It may be convenient to
depend on such a contingency, but this should not be allowed to occur regularly.

The formulae for cdculating an efficient message text pool Sze are presented later in this
chapter.

2.1.3.2 Fragmentation

The second component of message text pool configuration is the size of the dlocation
unit. This vaue specifies the multiple by which dl text pool dlocations are made. It
directly impactsthe leve of fragmentation that occurs within the pool.

An ingtance working with large messages will benefit from an equdly large vauefor its
dlocation unit sze. Wageful fragmentation will thus be limited. An instance supporting
the manipulation of smal Szed messages will amilarly benefit from asmdl dlocation

unit Sze.

The ahility to customize an ingtance's QueSys according to the specific needs of its client
programsis one of the important benefits of using X«IPc.

Formulae for determining a proper dlocation unit Size are presented later in this chapter.

01/22/2004
Rev. No.: 4

QueSys 2-7

2.1.4 Message Multicasting

QueSys supports a variety of means for building scalable, high-performance message
multicasting applications. These methods are described in the Advanced Topics chapter
later in this Guide,

Typicd gpplications built usng the QueSys multicasting feature incdlude: "publish and
subscribe" and "message replication” applications. Numerous such applications of these
kinds have been successfully deployed since this capability was introduced within X«pc.

2.1.5 QueBurst() - Ultra-High Throughput Messaging

QueSys provides a specidized set of functions for building distributed applications that
require extremely high message throughput performance. These are called the QueSys
QueBurst() functions. They are described later in this Guide's Advanced Topics section,
"The Queue-Burg Facility for Very High Throughput Message Queuing.”

With proper utilization, QueBurst() message throughput over a network can exceed 70%
of the protocol's physical bandwidth. Redl-time message transfer gpplications are idedl
candidates for QueBurst().

2.1.6 RPC-like Request-Response Inquiry

QueSys includes a specidized function for optimizing the network performance of
request-response classes of goplications.

The QueSendReceive() function provides this capability and is described later in this
Guide.

2.1.7 Queue Multiplexing

X«pc QueSys provides the developer with agreet ded of flexibility in digpatching and
retrieving QueSys messages. Of particular note is the ability to operate on multiple
message queues aiomically. For example, one can retrieve the highest priority message
from a group of three queues. Multiplexing digtinguishes X«ipc QueSys from most other
message queuing facilities.

Operations that move messages to and from queues are generaized to work with lists of
queues. Queue ligs are used in away that is very Smilar to the usage of semaphore lists
in SemSys. Here, too, an operation involving only one queue uses asingle-dement lis.
Ultimately, QueSys message transfer functions move exactly one message to or from
exactly one queue. The determination of which queue from the list is sdected asthe
operative queue, and which message is returned, is based a run-time on user- goecified
arguments to the various function cdls.

There are two classes of specification codes:
0 Queue Select Codes.
O Message Select Codes.

2.1.7.1 Queue Select Codes

Queue Select Codes (QSC) are codes that select one queue from alist of queues based on
certain criteria. A QSC is provided as an argument to QueSys message transfer operations
involving quete ligs.

As an example, consider a programmer wishing to send a message onto the shortest queue of the group of
gueues. a, b, and ¢ (perhaps to guarantee balanced queue loads). The programmer would first define the

01/22/2004
Rev. No.: 4

2-8 X+PC Version 3.4.0: QueSys/MemSys/SemSys User Guide

queue list {a, b, c}, and then specify the "Shortest Queue" Queue Select Code (i.e.,, QUE_Q SHQ as an
argument to the dispatch operation. This selection can be summarized as:

QUE_QSHQ {a, b, c}

Similarly, sending a message onto the longest queue from the list would use the "Longest Queue" QSC
(i.e, QUE_Q _LNQ, and would be summarized as:

QE_QLNQ {a, b, c}

The list of possible Queue Select Codes is extensive. The QSC values that can be used within message
"dispatch" operations are:

QUE_Q SHQ Select the shortest queue.

QUE_Q LNQ Sdlect the longest queue.

QUE_Q HPQ Sdect the queue having the highest priority message.
QUE_Q LPQ Sdlect the queue having the lowest priority message.
QUE_Q EAQ Select the queue having the earliest arrived (oldest)
message.

QUE_Q LAQ Sdlect the queue with the latest arrived (most recent)
message.

QUE_Q_ANY Sdect the first queue in the ligt that has room (not full).

Queue Sdect Codes have adightly different function when used within message
"retrieval" operations. They work together with the second class of codes, Message Sdlect
Codes (MSC), to identify the message to be retrieved.

2.1.7.2 Message Select Codes
Retrieving messages within QueSys can be viewed as occurring in two steps.
Firg, alist of message queuesis defined by the program. As part of this definition, a

particular message is designated as the candidate message from each of the listed queues.
This designation is done using a Message Sdlect Code (MSC).

For example, thelist:
{ QUEMHP(a), QUE_MEA(b), QUE_MLA(c) }

defines alist of three queuesa, b, and c with Message Select Codes that designate:
O The highest priority message on queuea: QUE_M HP(a) .
[0 The earliest arrived message on queue b: QUE_M EA(b) .
O The latest arrived message on queue c: QUE_M LA(¢)

as their respective candidate messages.

One of the competing candidate messagesiis then selected from the group based on a
Queue Sdect Code. The chosen message is retrieved and returned to the user.

The QueSelectCodes that are valid within message retrieval functions (QueGet() and QueReceive()) can be
based on Message Attributes or Queue Attributes.

Based on Message Attributes, they are:

QUE_Q EA The earliest arrived (oldest) candidate message.
QUE_Q LA The latest arrived (most recent) candidate message.
QUE_Q HP The highest priority candidate message.
QUE_Q LP The lowest priority candidate message.

01/22/2004

Rev. No.: 4

QueSys 2-9

Based on Queue Attributes, they are:

QUE_Q LNQ The candidate message from the longest queue in the
lig.

QUE_Q SHQ The candidate message from the shortest queue in the
lig.

QUE_Q HPQ The candidate message from the queue having the
highest priority message.

QUE_Q LPQ The candidate message from the queue having the
lowest priority message.

QUE_Q EAQ The candidate message from the queue having the
earliest arrived message.

QUE_Q LAQ The candidate message from the queue having the latest
arrived message.

QUE_Q _ANY The first candidate message.

Thus, for example, theretrieval expression:
QE_QHP { QUEMEA(a), QUE_MEA(b) }

can be usad to summarize the following retrieval operation: "Compare the oldest (Earliest
Arrived) message on queue a with the oldest message on queue b and return the one with
the highest priority.”

Similarly:
QE QEA{ QEMHP(x), QEMHP(Y), QEMHP(z) }
returns the oldest of the highest priority messages resdent on queues x, y and z.

Finally, consider aretrieval example having adlightly different slant:
QUEE QLNQ { QUE MHP(a), QUEE MHP(b), QUEEMHP(c) }

Firg, the highest priority message from each of the three respective queues a, b and c are
designated as competing candidate messages. The returned message is then selected to be
the one residing on the longest of the three queues.

Possible "M essage Select Codes" and their interpretations are:

QUE_M EA(Q The earliest arrived (oldest) message on the queue Q.

QUE_ M LA(Q The latest arrived (most recent) message on the queue Q.

QUE_M HP(Q The highest priority message on the queue Q.

QUE_M LP(Q The lowest priority message on the queue Q.

QUE_ M PREQ(Q n The first message on queue Q having apriority of n.

QUE_M PRNE(Q n Thefirst message on queue Q not having a priority of n.

QUE_M PRGT(Q n) Thefirst message on queue Q with a priority greater than n.

QUE_M PRGE(Q, n) The first message on queue Q with a priority greater than or
equd ton.

QUE_M PRLT(Q n) Thefirg message on queue Q having apriority lessthan n.

QUE_M PRLE(Q, n) The first message on queue Q with a priority less than or
equd ton.

QUE_M PRRNEH Q, n, The first message on queue Q with apriority in[n, m] range.

m

01/22/2004
Rev. No.: 4

2-10 X+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

QUE_M SEQEQ Q The first message on queue Q with a vaue equd to sequence
se %n number segn. _

| SEQGE (Q The first message on queue Q with a vaue greater than or equd
seqn) to sequence number segn.
QUE M SEQLE(Q The first message on queue Q with a vaue lessthan or equd to
seqn) sequence number segn.
QUE M SEQGT(Q, The first message on queue Q with a vaue greater than

%n sequence number segn.

QU - M SEQLT(Q The first message on queue Q with a vaue less than sequence
seqn) number segn.

The use of "Queue Sdlect Codes' and "Message Select Codes' to define message transfer
operations offers the flexibility and functiondity needed by most queue intensive
gpplications.

A presentation on the optimum usage of MSC and QSC codes for message dispatch and
retrieval operationsisincluded in the Advanced Topics chapter of this guide.

2.2 QueSys Configuration

The QueSys section of an X«Ipc instance configuration file describes the compodtion and
capecity of the instance's QueSys.

Seven parameters must be set within the QueSys section of the instance configuration.
Parameter tables with default values are provided at the beginning of the companion
Reference Manual. Additiona operating system specific parameters (if required) are
described in the relevant Platform Notes.

The configuration parameters are:

O MAX_QUEUES, The maximum number of concurrent queues. Should be st
based on the requirements of the programs using the instance.

O MAX_USERS, The maximum number of concurrent users. Should be sat based
on the requirements of the programs using the ingance Note that
asynchronoudy blocked QueSys operations are treated as QueSys users. The
expected level of QueSys asynchronous activity shoud therefore be factored
into this parameter.

O MAX_NODES, The maximum number of nodes. QueSys nodes are used
internally for tracking users that block on QueSys operations. Aswith SemSys,
thereis no firm rule for caculaing avaue for MAX _NODES. It depends largely
on the nature of the programs that will use the indance. A conservative estimate
to art with can be caculated from the following formula:

MAX NODES = MAX QUEUES+(MAX_ USERS* 3) +(MAX USERS*
MAX_QUEUES)
O MAX_HEADERS, The maximum number of concurrent message headers (i.e,
messages) that can be circulaing within an indance a any onetime. A
consarvative garting formulafor MAX_HEADERS is
MAX_HEADERS = MAX_QUEUES + (MAX_QUEUES *
Aver ageQueuelLengt h)
where:
AverageQueuelength is the expected average queue length (in terms of
messages) within the instance.

01/22/2004
Rev. No.: 4

QueSys 2-11

O SI ZE_MSGPOOL, The size of the message text pool (K-Bytes). QueSys
provides optiond blocking when accessing the message pool. Consequently, a
less conservative gpproach can be gpplied when configuring the message text
pool. A garting formulafor SI ZE_ MSGPOOL is
SI ZE_MSGPOOL=(MAX_QUEUES* Aver ageQueuelLengt h) *(Aver ageMessa
geSi ze+16)
where:
Aver ageQueuelengt h isasdefined above.
Aver ageMessageSi ze isthe expected average message Sze occurring
within the instance.

Sl ZE_MSGPOCOL is expressed in terms of K-Bytes. As such the caculated vaue
should be rounded up to the next K-Byte multiple (For example if the
caculation comes to 1948 bytes, then 2 K-Bytes should be specified).

O SI ZE_MSGTI CK, message text pool alocation sze unit. This vaue pecifies
the multiple by which dl text pool dlocations are made. A proper vaue can
have a noticeable effect in reducing fragmentation in the message pool.

Sl ZE_MSGTI CK should be rounded up to amultiple of 4. A formulafor a good
dating vauefor SI ZE_MSGTI CK is

SI ZE_MSGTI CK = 25Percenti | eMessageSi ze
where:
25Per centi | eMessageSi ze isdefined asthesze vduefor which it is
expected that 75% of the instance's messages will be larger in size and 25% will
be smdler.

O SI ZE_SPLTI CK, The spoal tick fileszelimit (K-Bytes). Definesthefilegze
limit used in the course of queue overflow spooling. The QueSys spooling
mechanism uses one or more files to handle each queue's message spooling.

Sl ZE_SPLTI CK ststhe maximum sze of these files(in K-Bytes). Too large a
vaue could result in wasted file system space, holding a queue's old spooled
data. On the other hand, too smdl avaue will generdly cause a greater number
of spool filesto be created for each queue. The sdlection of avaue dependson
which of the competing concerns is more important. If the value for
Sl ZE_SPLTI CK isbeing chosen to meet a system-widefile sze limit, then a
smdler vadue (less then the sysem file size limit) should be chosen. If the
concernisto limit spoal file proliferation, then alarge vaue will be gppropriate.
In ether case, @ aminimum, SI ZE_SPLTI CK must be 32 bytes larger than the
largest message to be spooled by any queue in the instance.
Example:
Consider the QueSys configuration below for an X«pc instance that will support a
high performance transaction processing application.
Assumptions:

1 There will be between 5 and 10 users and/or asynchronous QueSys operations at any
one point intime.

2. There will be between 10 and 15 queues active at any onetime.

3. The average queue length is expected to range between 25 and 30 messages.

01/22/2004
Rev. No.: 4

2-12 X¢IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

4, The expected average message sizeis 32 bytes.

It is estimated that 25% of the messages will be less than 21 bytesin size, and that 75%
of the messages will exceed 21 bytesin length. Thus 21 bytesis the estimated
25Percenti | eMessagesSi ze.

6. Spool files must not exceed 128 K-Bytes. The largest message to be spooled will not
exceed 1024 bytes.
Then:

MAX_USERS can be safely set at 10. Little spaceis required for configuring extra users, so
it paysto play it safe.

MAX_QUEUES can be set at 15. The MAX_USERS reasoning isvalid here aswell.
MAX_NODES followsthenas: 15+ (10* 3) +(10* 15) = 195.
MAX_HEADERS would be calculated as: 15 + (15 * 30) = 465.

Sl ZE_MSGPOOL would be calculated as: (15 * 30) * (32 + 16) = 21,600. The number 22
can be used since 21,600 < 22 K-Bytes

Sl ZE_MSGTI CK would be set to 24 bytes sinceit isthe next multiple of 4, after 21.
SI ZE_SPLTI CK can be set at 128 K-Bytes.

#

File: /projects/local/tpsys.cfg

Oreated: May 31, 2001

#

He s s s e mmmmmo -
#

This XIPC instance supports a hi gh-perfornmance

transaction processing application.

Note: The instance is defined so that it only

supports Xl PC QueSys queues. The SenBys, MenBys

and MonBys subsystens are defined as NULL.

#

He s s s e mmmmmo -
[QUESYS]

MAX_USERS 10

MAX_QUEUES 15

MAX_NCDES 195

MAX_HEADERS 465

SI ZE_MBGPOOL 22
Sl ZE_MBGTI CK 24
SI ZE_SPLTI CK 128

A further note about QueSys configuration: the above formulae and rules
generaly produce acceptable parameter values. The values should, however, be
adjusted as necessary based on empirical observations using the QueSys monitor.

2.2.1 QueSys Configuration

The QueSys section of an X«pc instance configuration file describes the compostion and
capacity of the instance's QueSys.

Seven parameters must be set within the QueSys section of the instance configuration.
Parameter tables with default values are provided at the beginning of the companion
Reference Manud. Additional operating system specific parameters (if required) are
described in the rlevant Plaiform Notes.

01/22/2004
Rev. No.: 4

QueSys 2-13

The configuration parameters are:

O MAX_QUEUES, The maximum number of concurrent queues. Should be set
based on the requirements of the programs using the instance.

O MAX_USERS, The maximum number of concurrent users. Should be set based
on the requirements of the programs usng the ingance Note that
asynchronously blocked QueSys operations are treated as QueSys users. The
expected level of QueSys asynchronous activity should therefore be factored
into this parameter.

O MAX_NODES, The maximum number of nodes. QueSys nodes are used
interndly for tracking users that block on QueSys operations. Aswith SemSys,
thereisno firm rule for caculating avaue for MAX _NODES. It depends largely
on the nature of the programs that will use the indance. A conservative estimate
to start with can be cdculated from the following formula

MAX_NODES = MAX_ QUEUES+(MAX_USERS* 3) +(MAX_USERS*
MAX_QUEUES)
O MAX_HEADERS, The maximum number of concurrent message headers (i.e,
messages) that can be circulating within an insance a any onetime. A
consarvative garting formulafor MAX_HEADERS is
MAX HEADERS = MAX_ QUEUES + (MAX QUEUES *
Aver ageQueuelLengt h)
where:
AverageQueuel ength is the expected average queue length (in terms of
messages) within the instance.
O SI ZE_MSGPOOL, The size of the message text pool (K-Bytes). QueSys
provides optional blocking when accessng the message pool. Consequently, a
less conservative gpproach can be gpplied when configuring the message text
poal. A garting formulafor SI ZE_ MSGPOCOL is
SI ZE_MSGPOOL=(MAX_QUEUES* Aver ageQueuelLengt h) *(Aver ageMessa
geSi ze+16)
where:
Aver ageQueuelengt h isasdefined above.
Aver ageMessageSi ze isthe expected average message Sze occurring
within the instance.

Sl ZE_MSGPOOL is expressed in terms of K-Bytes. As such the caculated vaue
should be rounded up to the next K-Byte multiple. (For example, if the
caculation comes to 1948 bytes, then 2 K-Bytes should be specified).
O SI ZE_MSGTI CK, message text pool alocation sze unit. This vaue specifies
the multiple by which dl text pool dlocations are made. A proper vaue can
have a noticesble effect in reducing fragmentation in the message pooal.
Sl ZE_MSGTI CK should be rounded up to amultiple of 4. A formulafor a good
darting vduefor SI ZE_MSGTI CK is
SI ZE_MSGTI CK = 25Percenti | eMessageSi ze
where:

01/22/2004
Rev. No.: 4

2-14 X+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

25Percenti | eMessageSi ze isdefined asthe sze vauefor whichitis
expected that 75% of the instance's messages will be larger in size and 25% will
be smdler.

O SI ZE_SPLTI CK, The podl tick file 9ze limit (K-Bytes). Definesthefile 9ze
limit used in the course of queue overflow spooling. The QueSys spooling
mechanism uses one or more files to handle each queue's message spoaling.

SI ZE_SPLTI CK ststhe maximum sze of these fileq(in K-Bytes). Too large a
vaue could result in wasted file system space, holding a queue's old spooled
data. On the other hand, too smdl avaue will generdly cause a greater number
of spooal filesto be created for each queue. The selection of avaue depends on
which of the competing concernsis more important. If the value for
Sl ZE_SPLTI CK isbeing chosen to meet a system-widefile 9ze limit, then a
smdler vaue (less than the system file Sze limit) should be chosen. If the
concernisto limit gpoal file proliferation, then alarge vaue will be gppropriate.
In either case, @ aminimum, SI ZE_SPLTI CK mugt be 32 bytes larger than the
largest message to be spooled by any queue in the instance.
Example:
Consider the QueSys configuration below for an X«pc instance that will support a
high performance transaction processing gpplication.
Assumptions:

1 There will be between 5 and 10 users and/or asynchronous QueSys operations at any
one point intime.

There will be between 10 and 15 queues active at any onetime.
The average queue length is expected to range between 25 and 30 messages.
The expected average message sizeis 32 bytes.

a » w D

It is estimated that 25% of the messages will be lessthan 21 bytesin size, and that 75%
of the messages will exceed 21 bytesin length. Thus 21 bytesis the estimated
25Percenti | eMessageSi ze.

6. Spool files must not exceed 128 K-Bytes. The largest message to be spooled will not
exceed 1024 bytes.
Then:

MAX_USERS can be safely set at 10. Little spaceisrequired for configuring extra users, so
it paysto play it safe.

MAX_QUEUES can be set at 15. The MAX_USERS reasoning isvalid here aswell.
MAX_NODES followsthenas: 15+ (10* 3) +(10* 15) = 195.
MAX_HEADERS would be calculated as: 15 + (15 * 30) = 465.

Sl ZE_MSGPOOL would be calculated as: (15 * 30) * (32 + 16) = 21,600. The number 22
can be used since 21,600 < 22 K-Bytes

SI ZE_MSGTI CK would be set to 24 bytes since it isthe next multiple of 4, after 21.
S| ZE_SPLTI CK can be set at 128 K-Bytes.

#
File: /projects/local/tpsys.cfg
Created: May 31, 2001

01/22/2004
Rev. No.: 4

QueSys 2-15

#
e
#

This XIPC instance supports a hi gh-performance

transaction processing application.

Note: The instance is defined so that it only

supports Xl PC QueSys queues. The SenBys, MenBys

and MonBys subsystens are defined as NULL.

#
e
[QUESYS]

MAX_USERS 10

MAX_QUEUES 15

MAX_NODES 195

MAX_HEADERS 465

SI ZE_MBGPOOL 22
Sl ZE_MBGTI CK 24
Sl ZE_SPLTI CK 128

A further note about QueSys configuration: the above formulae and rules
generdly produce acceptable parameter values. The values should, however, be
adjusted as necessary based on empirica observations using the QueSys monitor.

2.3 QueSys Functions

2.3.1 QueCreate() - Creating a New Queue

The first step toward using a QueSys message queue within an instance is to cregte the
queue.
QueCreate() takes three arguments:

O The name of the new queue.
O A vaue specifying the message capacity of the queue (if any).

O A vaue specifying the byte capacity of the queue (if any).
QueCreate() returnsthe "queue id" (Qid) of the newly created queue. Thisvaueisused
as the queue's "handl€’ in al subsequent QueSys function cals that refer to the queue.
Example:

Qd = QueCreate("!nput Queue", 50, 1024L);

In the above example, the calling user attempts to create a new message queue with the
name "InputQueue." The new queue will have a capacity limit of 50 messages and 1024
bytes. The queue is considered full when one or the other of these limits is reached.
Example:

Qd = QueCreate("LimtedBytes", QUE NOLIMT, 32768L);

In this example, the calling process is cresting a message queue with the name
"LimitedBytes." a byte capacity limit of 32,768 (32 K-Bytes) and an unlimited message
capacity.

Having an unlimited message capacity means that the queue can hold as many messages
as necessary, provided the byte capacity (32 K-Bytes) isnot violaed. Thisis very ussful
for limiting queues whose message Szes are unknown. In this example, any combination

01/22/2004
Rev. No.: 4

2-16 X+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

of messages (large, smdl or a mixture) that fills the queue with 32 K-Bytes will render
the queue full.

Example:
Qd = QeCreate("LimtedMsgs”, 100, QUE NCLIMT);

Here, the cdling user creates a message queue with the name "LimitedM sgs” The queue
is crested with a capacity limit of 100 messages and an unlimited byte capecity.

Thistype of queue would be useful for implementing a priority queue that had to accept a
limited number of messages (in this case 100) regardiess of thelr Szes.

Example
Qd = QueCreate("Very _Big Queue", QUE NOLIMT, QUE_NOLIMT);

In this example, a queue is created having unlimited message and byte capacities. Such a
queue might be used for collecting incoming messages from a producer that could not be
blocked and for which spooling was not appropriate.

Such a queue would continue to accept messages until some QueSys configuration limit
was reached. This may be alack of free space in the message text poal, or a shortage of
available message headers.

Creating a queue with unlimited capacity vaues should be restricted to specid situations.
Such uncontrolled queues can wreak havoc if used ingppropriatdly.

A further note regarding queue cregtion: duplicate queue names are not alowed within an
ingtance.

Specifying QUE_ PRI VATE asthe name of the new queue creates aqueuethat is
inaccessible via QueAccesy(), effectively making its'Qid' private to the creating

program. Of course, the creating program can pass the 'Qid' to othersif it so wishes. The
advantage of usng QUE_ PRI VATE asanameisthat it is guaranteed not to conflict with
any queue name currently in the ingtance.

2.3.2 QueAccess() - Accessing an Existing Queue

Once a queue has been created, other users can accessiit (i.e, its Qid) using QueAccesy().
QueA ccess() takes one argument:

O The name of an existing message queue.
QueAccesy() returns the "queue id” (Qid) of the desired queue. Thisvaueis used asthe
message queue's "handle’ in dl subsequent QueSys function cals that refer to the queue.

Examples:
Qd = QueAccess("I nput Queue");
Qd = QeAccess("LimtedBytes");
Qd = QeAccess("LimtedMsgs");

The above examples access three of the queues created in the previous section.
2.3.3 QueWrite() - Writing Message Text to the Text Pool

To send a message onto a queue using the header/text gpproach outlined earlier, you must
first write the message's text to the QueSys message text pool via QuewWrite(). Thiswill
usualy be followed by acal to QuePut() to place the corresponding message header onto
the desired queue.

01/22/2004
Rev. No.: 4

QueSys 2-17

Both of these steps can be avoided by using the QueSend() function. It performs the text
write and the header placement in one operation. QueSend() is described later. In addition
to writing text to the message text pool, QueWrite() also creates a message header
corresponding to the written text. This header iswhat actually moves about on QueSys
queues throughout the duration of the message's existence. QueWrite() sets the created
message text pool block's reference count to one (1) when it creates a new text block.

QueWrite() takes four arguments:
O A pointer to an empty message header.
[0 A pointer to the text to be written.
O The size of the message text (in bytes).

O A blocking option code in case the operation needs to block.
The empty message header passed (indirectly) to Quewrite() is returned with appropriate
values. It can be subsequently placed onto a queue using QuePut().
Note that MSGHDR is a datatype provided by X«pc QueSys for working with message
headers.

Example

/*

* Wite a "hello worl d" nessage text to the message text pool.
* In the process create a MSGHDR variabl e corresponding to the
* witten text - ready for placenent onto a queue.

*/

MSGHDR MessageHeader ;
Ret Code = QueWite(&WessageHeader, "hello world", 11L, QUE WAIT);

if (RetCode >= 0)
Ret Code = QuePut (&WessageHeader, ...);

This example demongtrates an important QueSys capability: being able to block when the
text pool isfull until the required text space becomes available. Specifying QUE_ WAI T
directs Quewrit() to block indefinitely if the required text space is not currently
available. The user unblocks after the write finaly succeeds.

Blocking at the text pool leve isnot possible with most other queuing facilities.

01/22/2004
Rev. No.: 4

2-18 X¢IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

Example:

/*
* Wite "hello world" nessage text to the text pool.

* Block for 30 seconds if the nessage text pool is full.
*/

MSGHDR MessageHeader ;

Ret Code = QueW it e(&WessageHeader,
"hell o worl d",
11L,

QUE_TI MEQUT(30)) ;

i f (RetCode >= 0)
/* Wite succeeded */

el se
i f (RetCode == QUE_ER_TI MEQUT)
/* Handl e tineout */

In this example, the Quewrite() function isinstructed to block no more than 30 seconds
while waiting for text space.

Specifying QUE_NOWAI T as the blocking option would cause QueWrite() to return
immediately with an error code (Ret Code == QUE_ER_NOWAI T) if the required text
gpace was not immediatdy available.

The above examples demonstrate QueWrite() using synchronous blocking options.
Asynchronous blocking is aso possible by specifying one of the three asynchronous
blocking options. Refer to the Advanced Topics chapter for a detailed description of the
asynchronous blocking options.

2.3.4 QueRead() - Reading Message Text from the Text Pool

QueRead() reads message text out of the message text pool and copiesit to a user-
specified location. QueRead() uses a message header argument for identifying the
message text to be read. This message header will, in most cases, have just been attained
from a QueSys queue via a QueGet() operation. QueRead() accesses the message's text
using its header. QueRead() decrements the text pool block's reference count by one (1);
if the count equals zero, then it will release the text block.

QueRead() takes three arguments:
O A message header (viaa pointer).
O A pointer to a buffer to receive the message text.

O A long integer specifying the maximum sSze text to copy into the buffer (usudly
the Sze of the buffer).
QueRead(), when successtul, returns the number of bytes read from the text pool.
If the stipulated buffer size limit is greater than or equd to the actual message text size,
then the QueRead() operation will succeed and the entire message text will be copied.
If, however, the buffer 9ze limit isless than the message text Sze, then truncetion is
possible. Truncation will occur if and only if specified by the user viathe
QUE_TRUNCATE macro as demonstrated below. Otherwise, an error code (Ret Code
== QUE_ER TOOBI G) isreturned and the QueRead() operation will fail.

01/22/2004
Rev. No.: 4

QueSys 2-19

Example:

/*

* Retrieve a nessage header from a message queue.
* Then, read the nessage's text into 'Buff'.

* In this exanple, the QueRead will fail if the
* nessage text exceeds 100 bytes in |ength.

*/

MSGHDR MessageHeader ;
CHAR Buf f[100] ;
XI NT MsglLen;

Ret Code = QueCet (&VessageHeader, ...);
MsgLen = QueRead(&vessageHeader, Buff, 100L);

if (MsgLen == (X NT) QUE_ER TOOBI G
/* Message text exceeds 100 bytes. */

Example:

/*

* Sane exanpl e as above ...

* In this version, the QueRead will truncate the nessage text
*if its length exceeds 100 bytes. The first 100

* pytes will be copied, the renaining text bytes are |ost.

*/

MSGHDR MessageHeader ;
CHAR Buff[100];
XI'NT MsglLen;

Ret Code = QueCet (&WessageHeader, ...);

MsgLen = QueRead(&VessageHeader, Buff, QUE _TRUNCATE(100L));

Y ou can avoid using two separate functions, QueGet() and QueRead(), to retrieve a
message by using the QueReceive() function. QueReceaive() performs the QueGet() and
QueRead() as asingle operation (described later in this Guide).

2.3.5 QueListXxx() - Queue List Manipulation Functions

QueSys operations use lists of Qids to dispatch and retrieve messages. Message transfer
involving only one queue is accomplished usng asngle-dement lig.

A ligt of Qidsisreferredto asaQidList. A QI DLI ST datatype is defined for creating
and working with QidLists. Functions expecting a QidList as one of their arguments take
aQl DLI ST datatypefor this purpose.

There are two functions for building QidLigts: QueList() and QueListBuild(). The
difference between the two is that QueList() buildsits QidLit initsinternd datic area,
thus making the returned QidList safe for only one usage. QuelistBuild(), on the other
hand, takesaQ DLI ST variable asits first argument. QueListBuild() buildsits QidList
in this user-provided space. This QidList can safely be reused by the programmer. Apart
from this, the two functions are otherwise identical. Both functions require QUE_ECL as
ther last argument.

01/22/2004
Rev. No.: 4

2-20 X+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

Two additona functions, QueListAdd() and QuelistRemove(), alow for updating
QidLigs dynamicdly, and another function, QueListCount(), alows determination of the
number of dementsin aQidLid..
QueLigtAdd() is provided to dlow the programmer to add QidList eementsto an exigting
QidList (i.e., one that has been created by QuelisBuild()). Thisisacommon
requirement in situations where the needed QidList must be built dynamicaly, based on
certain run-time conditions.
QueListRemove() is provided to dlow the programmer to remove QidList dements from
an exising QidList when necessary.
The cdling sequence for QueLisAdd() and QuelisRemove() isidentica to that of
QueLigBuild(). These too expect a user-provided QidLigt astheir first argument. The
listed QidList eements are added to or removed from that QidList.
Example:
/*
* The following code constructs two identical Q dLists.
* QdListl is constructed using a single function call.

* QdList2 is built incrementally, one Qd at a tine.
*/

QDLIST QdListl, QdList2;
QueListBuild(QdListl, QdA QdB QdC QUE EQ);

QueLi stBui |l d(Q dList2, QUE_ EQ);

Queli st Add(Q dList2, QdA QUE_EQ);
QueLi st Add(Q dList2, QdB, QUE _EQ);
QueLi st Add(Q dList2, QdC, QUE EQ);

Example:
/*
* The following code waits to receive a nessage fromany of the
* queues in QdList, handling the possibility that any nunber of

* those queues m ght be destroyed while waiting.
*/

do {
Ret Code = QueRecei ve(QUE_Q EA, Q dList, Buf, Len, NULL, &RetQ d,
QE WAIT;
if (Ret Code == QUE_ER DESTROYED)
{
QuelLi st Renmove(Q dList, RetQd, QUE EQL);
i f (QueLi st Count (Q dLi st)==0)
br eak;
el se
conti nue;

}
} whil e(Ret Code == QUE_ER DESTROYED);

2.3.5.1 Message Dispatch QidLists

When preparing a QidList for a QuePut() or a QueSend() operation, the elementsin the

list are the Qids of the queues to be consdered as the target of the QuePut() or the

%ueSend () cal. The actua target selection is based on the Queue Sdlect Code argument
the function call. This process was described earlier.

01/22/2004
Rev. No.: 4

QueSys 2-21

Example:

/*
* Construct a QdList and then use it to send a nmessage to the

* shortest of the listed target queues.
*/

Q DLI ST Q dLi st;
QueListBuild(QdList, QdA QdB QdC, QUE EQ);

Ret Code = QueSend(QUE_Q SHQ Q@dList, ...);

The above QueSend() call would send its message onto the shortest of the three queues
represented by QidA, QidB and QidC. In fact, the very same QidList could be reused to
send amessage to the longest queue of the list by smply specifying the QUE_Q LNQ
Queue Sdect Code.

Example:

/*

* Use the previously constructed Q dList to send a nessage
* onto the | ongest queue of the list: QdA QdB, QdC

*/

Ret Code = QueSend(QUE_Q LNQ Q@dList, ...);

Queligt() returns a pointer to the QidList that it congtructsinterndly. The call to
QuelList() istherefore normaly embedded directly as the argument for the digpatch
function being invoked.

Example:

/*
* This QueSend call is equivalent to the one shown in the

* previous exanpl e.
*/

Ret Code = QueSend(QUE_Q LNQ

QueList(QdA, QdB, QdC QUE EQ),
D

The usage of QueList() and QueListBuild() within the context of QuePut() operationsis
identicd to the QueSend() examples shown above.

2.3.5.2 Message Retrieval QidLists

Building a QidLig for a QueGet() or a QueReceive() operation is dightly more involved than
preparing one for dispatch. In this case the QidList serves two purposes.
O It presents alist of source Qids from which to consider retrieving a message.
O It identifies a" candidate message” for each of the listed source Qids.
Each dement of amessage retrievd QidLigt isusudly a Message Select Code (MSC)
applied to a Qid. Each MSC defines the criteriato be used for choosing its queue's
candidate message. The following examples clarify this point.

01/22/2004
Rev. No.: 4

2-22 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

Example:

/*

* Build a QdList that will designate the highest priority
* nessage fromeach of the queues Q dA, Q dB and Q dC as

* the three queues' respective candi date nessages. Then,

* retrieve the oldest (earliest arrived) of these nessages.
*/

Q DLI ST Q dLi st;
XI'NT MsglLen;

QuelLi st Bui | d(Q dLi st,
QUE M HP(Q dA), QUEE M HP(Q dB), QUE M HP(Q dO),
QUE_EQL) ;

MsgLen = QueRecei ve(QUE_Q EA, QdList, ...);

The net effect isthe retrieva of the oldest of the high priority messages from the three
queues. QidA, QidB and QidC. (Note that specification of the lowest priority messages
would have resulted in the retrieva of the newest of those messages.)
Note how the QUE_M_HP Message Select Code macro is applied to each of the queuesin
the ligt to identify each queue's candidate message.
Here, too, QidLigts created usng QuelistBuild() can be reused for other purposes. For
example, you can use the same QidList with the QUE_Q_LNQ (longest queue) Queue
Sdect Code to retrieve the highest priority message from the longest of the three queues:
QidA, QidB and QidC. More precisdly, it selects the candidate message from the longest
of the three queues.
Example:

/* Reuse the QdList built earlier. This time retrieve the

* nessage residing on the |ongest of the three queues.
*/

MsgLen = QueRecei ve(QUE_Q LNQ QdList, ...);

The possihilities are virtudly endless. Refer to the section in the Advanced Topics
chapter on "Using Message Select Codes and Queue Select Codes' for a more complete
description of thisfacility and its options.

QidLists must not exceed QUE_MAX_QI DLI ST dements Thisisusudly not agrest
concern snce QUE_MAX_Ql DLI ST iscurrently defined as 32.

QidList Simplification

QidList amplification during message retrieva operationsis possible in certain cases. A
amplified QidList produces the same retrieva operation outcome as would have resulted
using the origind QidList. The following example demongtrates this concept.

01/22/2004
Rev. No.: 4

QueSys 2-23

Example:

/*
* Two QueRecei ve operations that are equival ent.
*/

QueRecei ve(QUE_Q HP,
QuelLi st (QUE_M HP(x), QUE MEA(Yy), QUE_MHP(z),
QUE_EQ),
-)

QueRecei ve(QUE_Q HP,
Queli st (x, QUEMEA(Y), z, QUE_EQ),
R

Both QueReceive() calls consider three candidate messages:

O The highest priority message on queue X.

O The earliest arrived message on queuey.

O The highest priority message on queue z
Both QueReceive() cdls retrieve the candidate message having the highest priority.
Thefallowing smplification has occurred: The firgt and third Qids of the smplified

QidList in the second example above lack Message Select Codes. As aresult they
"inherit" the criteria of the operation's Queue Select Code ("high priority™).

The simplification rule can be formulated as:

"Whenever a message retrieval QidList has a Qid entry for which no Message Select Code is
provided, the retrieval operation's Queue Select Code criteria is employed as the Message Select
Codefor that queue."
QidLigt smplification is often quite ussful, as shown in the following examples
Example:
/*
* Two nore QueReceive operations that are equival ent.
*/

QueRecei ve(QUE_Q HP,
Queli st (QUE_M HP(q),
QUE_M HP(r),
QUE_M HP(s),
QUE_EQL),
-)

QueRecei ve(QUE_Q HP, QueList(qg, r, s, QUEE EQ), ...);

Both retrieva operations return the overdl highest priority message from the three
gueues. g, r and s.

Both operations first designate a candidate message from each of the three queues. g, r
and s. They are the highest priority message of each of the queues.

The three candidate messages are then compared and the highest priority message of the
three candidatesis chosen for retrievd.

QidList smplification makes complex retrieva operations easer to express and
undergtand. Infact, if aretrievd QidLigt iscompletely smplified so that it no longer
contains any Message Sdlect Codes, then that QidList can be used in message dipatch
operations aswell.

Example

01/22/2004
Rev. No.: 4

2-24 X+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

/*

* Create a QdList that can be used for both
* dispatch and retrieval operations.

*/

Q DLI ST Q dLi st;
XINT MsgLen; QueListBuild(QdList, ga, gb, qc, QUE_EQ);

/*

* Send a nessage onto the queue having the
* earliest arrived(ol dest) message.

*/

Ret Code = QueSend(QUE_Q EAQ
QdList, ...);

/*

* Now use the sane Q dList to receive the lowest priority
* nessage of the sane three queues.

*/

MsgLen = QueReceive(QUE_Q LP, QdList, ...);

Priority Specification During Message Retrieval

Message retrieval based on message priorities is accomplished using the priority-related
Message Select Codes. A number of the Message Select Codes ded with priorities.
Priority vaues, conditions or ranges can be specified.

Example
Q DLI ST Q@ dLi st;
XI'NT MsglLen;
Queli st Bui | d(Q dLi st, QJE M PREQ a, 100), QUE_MPRLT(b, 50),
QUE_EQL) ;
MsgLen = QueRecei ve(QUE_Q EA, QdList, ...);

In the above example, a QidLigt is built designating the first message on queue a having a
priority of 100 as the candidate message of queue a, and the first message on queue b
having a priority less than 50 as the candidate message of queue b.
The QueReceaive() cdl then returns the earliest arrived (oldest) of these two candidate
MeSSages.
Smilaly:

Q DLI ST Q dLi st;

XI'NT MsglLen;

QuelLi st Bui | d(Q dLi st,
QUE_M PRRNG a, 100, 200),
QUE_M PRRNG(b, 100, 200),
QUE_EQL);

MsgLen = QueRecei ve(QUE_Q LNQ QdList, ...);

In this example, the QueRecelve() operation accesses the first message on queue a having
apriority in the range [100,200], and does the same for queue b. It then returns the
candidate message from the longer of the two queues.

01/22/2004
Rev. No.: 4

QueSys 2-25

Similar Message Sdlect Codes are provided for selecting message viatheir sequence
number. A complete list of Queue and MessageSdect Codes is found in the Advanced
Topics chapter of this book.

2.3.6 QuePut() - Putting a Message Header onto a Queue

The QuePut() function is used to place a message header onto a queue. The message
header involved may have just been created via QueWriteg(), or it may have been recently
removed from one queue for re-routing onto another queue.

QuePut() takes six arguments:
0 A pointer to the message header being dispatched.
O A Queue Sdlect Code for choosing atarget queue.
O A QidLigt holding alist of possible target Qids.
O A priority value to be assigned to the message.

O A pointer to a Qid variable that gets assgned the actud target Qid chosen by
QuePut(). (This pointer can be NULL if no return value is desired.)

O A blocking option code in case the operation needs to block.
Example:

/*

* Create a nessage and place it onto the "Qut Queue" queue.
* Assign the dispatched message a priority of 99.

* Warning: No error checking is done in this exanple.

*/

XINT Qd;
XI NT Ret Q d;
MSGHDR MsgHdr ;

Q d = QueAccess("Qut Queue");
QueWite(&bsgHdr, "hello world", 11L, QUE WAIT);

QuePut (&MBgHdr, QUE_Q ANY, Quelist(Qd, QUE EQL), 99L,
&RetQd, QUE WAIT);

Thisisan example of aQidLigt with asingle Qid ement. The QUE_Q_ANY Queue
Sdect Code finds the first queuein the QidList that has space for the message and places
the message there. In this case, the first queue isthe only queue. Remember that
QuePut() does not touch a message'stext. It smply places a given message header onto
the queue whose identity is determined by the Queue Select Code, the QidList arguments
and the traffic capacity of the listed queues. We will see that the above example could
have been coded more concisely using the QueSend() function call.

Any of the X+pc blocking options can be specified for QuePut(). QuePut() will block if dl
of the listed queues are full, making them unable to accept the message being digpatched.
The blocked operation will then succeed when any of the full queuesis no longer at
capacity, usualy when one or more messages have been removed.

QuePut() will not block if any of the listed queuesis actively spooling (i.e., hasits
gpooling on). In the event that dl listed queues are full, then the message will be spooled
out to the selected queue's spool. A detailed description of queue overflow spooling is
presented later in this chapter.

01/22/2004
Rev. No.: 4

2-26 X+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

QuePut() returns the identity of the queue used, by assigning its Qid to "RetQid."
"RetQid" isaso used to identify an invaid Qid, if one is encountered.
Example

/*

* Send a message (header) onto the queue having the ol dest

* (i.e. earliest arrived) nessage. Wait up to 45 seconds for

* QuePut to succeed. Then report which queue was used. The

* di spat ched nessage is assigned a priority of 2500.
*/

Q DLI ST Q dLi st;
XINT Q dSent;

QueListBuil d(Q dList, QdA QdB QdC QUEEQ);

if (QuePut (&gHdr, QUE Q EA, Q dList, 2500L, &Q dSent,
QUE_TI MEQUT(45)) >= 0)
printf("Message was placed onto Qd = %\n", QdSent);

The above examples demonstrate QuePut() using synchronous blocking options.
Asynchronous blocking is dso possible by specifying one of the three asynchronous
blocking options. Refer to the Advanced Topics chapter for a detailed description of the
asynchronous blocking options.
The QUE_REPLI CATE option provides a method for putting replicated message copies
for zero or more users waiting on a message queue for that particular kind of message.
(Note that no specid coding is required by the consumer processes.) In this case, the
messages are never actualy placed on the queue. Messages are sent to only those
processesthat are waiting at the time of the QuePut() operation. All users waiting for the
message are given a copy of the message header. When QuePut() replicates a header,
copying to n users, the text-block reference count isincremented by n-1. In contrast,
when QuePut() moves a heeder onto a queue, the count is left unchanged.
It isaso possible for amessage header copy what was retrieved from a queue using
QueGet’s QUE_ NOREMOVE option to be placed onto a message queue using QuePut().
Example

/ * Same as prior exanple, but this time have nessage copi es sent

* to *** ALL *** users currently waiting for such a message.
*/

QuePut (&MsgHdr, QUE Q ANY, Quelist(Qd, QUE EQL), 99L,
&Ret G d, QUE REPLI CATE):

Note that QUE_REPLI CATE is specified in place of any other X«pc blocking option The
QuePut() call will never block. Message (header) copies are sent to al (zero or more)
users waiting for the message regardless as to the current number of messages on the
specified queue.

For additional details, see the Advanced Topics section, "QueSys Message Multicasing.”

2.3.7 QueGet() - Getting a Message Header From a Queue

Y ou can retrieve a message header from a queue by using the QueGet() function cal.

01/22/2004
Rev. No.: 4

QueSys 2-27

A retrieved message header can then be used in avariety of ways, including:
O To examine the message's text via QuePointer() or QueCopy().

O To browse the queue's messages, relative to the retrieved header.

O To read the message's text via QueRead(), from the text pool into user memory
space.

[0 The message header can dso be placed onto another queue via QuePut().
QueGet() takes six arguments:;

O A pointer to an empty message header that gets set with the retrieved message's
header data.

O A Queue Select Code for choosing one of the candidate messages.
O A QidLig identifying candidates messages for each of the listed queues.
O A pointer to avariable that is assgned the retrieved message's priority.

O A pointer to a Qid variable that is set (on return) to the Qid of the retrieved
message's queue by QueGet(). (This pointer can be NULL if no eurn vaue is
desired.)

O An optiond QUE_NOREMOVE option flag ORed with a blocking option code,
specifying the action to be taken in case the operation needs to block.

Keep in mind that QueGet() does not touch a message's text. It Smply gets amessage
header from the queue, whose identity is determined by the Queue Sdlect Code, the
QidList and the messages currently on the listed queues.
The retrieved message header is copied into the user- provided message header variable,
In the default case (i.e., QUE_NOREMOVE isnot specified), QueGet() removes the
retrieved message header from the queue that it was on. Alterndively, by specifying the
QUE_NOREMOVE option flag, you can direct QueGet() to | eave the accessed message
header on the queue and to return acopy of it to the cdling program, acopy that isitsdf
afully functiona message header. In such a case, the returned header copy can be placed
on another queue and used as a reference point for a subsequent QueBrows() cdl. Or, it
can be used to later remove the actua header from the queue via QueRemove().
In either case, QueGet() leaves the message's text untouched in the message text poal.
Here again, "RetQid" identifies the Qid retrieved. "RetQid" is dso used to identify an
invalid Qid, if oneis encountered.
Reacting to the retrieved message may depend on the queue from which it was retrieved.
The next example demongtrates this point. In some cases, it might be appropriate to read
in the message's text for processing; in other cases, re-routing it onto another queue may
be cdlled for.
Note that a message's priority is set at QuePut() time and can therefore be changed (asin
the next example) between legs of a multi-queue journey.

01/22/2004
Rev. No.: 4

2-28 X¢IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

Example:

/*

* Retrieve the highest priority nessage in the range

* [200, 400] fromacross the three queues identified by
* QdA QdB and Q dC. React to nessage based on its

* source Qd.

*/

Q DLI ST Q dLi st;
MSGHDR MsgHdr ;
XINT Priority;
XI'NT RetQ d;
XI'NT Next @ d;
CHAR Buff[100];
XI'NT Lengt h;

QuelLi st Bui | d(Q dLi st,
QUE_M PRRNG(Q dA, 200L, 400L),
QUE_M PRRNG(Q dB, 200L, 400L),
QUE_M PRRNG(Q dC, 200L, 400L),
QUE_EQL);
Ret Code = QueCet (&VsgHdr, QUE_Q HP, Q dList, &Priority,
&Ret Q@ d, QUE WAIT);

if (RetCode >= 0)

{
/*
* QueCet succeeded, 'RetQ@d' was set with Qd of the
* source queue, and 'Priority' was set with the gotten
* message's priority.
*/
if (RtQd == QdA || Ret@d == QdB)
{ .
* QdA and QdB are treated identically. Read the
* nessage text out of the nmessage text pool into
* user space, and process it.
*/
Length = QueRead(&vsgHdr, Buff, 100L);
}
el se
{
/*
* Re-route Q dC nessage onto anot her queue.
* Gve it a higher priority.
*/
Ret Code = QuePut (&WvsgHdr, QUE_Q ANY, QuelList(NextQ@ d, QUE_EQ),
Priority + 100L, &RetQ d, QUE WAIT);
}
}

01/22/2004
Rev. No.: 4

QueSys 2-29

A QidLigt canindude multiple MSCsfor asngle queue. Thisis extremdy useful if it is
necessary to access messages from non-contiguous sections of a priority range.

Wewill see shortly that basic message retrieva operations can be coded more concisely
using the QueReceive() function cal. QueGet(), however, provides maximum flexibility

for dealing with message headers.

Any of the X«pc blocking options can be specified for QueGet(). QueGet() will block if all
of the listed queues are empty or if they do not currently hold a desired message (as
specified by the Message Select Codes).

The blocked operation will succeed when one of the queues receives a message sought by
the blocked QueGet() operation.

Example:

/*
* Access the ol dest nessage within the ranges [1,10] and

* [90,100]. Note: Only one queue is invol ved.
*/

Q DLI ST Q dLi st;
MSGHDR MsgHdr ;
XI'NT qa;

XINT Priority;
XINT RetQ d;

XI NT Ret Code;

QuelLi st Bui | d(Q dLi st,
QUE_M PRRNG(ga, 1L, 10L),
QUE_M PRRNG(ga, 90L, 100L),
QUE_EQL);

Ret Code = QueGet (&sgHdr, QUE Q EA, QidList, &Priority,
&Ret QG d, QUE WAIT):

i f (RetCode >= 0) /* QueGet succeeded. */
if (Priority >=1L & Priority <=10L)
{
} . o
else /* Priority >=90L && Priority <= 100L */
{

}
}

Aswas gtated above, QueGet() can be used with the QUE_ NOREMOVE option to access a
copy of amessage header, without removing the actud header from the queue.

01/22/2004
Rev. No.: 4

2-30 X¢IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

Example:

/*
* Access an inmage of the highest priority nessage

* header on queue Qd.
*/

Ret Code = QueCet (&VsgHdr,
QUE_Q_HP,
Quelist(Qd, QUE_EQ),
&Priority,
&Ret Q d,
QUE_NOREMOVE | QUE WAIT);

Note that the QUE_ NOREMOVE option flag, when specified, must precede whatever
blocking option is designated; thisis because QUE_WAI T expandsto severd arguments,
the first of which can be ORed with MOM_NOREMOVE. The returned message header isa
copy of the actua message header that is |eft on the queue.

Such aheader can be used for a subsequent QueBrowse() operation. QueBrowse() will
only succeed if the message heeder it is passed references a header till on aqueue.

By contrast, a message header copy cannot be used within a QueUnget() operation. This
function will only succeed when passed a message header that has actudly been
dequeued.

The above examples demondrate QueGet() using synchronous blocking options.
Asynchronous blocking is dso possible by specifying one of the three asynchronous
blocking options. Refer to the Advanced Topics chapter for a detailed description of the
asynchronous blocking options.

2.3.8 QueRemove() - Remove a Message Header from a Queue

QueRemove() dequeues the message header identified by the message header copy it is
passed. The message header parameter must be acopy of a message header that till
resides on a queue.

QueRemove() takes one argument:

O The message header that has not been dequeued.
The message header copy may have been accessed through a QueGet() operation where

QUE_NOREMOVE was specified, or viaa QueBrowse() operation.

Example:

/*

* Renove the nessage header referenced by
* the message header retrieved in the

* previous exanpl e.

*/

Ret Code = QueRenove (&\MsgHdr);

A message can be accessed in two steps, using QueGet() with the QUE_ NOREMOVE
option specified followed by acal to QueRemove(). Thisisequivalent to usng

QueGet() without the QUE_ NOREMOVE option. The removed header may be placed onto
another queue via QuePut() or itstext can be read viaacal to QueRead().

01/22/2004
Rev. No.: 4

QueSys 2-31

2.3.9 QueSend() - Sending a Message onto a Queue

Aswasindicated earlier, it is often not necessary to use QueWrite() followed by
QuePut() to dispatch amessage. A single function, QueSend(), can be used instead when
the two steps of control available using QuewWrite() and QuePut() are not required.
"QueWrite() + QuePut() = QueSend()" summarizes the functiondity of the QueSend()
function.

Advantages of using QueSend() include:
No need to manage message headers.
No need to interact directly with the message text pool.
Generdly dightly better performance than "Quewrite() + QuePut()".
Disadvantages include:
An inability to manipulate message headers independent of their associated text
segments;, inter-queue routing using QueSend() is therefore inefficient.
An ingbility to specify different blocking options for the "text write' and "message
put” components of the QueSend() operation.
QueSend() takes seven arguments:;
O A Queue Sdlect Code for choosing atarget queue.
O A QidLig holding aligt of possble target Qids.
[0 A pointer to the text to be written.
O The size of the message text (in bytes).
O A priority vaue to be assgned to the message.
O A pointer to a Qid variable that gets set by QueSend() to the actud target Qid
chosen. (This pointer can be NULL if no return value is desired.)
O A blocking option code in case the operation needs to block.
Example:

/*

* Send a "hello world" nessage onto the queue represented by
* Qd "gA". Message is assigned a priority of 2000.

*/

Ret Code =

QueSend(QUE_Q_ANY, /* QBC for single Qd list */

QuelLi st (gA,
QUE_EQL) , /* target Qd */

"hello world", /* message text */
11L, /* length of message text */
2000L, /* message priority */
&Ret Q d, /* for QueSend return data */
QUEE_ WAIT); /* willing to block */

The above operation performs both the text writing and the header placement portions of

the message dispatch operation.

Aswith QuePut(), the QUE_REPLI CATE option, when specified with QueSend(),
provides a method for sending replicated message copies to zero or more users waiting on
amessage queue for that particular kind of message. (Note that no specid coding is
required by the consumer processes.) In this case, the messages are never actually placed

01/22/2004
Rev. No.: 4

2-32 X¢IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

on the queue. Messages are sent only to those processes which are waiting at the time of
the QueSend() operation.
Example:
/*
* Send a copy of the sane nessage to ALL users

* waiting for such a nessage.
*/

Ret Code =

QueSend(QUE_Q_ANY, /* @BC for single Qd list */

Queli st (gA,
QUE_EQL) , /* target Qd */

"hello world", /* message text */
11L, /* length of message text */
2000L, /* message priority */
&Ret Q d, /* for QueSend return data */
QUE_REPLI CATE) ; /* send nulticast nessage */

QueSend() is usudly used at the beginning of message's existence. Subsequent operations
on the message might include a series of QueGet() and QuePut() operations to affect
inter-queue routing. The last operation will finaly remove the header and itstext, usng
either a QueGet() with a QueRead() or QueReceive() alone.

Example
QueSend(), [QeCGet(), QePut(), ... QuePut(),] QueReceive()
or
QueSend(), [QueCGet(), QePut(), ... QuePut(),] QueCet(), QueRead()

The rules and use of arguments described above by QuewWrite() and QuePut() apply
equally to QueSend() where relevant.
The above example demonstrates QueSend() using synchronous blocking. Asynchronous
blocking is aso possible by specifying one of the three asynchronous blocking options.
Refer to the Advanced Topics chapter for a detailed description of the asynchronous
blocking options.
2.3.10 QueReceive() - Receiving a Message from a Queue
Inasmilar vein, it is sometimes not necessary to use QueGet() followed by QueRead()
to retrieve amessage. A single function, QueReceive(), can be used when the two stages
of control provided by QueGet() and QueWrite() are not needed.
"QueGet() + QueRead() = QueReceave()" summarizes the functiondity of the
QueRecaive() function.
Not surprisingly, the pros and cons for using QueReceive() are comparable to those given
regarding QueSend().
Advantages of using QueReceive() include;

No need to manage message headers.

No need to interact directly with the message text pool.

Generdly dightly better performance than "QueGet() + QueRead()".
Disadvantages include:

An ingbility to maenipulate message headers independent of thelr associated texts

segments; inter-queue routing using QueRecalve() istherefore inefficient.

01/22/2004
Rev. No.: 4

QueSys 2-33

QueReceive() takes seven arguments:

O A Queue Sdect Code for choosing one of the candidate messages.
O A QidLig identifying candidate messages for each of the listed queues.
O A pointer to a buffer to receive the message text.

O A long integer specifying the maximum sSze text to copy into the buffer (usudly
the Sze of the buffer).

O A pointer to avariable that is assgned the retrieved message's priority.

O A pointer to a Qid variable that gets set by QueReceive() to the actua target Qid
chosen. (This poitner can be NULL if no return vaue is desired.)

O A blocking option code in case the operation needs to block.
Example

/
Receive the "hell o world" nessage sent onto queue "gA"
in the section describing QueSend. Note: Q dLi st
sinplification is enployed in this exanple. Since no MSC
is applied to '"gA in the QdList, the HP criteria
specified as the @SCis applied inplicitly to queue 'gA
as its nessage sel ect code.

/

L T R

MsgLen =
QueRecei ve(QUE_Q HP, /* @BC for single Qd list */

QuelLi st (gA, QUE_EQL), /* source Qd */

MsgBuf , /* message buffer */
si zeof (MsgBuf), /* buffer size */
&Priority /* set to nessage priority */
&Ret Q d, /* returned by QueReceive */
QUE_WAIT); /* willing to block */

The above operation performs both the header access and the text reading portions of the
message retrieve operation.

Aswas shown in the section describing QueSend(), QueReceive() is most often used at
the end of a message's existence. Using QueRecaive() with QueSend() to implement
gueue switching isineffident due to the wasteful message pool read and write that would
occur.

Once again, the rules and use of arguments described by QueGet() and QueRead() apply
to QueReceive() where relevant.

The above example demonstrates QueReceive() using synchronous blocking.
Asynchronous blocking is aso possible by specifying one of the three asynchronous
blocking options. Refer to the Advanced Topics chapter for a detailed description of the
asynchronous blocking options.

2.3.11 QueSendReceive() - Perform Generic Request/Response

The QueSendReceive() function performs similarly to the RPC request/response
paradigm. However, unlike traditionad RPC mechanisms, the QueSendReceive() form of
inquiry-response functiondity provides explicit message queuing dadticity for handling

01/22/2004
Rev. No.: 4

2-34 X¢IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

high-volume traffic scenarios. Thisis critica when preparing a system that must scae
well through arange of deployment settings.

QueSendReceive() takes the arguments of QueSend() and QueReceive(), each of whichis
described above.

The usage of queues within QueSendReceaive() is highly flexible, supporting Queue
Select Codes for the QueSend() and the QueReceive() operations independently. For
example, adient "inquiry” message may be sent to a server viaone queue and a
"response”’ message drawn from a second queue. Similarly, by specifying the receive
operation to execute asynchronoudy, one can cause the inquiry-response interaction to
complete in the background (e.g., with callback functionsinvoked at the client whenever
a'"resgponse’ message arrives).

The following is an example of how the QueSendReceive() function may be used for
developing the client Sde of a client/server gpplication. Consider the following diagram:

e ==

)

e Client1Q e

Client2Q

There are three clients communicating with a server program. The clients send their
requests to the server viathe “ ServerQ” message queue. Upon sending their request
message, the dlients await their response on their individud dient quete. (Theindividud
client queues may actudly be queues that are unnamed, i.e., having the QUE_ PRI VATE
name.)
The following code segment demongrates a client’s utilization of the QueSendReceive()
cdl for interacting with the server.

/ *

* Cient-side code for interacting with server.

* (Error-handling is not included).
*/

H

H

H

QUE_SEND ARGS SendArgs;
QUE_RECV_ARGS RecVvArgs;

Xl NT ServerQd, dientQ d;

XI NT Ret SendQ d, Ret RecvQ d;

XI NT Ret RecvPri o;

struct { . . . } RequestMsgBuffer;
struct { . . . } ResponseMsgBuffer;

01/22/2004
Rev. No.: 4

QueSys 2-35

/*
* Get the Qds to be used for the exchange of
* nessages with the server.

*/

ServerQ@d = QueAccess(“Server@Q);

dientQd = QueCreate(QUE_ PRI VATE, 10, 100);
/*

* Prepare the arguments for the Send portion of
* the QueSendReceive() operation.
*/

SendAr gs. QueSel ect Code = QUE_Q_ANY;

QueLi st Bui | d(SendArgs. Q dList, ServerQd, QUE EQ);
SendAr gs. MsgBuf = &Request MsgBuffer;

SendAr gs. MsgLengt h = si zeof (Request MsgBuf fer);
SendArgs. Priority = 100;

SendArgs. Q dPtr = &Ret SendQ d;

/*
* Prepare the argunents for the Receive portion of

* the QueSendReceive() operation.
*/

RecvAr gs. QueSel ect Code = QUE_Q EA;

QueLi stBui | d(RecvArgs. Q dList, dientQd, QUE EQ);
RecvAr gs. MsgBuf = &ResponseMsgBuffer;

RecvAr gs. MsgLength = si zeof (ResponseMsgBuffer);
RecvArgs. Priority = &Ret RecvPri o;

RecvArgs. @ dPtr = &Ret RecvQ d;

/*

* | ssue QueSendReceive() call to send request nsg onto

* the ServerQ and wait for response on the client's queue.
*/

QueSendRecei ve(&SendArgs, QUE WAIT, &RecvArgs, QUE WAIT);
Refer to the companion Reference Manud for further detail.
2.3.12 QueCopy() - Copying All or Part of a Message's Text from the Text Pool

QueCopy() copies dl or part of amessage's text from the message text pool into a user-
specified buffer. QueCopy() accesses the message's text using its message header, either
the message header on the queue or the copy that was removed via QueGet() with the

QUE_NOREMOVE option. Unlike QueRead(), QueCopy() does not remove the text from
the text pool and, therefore, does not decrement the reference count of the associated text
block.

QueCopy() takes four arguments:
0 A message header pointer.

O The offset into the message's text where the QueCopy() should commence.
O The number of bytesto copy.
O A pointer to a buffer that is to receive the copied text.

01/22/2004
Rev. No.: 4

2-36 X¢+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

QueCopy() can be used in conjunction with QuePointer() for examining the contents of a
message in amanner that is not sendtive to the ingtance's location.

QueCaopy() will fall if the specified offset and length arguments target an areathat is
beyond the message's actual text space.

Example:
/*
* CGet a nmessage header off a queue, then exam ne the contents of
* the message. If it is not relevant it can be ungotten using
* Quelnget. This exanple allows for the possibility that the
* instance is NOT |ocal.
*/

MSGHDR MsgHdr ;

Xl NT Ret Code;

CHAR *p, Buf[512];

Ret Code = QueCGet (&WVsgHdr, ...);

if (RetCode == 0)

{
/*
* Get a pointer to the nessage's text.
*/
Ret Code = QuePoi nter (&VsgHdr, &p);
if (Ret Code == QUE_ER NOTLQOCAL)

QueCopy (&VsgHdr, OL, MsgHdr. Size, Buf);

p = Buf;
}
/*
*/Exam' ne the text using pointer 'p'.
*

2.3.13 QueUnget() - Ungetting a Message Header

In some Situations a programmer may wish to return aretrieved message (header) back to
the queue from which it was taken, inserting it into its origind pogition relative to other
messages on the queue. Using such a capability a program could "reject” agotten

message after looking &t it and return it to its queue asiif it had never been taken.

Using QuePut() for this purpose does not do the job. That is because QuePut() appends its
message to the end of the selected target queue's time strand of messages. In most cases,
thisis not the message's origina chronologica postion.

QueUnget(), however, is designed for this purpose. It returns a retrieved message header

to the queue that it was taken from, placing it by time and priority in the same reldive
position as it was before it was retrieved.

01/22/2004
Rev. No.: 4

QueSys 2-37

QueUnget() takes one argument:

O A pointer to a message header that was previoudy gotten off a queue. (Note that
a message header copy retrieved by a QueGet() cdl with the QUE_NOREMOVE
option will not accomplish the QueUnget() unless the original message header
was subsequently removed from the queue.)

Example

/*

* Get the longest waiting ("earliest arrived") highest priority
* nmessage from queues represented by Q dA, Q@ dB and Q dC

* |f the nmessage text starts with "NOI FOR ME', unget it.

*/

QDLI ST Q dLi st;
MSGHDR MsgHdr ;

XI NT Ret Code, RetQ@ d;
XINT Priority;

CHAR *p, Buf[10];

Q dLi st = QueLi stBuil d(
QUE_M HP(Q dA),
QUE_M HP(Q dB),
QUE_M HP(Q dC),
QUE_EQL);

Ret Code

QueCet (&MVsgHdr,
QUE_Q EA
Q dLi st
&Priority,
&Ret Q d,
QUE WAIT);
i f (RetCode == 0)
{
Ret Code = QuePoi nter (&VsgHdr, &p);

if (RetCode == QUE_ER NOTLOCAL)

QueCopy (&MsgHdr, OL, 10L, Buf);
p = Buf;

}

if (strncnmp(p, "NOT FOR ME', 10) == 0)

QueUnget (&VsgHdr) ;
}

QueUnget() will succeed in returning the message header even if the queue involved is
currently full. In such a case, the queue will briefly hold more message data than
origindly configured for. This exceptionis necessary to guarantee the success of
QueUnget(). Otherwise, aretrieved message may never fit back on its queue, particularly
when abusy queue isinvolved.

01/22/2004
Rev. No.: 4

2-38 X¢IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

Example:
[meg-Al [nBQ------ Bl [nmsg--(]
Message 'nsg-B' is renoved fromthe queue
via QueCet ().
[mBg----- Bl [msg-Al [msg--C]
Message 'nmsg-D is placed on the queue.
There is no |longer roomfor nessage 'nsg-B .
[mBg----- Bl [meg-Al [mBg--C] [mBg--------- Dl
Message 'nmsg-B' is ungotten. Queue is
briefly

forced beyond capacity in order to
accommodat e
t he QueUnget ().

2.3.14 QueBrowse() - Browsing a Message Queue

Aswas shown earlier, it is possible to use QueGet() to access a copy of a message header
without actudly removing the header from the queue. A possible application of this

feature could be to use the accessed message header copy as areference point for a
subsequent QueBrowse() operation.

QueBrowse() takes two arguments:
O The copy of amessage header that has not been dequeued.

[0 The direction of the browse operation.
QueBrowss() returns with a fully functional message header copy, one position in the
specified direction, relative to the message header identified by the message header copy
parameter. Because all headers are fully functional, and thus own a copy of the header’s

01/22/2004
Rev. No.: 4

QueSys 2-39

text, the calling application must free the header’ stext via a call to QueRead() at the end
of the browsing activity.

The message header copy parameter may have been accessed through a QueGet()

operation where QUE_ NOREMOVE was specified, or viaan earlier QueBrowse()

operation.

Example:

/*

* Browse the priority strand of nessages on queue Q d.

* The header of the second highest prio nessage is renoved.
* Rel ease nessage text when conpl et ed.

*/
/*
* Stop everyt hing.
*/
QueFreeze();
/*
* CGet copy of highest prio header.
*/
QueCet (&MVsgHdr,
QUE_Q HP,
QueList(Qd, QUE EQ),
&Priority,
&Ret Q d,
QUE_NOREMOVE | QUE_NOWAIT);
/*
* Move to next message on priority strand.
*/

QueBr owse(&\sgHdr, QUE_PRI O _NEXT);

/*

* Dequeue this header.
*/

QueRenove(&vsgHdr) ;

/*

* Rel ease nmessage text. (Note: Optim zed using QUE_TRUNCATE.)
*/

QueRead(&vsgHdr, Buffer, QUE TRUNCATE(1));

/*
* Restart everything.
*/

QueUnfreeze();

Possible values for the direction parameter are:

01/22/2004
Rev. No.: 4

2-40 X+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

QUE_PRI O_NEXT
priority).

QUE_PRI O_PREV
(increasing priority).
QUE_TI ME_NEXT
QUE_TI ME_PREV

Access the next header on the priority strand (decreasing
Access the previous header on the priority strand

Access the next header on the time strand (more recent).
Access the previous header on the time strand (less recent).

QueBrowsy() will fall, returning QUE_ ER_ ENDOFQUEUE, if no additional messages
exig in the specified direction.

Example:
/ *

* Print the messages on queue Qd, in the order

* that they arrived.

*/

/*

* Stop everyt hing.
*/

QueFreeze();

/*

* CGet image of ol dest nessage header.

*/

QueCGet (&MsgHdr,
Q EA

QUE_ ,
QueList(Qd, QUE EQ),

&Priority,
&Ret Q d,

QUE_NOREMOVE | QUE_ NOWAIT) ;

/ *
*/

QueCopy (&MVsgHdr,

* Print message's text.

OL, MsgHdr->Size, Buf);

printf("Message text = %\n", Buf);

/*

* Move to next nessage on time strand.

*/

RC = QueBrowse (&VsgHdr, QUE_TI ME_NEXT);

} while (RC!= QUE_ER ENDOFQUEUE);

/*

* Rel ease nessage text. (Note: Optim zed using QUE_TRUNCATE.)

*/

01/22/2004
Rev. No.: 4

QueSys 2-41
QueRead(&vsgHdr, Buffer, QUE TRUNCATE(1));

/*
* Restart everything.
*/

QueUnfreeze();

2.3.15 Queue Spooling

Queues are typicaly created with sufficient capacity for handling expected traffic surges.
Unfortunately, actua traffic patterns are not dways predictable. A queue may
periodicaly be strained beyond its capacity by brief bursts of heavy message traffic.

2.3.15.1 What is Queue Spooling?

The handling of queue overflow messagesis one of the more difficult agpects of a
system’s design. X«Ipc provides a dynamic spooling mechanism for its queues. Spooling

for aqueue can be activated or deactivated via program control whenever necessary.
Messages attempting to enter aqueue that isfull and currently spooling are temporarily
placed on the queue's overflow spool. The queueis, in effect, given avirtud capacity
extenson beyond its origind sze limits. This eadticity guarantees that no messages are

lost during peak operating periods.

Programs executing QuePut() operations on a queue that is spooling are guaranteed not to
block. If the message queue isfull, then dispatched messages are redirected to the queue's
spoal.

Spooled messages are automatically absorbed into the actual queue as space on the queue
becomes available. The whole process is completely trangparent to the programs
dispatching and retrieving the messages to and from the queue.

2.3.15.2 QueSpool() - Starting Spooling for a Queue

Spooling is controlled on a queue- by-queue basis. QueSys queues are created with their
gpoaling initially 'off." The QueSpool() function is used for activating and deactivating a
queue's spoaling.

QueSys spoaling isimplemented using a series of files. We will see shortly how this
actualy works. For now it is convenient to associate a single spoal file name with a
queue's spool, and to assume for the sake of smplicity that al spooling occurring on
behdf of aqueue occursin its designated spoal file.

QueSpool () takes two arguments:

O The Qid for which spooling isto be activated or deactivated.

OA spod file name when activating, or the QUE_SPOOL_OFF code for
deectivating.

01/22/2004
Rev. No.: 4

2-42 X+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

Example:

/*

* (reate a transaction queue with a capacity for 100 nessages

* and 32 K-Bytes. Activate its spooling so that overfl ow nessages
* during heavy traffic surges are not |ost.

*/

Qd = QueCreate("TransQueue", 100, 32768L);

Ret Code = QueSpool (Q@d, "/tnp/tgspool™);

Spooling does not change a queuesinterna capacity. The "TransQueue’ created above
continues to have room for 100 messages and 32 K-Bytes.

Spooaling takes place in the file system. As such, starting spooling for avery busy queue
will not cause a sudden rush on QueSys resources, such as message text spool space or
available message headers. Other programs using other queuesin the same QueSys
ingtance are not affected.

When spooling occurs within a network ingtance it uses the file system of the machine
upon which the ingance was sarted. The spoal file name argument must therefore
conform to the file naming conventions of thet platform.

Overflow "TransQueue' messages are automaticaly placed on the queue's spoal file. The
spoal file can be located anywhere within an accessble file system. The only critica
requirement is that the location (i.e, its directory) be read/write enabled for al processes
using the queue.

2.3.15.3 QueSpool() - Stopping Spooling for a Queue

Once activated, a queue's spoal can grow fredly, being bound only by the underlying file
gystem, the operating system or hardware limitations. Consuming messages from a queue
will cause spooled messages to be absorbed onto the queue proper from which they too
are eventualy consumed.
A queue's spooling activity can be deactivated when spooling of overflow messagesisno
longer desired. Messages aready on the spool are unaffected by the deactivation. They
continue to be absorbed as space becomes available on the queue. Deactivation of
gpooling does, however, block any further messages from being written to the queue's
spool. QuePut() and QueSend() operations will now block (if so specified) when
attempting to digpatch messages to the full queue.
Example:

/ * Deactivate spooling for the "TransQueue"

* used in the previous exanple.
*/

Ret Code = QueSpool (Q d, QUE SPOO._CFF);
Here, the macro QUE_SPOOL _ OFF is given as the function's second argument, insteed

of asafile name. Thisingructs QueSpool() to discontinue spooling for the given queue.
Queue spooling can be started and stopped by an application as often as necessary.

01/22/2004
Rev. No.: 4

QueSys 2-43

2.3.15.4 The Spooling Mechanism

Knowledge of how QueSys spooling isimplemented is not a prerequidite for using it; it
is, however, ussful to understand in generd terms what is hgppening.

A QueSys spool ismaintained usng a series of files. The names of these files are based
on the spooal file name argument given to QueSpool() when spooling for aqueueis
garted. The base name is gppended with ".nnn" suffixes, where nnn is an integer between
000 and 999.

Bxample:
/*
The foll owi ng QueSpool call activates spooling for queue 'Qd'.
Spooling will be inplenmented using files:
/t np/ spool . 000
[t np/ spool . 001
[t np/ spool . 002

E I I S T .

/t ﬁp/ spool . 999
*
/

Ret Code = QueSpool (Q@d, "/tnp/spool");

The specified file name is used as a base name for up to one thousand "spooal tick files'
that will actudly hold the spooled messages.
The maximum sze of "spooal tick files" within an indtance is specified within the
ingance's configuration fileusng the SI ZE_ SPLTI CK parameter. Aswe saw earlier,
Sl ZE_SPLTI CK isspecified in units of K-Bytes. No spool tick file will grow beyond
SI ZE_SPLTI CK bytesin sze within an ingance.
Spooal tick files are maintained aslong as they contain live messages. Once dl of their
messages have been absorbed by the queue, thefiles are deleted.
Example:
Consider the following situation. A queue has spooled some of its messages. The front of thelive
messagesisin spool tick file 002. They extend into spool tick file 005.

01/22/2004
Rev. No.: 4

2-44 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

A number of points can be made:

O The sze of each tick file does not exceed the SI ZE _SPLTI CK parameter
Setting in the configurtion file.

0 Messages are placed on the queue at the REAR spoal tick file. f the REAR file
has hit SI ZE_SPLTI CK bytes in gze, the next tick file in the sequence (i.e,
006) is created and it starts accepting spooled messages.

[0 Message absorption into the queue is done from the FRONT spoal tick file
When the current file (i.e, 002) is exhausted of live messages, it is deleted and
the next file in the sequence (i.e., 003) becomes FRONT.

O Too large a vdue for SI ZE_SPLTI CK will result in wasted file space, holding
a queue's old spooled data. For example, the messages a the beginning of file
002 are dead.

O Too smdl a vaue for SI ZE_SPLTI CK will generdly cause more spool tick
filesto be created for each queue.

Spooled messages are never split across two adjacent spool tick files. As aresult,
SI ZE_SPLTI CK mugt &t least as large as the largest message to be spooled. In fact, it
should exceed the largest message by at least 32 bytes.
For obvious reasons, spoal tick files should not be removed while spooling isin progress.
It is dso a hazardous practice to have different queues share the same spool file name.
Spooling, when used properly, can add sgnificant flexibility and robustness to message-
intendve systems.
2.3.16 QuePurge() - Purging a Queue

Occasondly it is necessary to purge aqueue of dl its messages. Thisis accomplished
using the QuePurge() function.

QuePurge() deletes al messages held on a specified queue. It aso destroys any spooled
messages associated with the queue.

In purging the queue, two steps take place:

O All messages on the queue (internd and spooled) are purged.

O All blocked QueGet(), QuePut(), QueSend() and QueReceive() operations
involving the purged queue ae cancdled and returned with Ret Code =
QUE_ER_PURGED. "RetQid" is set with the Qid of the purged queue.

The best way to understand QuePurge() isto view it from its aftermath. The resulting
queueisleft in agtae very smilar to that of anewly created queue. The only differences
isthat QuePurge() does not turn spooling off (if it ison), and that the queues traffic

higtory statistics are |ft intact. In every other way the resulting queueis like abrand new
queue.

QuePurge() takes one argument:

0 The Qid of the queue to be purged.

01/22/2004
Rev. No.: 4

QueSys 2-45

Example:

/*
* Access the "DeadlLetterQe" queue, and purge its nessages.
*/

XINT Q d;
XI NT Ret Code;

Q d = QueAccess("DeadLetterQe");
Ret Code = QuePurge(Q d);

Purging a queue does not destroy the queue; it Smply cleansit of messages. Statistics and
gpooling status are not changed. This can be useful for restarting a system that uses a
queue having a"perpetud™ existence. These atistics can be used by the new invocation
of the system to prepare for expected queue utilization based on previous traffic satistics.
It goes without saying that purging a queue haphazardly, while a sysem is actively using

it, is not the optimal usage of QuePurge(). Purged messages cannot be recovered.

2.3.17 QuebDelete() - Deleting a Queue

A queue should be deleted from its instance when it is no longer needed. Thisrecycles

interna QueSys resources and makes the QueView monitor less cluttered.
QueDelete() takes one argument:

O The Qid of the queue to be deleted.
Example:
Ret Code = QueDel ete(Q d);

QueDdete() will only succeed if the subject queue is currently inactive. If aqueue
contains messages or if it isblocked (e.g., other users are waiting for a pecific priority
message to arrive), it cannot be removed using QueDd ete().

If an active queue must be removed regardless of its current digposition, then
QueDestroy() should be employed.

2.3.18 QueDestroy() - Destroying a Queue

A queue that must be removed from its instance can be destroyed using QueDestroy().
QueDestroy() removes the subject queue regardiess of the queue's current status.
QueDestroy() takes one argument:

O The Qid of the queue to be destroyed.

Example
Ret Code = QueDestroy(Q d);

In destroying the queue, two steps take place:

O All messages on the queue (internad and spooled) are purged, reducing the text
block count to zero.

O All blocked QueGet(), QuePut(), QueSend() and QueReceive() operations
involving the destroyed queue are cancdled and returned with Ret Code =
QUE_ER_DESTROYED. "RetQid" is set with the Qid of the destroyed queue.

01/22/2004
Rev. No.: 4

2-46 X+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

For obvious reasons, QueDestroy() should be used sparingly. Its most likely application
would be within the execution of a system's "cleanup” program a which time the above
Sde-effects are normdly of no concern.

2.3.19 QuelnfoSys() - Information About an Instance's QueSys

X«pc provides a set of QueSys functions that can be used to access status information
about various aspects of an instance's QueSys.

The returned data can be used to make run-time decisions about on-going gpplication
processing.

QuelnfoSys() returns with information about the QueSys of the instance currently logged into.
QuelnfoSys() takes one argument:
O A pointer to a QUEI NFOSYS dgructure, that is returned filled with QueSys dtatus
information.
Besides gatigticd data, the QUEI NFOSYS gructure returns with "lig" data. The
subsystem has aWList associated with it. The WList containsalist of Uids currently
blocked on Quewrite() operations to the subsystem's message text pool.

O Each lig dement identifies the nature of a blocked Quewrite() operation.
The WLig within QUEI NFOSYS isan array that can accommodate up to
QUE_LEN I NFOLI ST dements. The actud list may, at times, be greeter than
QUE_LEN_I NFOLI ST dementsin length. A cal to the QuelnfoSys() function must
therefore be preceded by the setting of the WIistOffset structure member, specifying
what portion of the WLig is desired.
Setting the offset to zero directs the function to return with WList data from the sart of
thelid.

Bxample:
QUEI NFOSYS SysDat a;
SysData. Wi st 0ffset = 0;

Ret Code = Quel nf oSys(&SysDat a) ;

A complete description of how to use the Info functionsis presented in the Advanced
Topics chapter of the Xapc User Guide, in the section entitled, "Info Function List
Manipulation.”

The definition of the QUEI NFOSYS datatype isincluded in the User Data Structures
chapter of the QueSysMemSys/SemSys Reference Manual.

2.3.20 QuelnfoUser() - Information about a QueSys User

QuelnfoUser() returns with information about a specified user. QuelnfoUser() takes two
arguments:

O The Uid whose status is desired.

O A pointer to a QUEI NFOUSER dructure, that is returned filled with the user's
Satus information.

01/22/2004
Rev. No.: 4

QueSys 2-47

Besdes datistica data, the QUEI NFOUSER structure returns with "list" datardated to
the specified user. Each user hasaWList associated with it. The WList contains
information about the QueSys operation (if any) that the user is currently blocked on.

A user can be blocked on one of three QueSys operations. QuePut(), QueGet() or
QueWwrite(). The dements comprising the WList depend on the operation involved.

O During a blocked QuePut() operation, the WLis identifies the lig of Qids
targeted by the blocked QuePut() (or QueSend()) cdl.

O During a blocked QueGet() operation, the WList identifies the ligt of Qids and
their respective Message Select Criteria, targeted by the blocked QueGet() (or
QueReceive()) cdl.

O During a blocked QueWrite() operation, the WLIig is a dngle dement lis. The
lis dement identifies the nature of the blocked QuewWrite() (or QueSend())
operation.

The WLig within QUEI NFOUSER is an array that can accommodate up to
QUE_LEN_I NFOLI ST dements. The actud list may, at times, be greater than
QUE_LEN I NFOLI ST dementsin length. A cdl to the QuelnfoUser() function must
therefore be preceded by the setting of the WListOffset structure member, specifying
what portion of the WList is desred.

Setting the offset to zero directs the function to return with WLt data from the sart of
thelid.

Example:
QUEI NFOUSER User Dat a;

User Data. Wi st O0f fset = 0;

Ret Code = Quel nfoUser (U d, &UserData);

A complete description of how to use the Info functionsis presented in the Advanced
Topics chapter of the Xapc User Guide, in the section entitled, "Info Function List
Manipulation.”

The definition of the QUEI NFOUSER datatypeisincluded in the User Data Structures
chapter of the QueSysMemSys/SemSys Reference Manud.

2.3.21 QuelnfoQue() - Information about a QueSys Queue

QuelnfoQue() returns with information about a specified queue. Quel nfoQue() takes two
arguments:

O The Qid whose tatusis desired.

O A pointer to a QUEI NFOQUE dructure, that is returned filled with the queu€es
datus information.
Besdes statigtical data, the QUEI NFOQUE structure returns with "list” detarelated to the
specified queue. Each queue hasaWList associated with it.
The WLig contains information about the QueSys operations (if any) that usersare
currently blocked on involving the specified queue. Users can be blocked on one of four
QueSys operations regarding a queue: QuePut(), QueSend(), QueGet() or QueReceave).

01/22/2004
Rev. No.: 4

2-48 X+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

The elements comprising a queue's WList depend on the mix of blocked operations occurring at the time of
the QuelnfoQue() call:
O A WLig dement exids for every blocked QuePut() or QueSend() operation
targeting the subject queue. The lig element identifies the nature of the blocked
QuePut() or QueSend() operation.

O A WLig dement exists for every blocked QueGet() or QueReceive() operation
involving the subject queue. The lig dement identifies the detalls of the blocked
QueGet() or QueReceve() operation.

TheWLig within QUEI NFOQUE isan array that can accommodate up to
QUE_LEN_I NFOLI ST dements. The actud list may, at times, be gregter than
QUE_LEN_I NFOLI ST dementsin length.

A cdl to the QuelnfoQue() function mugt therefore be preceded by the setting of the
WListOffset structure member, specifying what portion of the WList is desired.
Setting the offset to zero directs the function to return with WLigt data from the art of
thelid.

Example:
QUEI NFOQUE QuebDat a;

QueData. Wi st fset = 0;

Ret Code = Quel nfoQue(Q d, &QueData);

A complete description of how to use the Info functions is presented in the Advanced
Topics chapter of the Xapc User Guide, in the section entitled, "Info Function List
Manipulation.”

The definition of the QUEI NFOQUE datatype isincluded in the User Data Structures
chapter of the QueSysMemSys/'SemSys Reference Manud.

2.4 The QueSys On-Line Monitor: QueView

QueView isthe ontline monitor for X«pc QueSys instances.
2.4.1 Starting QueView
QueView is garted from the command line using the "QueView" command.
QueView takes two arguments:
O The firda argument is the initid “intervd" sngpshot sdting. 1t defines in

millissconds the initid update frequency of the monitor. The interval argument
IS mandatory.

O The second argument is the ingtance file name of the instance to be monitored.
This argument is optiond. If it is omitted, QueView uses the vdue of the xi pc
environment varigble for the Ingance File Name of the indance to dart
monitoring.

Example:
quevi ew 250 /usr/ deno

01/22/2004
Rev. No.: 4

QueSys 2-49

The above command garts the QueView monitor for the QueSys subsystem of the
"lug/dema” ingance. Theinitid update interva is set to 250 milliseconds.

2.4.2 QueView Layout

QueView's man display is matrix-like in gppearance. Users logged into the instance and
exigting QueSys queues form the axes of the matrix. Interaction between instance users
and queues is displayed within the body of the "interaction matrix."

QueSys operations that block asynchronoudly are trested as pseudo-users of QueSys.
These Asynchronous Users are digplayed in the same manner as ordinary users, thus
providing a consgtent visua display of dl pending QueSys asynchronous operations.

The QueView display has the following layout:

St at us
I nt erval Queues. ..
Users User - Queue
| nteraction
Matri x
Conmmand Statistics | Capacity

Monitor status and interval setting is shown at the top |eft portion of the screen. QueSys
capacity datais displayed at the lower right portion of the screen. The command entry
window is a the lower left of the screen.

2.4.2.1 Sample QueView Screen

"% Command Prompt - queview =

Version: 3.0.0 %% EIPC QueSys Monitor o Hov 25 18:28:04)N
Instance: cidannyhgsmitest [qsm]
———————————] 1 2
Influeuse TPdata Serverl]
0725 /100 os1000
078192 /0

Download
Server! !
GClient1 GET 240

Client2 !
Clientd H
n198-002 GET ...
n199-007 GET ...

Status: [BLOCEKED: GET] Timeout:z 240
Burst: Hone Seqlo = 0 Hame: Client1
Put:z 0 Get: Pid: M
Wait List Login: Hov 25 18:23:06
TTEE: Headers: 0.0710.0 ¢ i ueues: /10 30
! TxtPool: 07256 ¢ i Users : 5200 WD
I F - ahsRO0D O 22E) I

e ———

E

ragmnt: 175955 (i Hodes

2.4.2.2 User Entries

Userslogged into the ingtance are listed on the left Side of the interaction matrix, one line
per user.

01/22/2004
Rev. No.: 4

2-50 X+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

Each user entry includes:
O The user's QueSys user ID.
O The user'slogin name.
O The user's blocking status (if any).
O The blocking timeout vaue (if any).

An example (not associated with the screen presented above) follows.

02 StartUp
03 DownLoad PUT ...
06 NetProg WRT 17
41 A041-006 GET ...

In thisexample, four QueSys users are identified, three normal users and one asynchronous operation.

O QueSys user 2 has the login name "StartUp." The user is not blocked on any
QueSys operation.

0 QueSys user 3 has logged in as "DownLoad." It is blocked on a QuePut()
operation and is blocked indefinitely, thus having no timeout value.

O QueSys user 6, logged in as "NetProg,” is blocked on a QueWrite() operation
and has a timeout pending. Seventeen seconds remain until the operation times
out.

O QueSys user 41 is an asynchronous QueGet() operation that was started by user
6.

2.4.2.3 Queue Entries
The ingance's queues are identified across the top of the interaction matrix.
Each queue entry includes:

O The Qid of the queue.

O The user-assigned ASCII name of the queue.

0 The queue's message capacity data.

[0 The queu€e's byte capacity data.

An example (not associated with the screen presented above) follows.

0 1 4 5
InQueue Tpdata ImageQue NetData
21/25 34/100 78/0 192/100
925/8192 39.2/0.0 4006/4096 21.2/16.0
In this example:

O Queue "InQueue’ is shown to have a Qid of 0. It is a queue having a message
capacity of 25 messages, and a byte capacity of 8 K-Bytes = 8192. A totd of 21
messages, amounting to 925 bytes, reside on the queue.

01/22/2004
Rev. No.: 4

QueSys 2-51

O Queue "TPdata' has Qid 1. It has a message capacity of 100 and an unlimited
byte capacity (represented as 0.0). Currently, 34 messages or 39.2 K-Bytes of
data reside on the queue.

O Queue "ImageQue" has Qid 4. It has an unlimited message capacity, and a byte
capacity of 4 K = 4096. At present the queue is holding 78 messages totaling
4006 bytes.

O Queue "NetData' has Qid 5. It is being used to read messages off a network. The
queue is configured to hold 100 message interndly totding a maximum of 16 K-
Bytes. Currently, there is a total of 192 messages on the queue, including its
spool; this indicates that the queues overflow spool has absorbed the extra
messages. Similarly, 21.2 K-Bytes are currently on the queue and its spoal.

Note that message and byte counts include messages that have been spooled (if any). To
get a breskdown of the number of messagesinternaly on the queue and the number of
messages spooled, one must use the various queue zoom windows described below.

2.4.2.4 Interaction Matrix Cells

Each cdl on the QueView interaction matrix describes the current relationship between a
user and aqueue.

Possible cell values include:
Indicating that the user is not blocked in any manner on the intersecting queue.

M5G Indicating that the user is blocked on a message dispatch operation involving the
intersecting queue. The queue is at message capacity and its spooling is currently
disabled. Accordingly, the queue cannot accept the message being dispatched.

SPL Indicating that the user is blocked on a message dispatch operation involving the
intersecting queue. The queue currently hasits spooling disabled. There are also
messages spooled from when spooling was active. The queue can not accept any
messages. |n most but not all cases, thiswill also be an indication of the queue being
at itsinternal capacity.

nnn Where nnn is an integer value. The user is blocked on a message dispatch operation
where the message involved has 'nnn' bytes. The intersecting queueis at its byte
capacity and its queue's spooling is currently disabled. Accordingly, the queue cannot
accept the nnn byte message.

ANY Indicating that the user is blocked on a message retrieval operation. The intersecting
gueue is either currently empty or does not have the desired message.

2.4.3 Monitoring Modes

The topic of monitoring modes--the available options and when they should be used--is
decribed in detail inthe X«4pc 3.0 User Guide.

2.4.4 QueView Zoom Windows

QueView provide the developer with six zoom window capabilities.

01/22/2004
Rev. No.: 4

2-52 X¢IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

2.4.4.1 Zooming in on a User

The QueView user zoom window creates a detailed display of the Satus of a particular
QueSys user. The command string for user zooming is"zuN" where N isthe Uid to be
zoomed in on.

Example:
The command for opening azoom window on the user having aUid of 4 is:

Command> zu4

Status: [NOT BLOCKED] ud: 2
Name: Net Daenon
Put: 278 Get: 1028 Pid: 709
Wait List Login: Jan 12 17:23

User "NetDaemon” is currently not blocked on any QueSys operation. The user wait list
is accordingly empty. He has dispatched 278 messages and retrieved 1028 messages
gnce logging into the instance.

Status: [BLOCKED: PUT] ud: 2
Nane: Net Daenon
Put : 278 Get: 1028 Pi d: 709
WAit List 5 6 Login: Jan 12 17:23

User "NetDaemon” has now blocked on a message dispatch operation involving Qids 5
and 6. The blockage is indefinite (i.e., it has no timeout). The listed queues cannot
currently accept "NetDaemon's message due to capacity limitations. Theinteraction
matrix details the type of capacity limitations encountered for each of the listed queues.
Similar information is displayed in the user zoom window when a user becomes blocked
on any of the other blockable QueSys operations.

2.4.4.2 Zooming in on a Queue

The queue zoom windowprovides a complete report of a queue's current status. The
command string for zooming on aqueueis"zgN" where N is the Qid to be zoomed in on.

Example:
The command for opening azoom window on message queue 6 is:
Comand> zq6

Example:

I n:
Msgs
Wi t

Msgs

[***********

Byt es:

[*************

445

Li

15/ 25

779/ 102

]

(60%

4 (76%

-]

Qut :

St

430 Spool :

OFF O

Qd: 6
Nane:
Createlid: 2
Cr eat ed:

| nQueue

01/22/2004
Rev. No.: 4

Jan 4 9: 30

QueSys 2-53

Qid 6 is shown to be at 60% message capacity and at 76% byte capacity. It has taken 445
messages and has given 430 messages Snce its creation. Spooling for the queueis
currently off, and there are currently no messages spooled. The empty wait list indicates
that no users are blocked on the queue.

2.4.4.3 Zooming in on a Queue's Messages

The message zoom window provides a glimpse at the message traffic of a given queue.
The provided display is usudly sufficient for monitoring generd message movements
occurring on the queue.

The command gring for message zooming is"zmN" where N is the Qid to be zoomed in
on. An optiona 't' or 'p', gppended to the command, determines whether the time or
priority strands of the queue's messages are used for the display. If neither is specified
then the time strand is used.

Example:

The command for opening a message zoom window on the messages of Qid 3, displaying them
using the queue'stime strand, is:

Command> zn8

or
Command> znBt

The command for opening a zoom message window on the same queue, using the priority strand, is:

Comrand> znBp

75 4000 24 | BM 107 1/2 104 2500 72 DS * 45 -2
77 3800 118 DEC * 98 3/8| 117 2300 18 PN 12 +2
81 4100 103 X 46 7/8 +1 |1/ 2

123 1800 52 Reut er s:
Janu

Qd: 3 TIME In: 16 Qut: 7 Msgs: 9/200 Byt es:
574/ 4096

The message zoom window provides aglimpse at the first and last three messageson a
gpecific queue strand. The zoom window is actualy divided into two sub-windows: left
and right.

Theleft sub-window displays the strand's first three messages; the right sub-window
displays the strand's last three message. The bottom line provides genera statistics about
the subject queue.

Only minimal datais displayed per message:
O The message'sinternd time stamp.
O The message's priority.
O The message's length.
O Thefirgt 18 characters of the message'stext.

01/22/2004
Rev. No.: 4

2-54 X+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

In the above example, a message zoom window has been opened for Qid 3. The 'time
drand isbeing viewed.

The first message on the queue's time strand has an internd time stamp of 75, a priority

of 4000 and alength of 24 bytes, the start of the message reads "IBM 107 1/2". The
second and third messages on the 'time' strand are presented smilarly in the next two
lines of the left sub-window. Theright sub-window displaysthe last three messages on
the time strand, following the same format. The queue's most recently added message has
apriority of 1800, has 52 bytes and starts with "Reuters: Janu."

Had the priority strand been specified (via"zm3p"), then the left and right sub-windows
would display the first and last three messages on the queue's priority strand. A developer
could monitor the highest and lowest priority messages on the queue in this manner.
Zooming in on aqueue's messagesis an extremely useful device Snce it can be left open
while a queueis being manipulated. A developer can set the monitor to one of the various
trace modes and then watch in dow motion as messages enter and exit a particular

message queue.
2.4.4.4 Zooming in on a Queue's Spooling
The spool zoom window provides a complete report of a queue's spooling status. The

command string for spool zooming is"zsN" where N isthe Qid whose spool isto be
zoomed in on.

Example
The command for opening a spool zoom window on message queue6is:
Command> zs6

Spool : ON Msgs: 161 Byt es: Qd: 6

17410 Name: | nQueue
File : "/tnp/spool/InQueue" Msgs : 186/ 25
Front: Nunber..... 004 (744%

Offset...17442 Bytes: 16./2.
Rear : Number..... 009 (800%

O fset...21004

In the above example, the spooling status of Qid 6 isdisplayed. Qid 6 hasits spooling
on. There are currently 161 messages on the queue's spool, amounting to 17,410 bytes of
overflow data. The spooal file base name being used is "' /tmp/spool/InQueue’. The front
gpooal tick fileis 004 and the rear tick fileis number 009. The current offsets within each
of thefilesare dso liged. Generd capacity information regarding the queue is given on
the right portion of the spool window. There are atotal of 186 messages on the queue
(including the spooled messages). There are atota of 16 K-Bytes of messages on the
gueue (once again, incdluding the spooled messages).

Keep in mind that the status of a queue's spooling mechanism--specificaly, whether it is
currently on or off--has no relationship to the number of messages on the queue's spoal.
In the above example, the spooling could have been off and the remaining datawould
dtill be the same. Spooling being on or off is only an indication of whether the queueis
currently accepting 'new’ overflow messages.

01/22/2004
Rev. No.: 4

QueSys 2-55

2.4.4.5 Zooming in on Message Text Pool Status

One of the most critical components of a QueSys ingtance isits message text pool.
Monitoring its changing status provides important data about the overdl efficiency of the
QueSys instance. Subsequent configuration parameter adjustments can produce
noticeabl e performance improvements.

A zoom window for monitoring message text pool status can be opened using the "zp"
commeand gring.

Example:

Commrand> zp

Frgmt : 171/ 213 (79%
[***********...]

Largst Bl k: 1980

Wait List : 4

Capcty: 32.1/60.0 (54% Pool Si ze:
[*F**xxxxkx] Tick Size:

60K
32

Zooming on the message text pool status provides important information. In the above
example, the message text pooal is 54% full. More sgnificant is that the pool's
fragmentation index is gpproaching 80%. This value measures how severely fragmented
the message text pool has become. The largest available free text block is 1980 bytesin
gze. User 4is currently blocked on a QueWrite() operation.
Severe fragmentation can be remedied in a number of ways:

O Changing the mix of messages being used in the instance.

O Increasing the size of the message text pool.

O Adjusting the messagetick size.
By monitoring the text pool after making adjustments, improvements in text pool
utilization can be confirmed.

2.4.5 Zooming in on a User in Burst Mode

The user zoom window may be used to track the progress and status of a user in burst
mode.

Example:

The command for opening a zoom window on the user having Uid of 4 is (who isin burst mode):

Command> zu4

Status: [NOT BLOCKED] ud: 4
32768 Pid: 709

VWait List

Burst: Send SeqgNo = 174 RA = Name: FireHose

Put: 278 CGet: 1028 Login: Jan 12 17:23

Note the new fields within the window (highlighted in the above example) that have been
added for monitoring a user’s burgt activity. User 4 isin send burst mode, has sent 174
messages 0 far, and is using aread-ahead (“RA”) buffer Size of 32,768 bytes.

01/22/2004
Rev. No.: 4

2-56 X+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

2.4.6 Browsing Messages with QueView

Queue and message browsing is an important feature of X«pPc QueSys. Using this
capability, a programmer can verify a message's format or search for specific Hex or
ASCI| message patterns.

Unlike the zoom windows just described, when the browse facility is used it temporarily
freezes the subject QueSys instance.

Browsing isinitiated using the command string “"bN," where N isthe Qid to be browsed.
An optiona 't or 'p' may be appended to the command to specify whether the time or
priority strands of the queue should be used. If neither is specified, then the time strand is
defaulted to.

Example:
The command to initiate browsing of Qid 5'stime strand is:

Command> b5
or
Command> b5t

Toinitiate browsing of the queue's priority strand one would use:
Command> b5p

The browse fadility uses a full-screen window for displaying message deta. A sample
screen follows.

mmand Prompt - queview

#%% ZIPC QueSys Monitor e

i}:&?ﬁ? et
Length = 1% Priority = 123

Th636973 20697320 74686520 74727069 63616c20 | This is the typical
2d48656c 6cbf2c20 776F726c 642d206d 65737361 | -Hello, world- messa
67652074 68617420 6P6e?hof 64756365 73207468 | ge that intoduces th
6520665 77207573 65722074 6F205849 S0432e20 | e new user to HIPC.
hetf 7065 20686177 20746365 2062726F 77736520 | Hote how the browse

F626etd 6F772061 bcbebf?7 73207468 65206465 | window allows the me
13736167 6520746F 20626520 76626577 65642069 | ssage to be wiewed 1
el 04845 S820616e 64204153 43424920 666f726d | n HEX and ASCII form
6174732e 20546869 732069273 20746865 20656e6hd | ats. This is the end
206f6620 TheB6520 64657373 6167652e of the message.

The highlighted (grey) line identifies the queue being browsed. The next line identifies

the message within the queue currently being viewed. In the above example, the first
message on the time strand is being shown. TIME #1 refers to the oldest message on the
queue. This message has priority #123; in constrast, PRIO #1 would refer to the highest
priority message on the queue.

The body of the screen presents the message text in hex and ASCII formats. Offsets into
the message are posted aong the left margin.

01/22/2004
Rev. No.: 4

QueSys 2-57

2.4.7 Browse Facility Commands
Navigating in and about queues and individual messagesis accomplished using the
browse facility commands.
2.4.7.1 Chronological vs. Priority Sequence
As previoudy noted, it is possible to browse messages from either thetime (i.e.,
chronology) or the priority perspective. That isto say that a queue's messages can be
viewed in chronologica or priority order. Switching from one perspective to the other is
done using the gppropriate command.
Switching to the priority strand is accomplished using:

Command: p

Switching to the time strand is accomplished using:
Command: t

2.4.7.2 Moving Around On A Queue

Moving from message to message on a given queue can be done in avariety of ways:
Command Effect
P (right arrow) Movestothe next message on the strand.

U (left arrow) Movesto the previous message on the strand.

n Moves to the nth message on the strand.
+n Moves forward n messages.

-n Moves backward n messages.

f Moves to the first message on the strand.

I Movesto the last message on the strand.
Move commands work only where they make sense. Otherwise the command is ignored.
We will see shortly that searching for patterns within a queue effectively movesthe
browse window to the message where the pattern is found.

2.4.7.3 Moving Around Within A Message

Moving about within a message is accomplished using the following commands:

Command Effect

Y (up arrow Scrolls the current message up one line.

3 (down arrow) Scrolls the current message down one line.
PAGE- UP Scrolls the current message one page up.
PAGE- DOMN Scrolls the current message one page down.
HOVE Scrolls to the top of the current message

END Scrolls to the bottom of the current message

Scrolling only works where it makes sense. Otherwise the command is ignored.
We will see shortly that searching for a pattern within a message will cause the message
to scrall to the offset where the pattern is found.

01/22/2004
Rev. No.: 4

2-58 X+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

2.4.7.4 ASCII Pattern Searching

Forward ASCII pattern searching is executed by specifying a pattern betweentwo '/
characters and hitting return. Backward searches are specified using two '\ ' characters.
Pettern searches can be kept confined within a single message (locd), or they can cover
adl the messagesin the current queue (globa). Globa search commandsusea’'g’ prefix.
Loca searchesrequire no prefix.

The second bracket character is not always necessary, as will be demonstrated in the following examples.
Repeat patterns are remembered. The following examples demonstrate these points:

Command Effect

/1 BM Search forward in the current message for the string "IBM™.
/] Repest the search.

/ Same.

\'| BM Search backward in the current message for the string "1BM™.
\\ Repest the search.

\ Same.

g/ | BM Search forward through al messagesto the end of the queue.
gl / Repeat the search.

g/ Same.

g\ | BM Search backward through al messages to the start of the queue.
g\ Repest the search.

g\ Same.

2.4.7.5 Hexadecimal Pattern Searching

Searching for Hexadecimal patterns is very similar to ASCII pattern searching. The only differences are
that the pattern specified is a Hex string, and that an 'x' is appended to the end of the search command.

Command Effect

| 4f 37/ x Search forward for hex vaue "4f37" within current message.
g/ 4f 37/ x Same search, but forward across al messages on the queue.
g/l x Same.

\ 4f 37\ x Search backward for hex value "4f37" within current message.
g\ 4f 37\ x Same search, but backward across al messages on the queue.
g\ \ x Same.

2.4.7.6 Switching to Another Queue

Switching to browse another message queue is accomplished using the "bN" command as
described above.

This dlows navigation between queues without having to exit the browse fadility. Thisis
important, snce the entire QueSys indance remains frozen. Exiting the browse facility on
the other hand, even for a brief period, unfreezes the instance.

2.4.7.7 Exiting the Browse Facility

The browse facility is exited using the "q" command. Once browsing is terminated, the
QueSys ingance is unfrozen.

01/22/2004
Rev. No.: 4

QueSys 2-59

Example:
Conmand: q

2.4.8 Panning within QueView

Panning within QueView lets the devel oper observe different sections of the interaction
matrix. Thisis especidly useful when azoom window is open and parts of the matrix are
not vishle.
All "panning” commands start with 'p'.
Vertica panning (up and down) to observe other usersis done by specifying a'u’ (for
user) and a Uid to pan to.
Example:

Comrand> pu8

The above command scrolls the interaction matrix so that Uid 8 is at the top of the

disolay.
Horizontal panning (right and left) to monitor other queues is accomplished specifying a
'q’ (for queue) and a Qid to pan to.

Example:
Command> pq4
The above command scrolls the interaction matrix so that Qid 4 isthefirgt displayed
(Ieft-most).
Example

Command> po

The command "po"” returns the display to the origin of the activity matrix.
2.4.9 Stopping QueView
QueView monitoring is terminated viathe 'q’ command.
Example:
Command> g

Bringing down QueView has no effect on the underlying activities of the QueSys
instance. It continues to function unaffected. Any overhead incurred by monitoring is
eiminated.

01/22/2004
Rev. No.: 4

MemSys 3-1

3. MEMSYS: THE X+IPC SHARED MEMORY SYSTEM

3.1 MemSys Concepts

X+pc MemSys introduces a number of important concepts which are presented in the
following sections.

3.1.1 MemSys Segments

X+Pc shared memory activity revolves around MemSys memory segments. In this way,
XJapc MemSysis amilar to native shared memory facilities. User programs read and write
to and from MemSys memory segments as they seefit.

The mechanism used for governing read and write access to a segment iswhat sets
MemSys apart from exigting native facilities. Xspc MemSys introduces the concept of
dynamic section overlays for controlling read-write access to a MemSys segment down to
the byte leve.

3.1.2 MemSys Section Overlays

The mode used by MemSys for contralling read-write access to its sesgmentsis redly
quitesmple.

A MemSys segment is arepostory of contiguous data. Reading and writing to areas of a
MemSys segment require that the user program involved have the appropriate access to
the entire area targeted by its read or write operation. Accessibility to areas of aMemSys
segment is controlled via Section Overlays.

A section overlay--cdled "section” for short--can be viewed as lying on top of al or part
of aMemSys segment. A section controls read-write access to that part of the segment
thet it overlays.

Each section that is defined over a MemSys segment hasits own read-write privilege
settings. These privilege settings control read-write access to the overlaid part of the
underlying MemSys segment. Possible privilege settings are read-write, read-only, write-
only or not-accessible.

Using sections, a segment may have different read-write characteristics governing access
to different parts of it.

A section isdynamic in nature. It is defined at run time. Its location, Sze and access
privileges are controlled at run time. A section may exist only briefly or it may persst for
alonger period of time. Privilege sattings controlling access to the underlying segment
data can be modified as often as necessary. Findly, a section can be removed from the
segment when it is no longer needed.

Using sections, it is possible for aprogram to take control over al or part(s) of agiven
MemSys segment for aslong or as short a period of time as necessary. It may, for
ingtance, exclusvely lock one areafrom other user access, while imposing a read-only
limitation on others.

A program can lock portions of an in-memory database, individua records, or even
gpecific fields for updating, as necessary. Tables or portions of tables can be made read-
only or completely inaccessible for aslong as required.

01/22/2004
Rev. No.: 4

3-2 X+PC Version 3.4.0: QueSys/MemSys/SemSys User Guide

Different parts of a MemSys segment can have different bility rules governing
them a different pointsin time. This can be changed as often as necessary.

Section Definition

A section is defined in terms of its location, access privileges and ownership. A section
exigsonce it is defined to MemSys. The function call for defining a new section,
MemSecDef(), will be described below. A section remains in existence until it is
undefined or until its underlying MemSys segment is removed.

3.1.2.1 Segment Data Accessibility Control

Using sections, it is possible to assgn different levels of accessihility to different portions
of asegment'sdata. In this sense, sections can be viewed as providing dynamic "windows
of accesshility” to aMemSys segment's data.

In fact, new sections can be defined to overlap existing sections. In this manner it is
possible, for example, to have an entire table that is read-write accessble by dl users, a
sngle table entry that is read-only accessible by dl and read-write accessible by one
specific user; and onefield of this one record that isinaccessble by dl while il being
read-write accessible by a single user who might do an update. Such an example will be
demongtrated below.

Of course, this capability is not limited to internal tables or databases. It can be applied
with equd flexibility to array manipulation, image processing, etc. Any Stuation

involving memory that needs to be accessed and manipulated by multiple users
concurrently, in a controlled and synchronized manner, can benefit from MemSyss
section functiondity.

3.1.2.2 Section Location

A section covers a specific contiguous portion of a MemSys segment. A section's
location has three components:

O The underlying MemSys segment identifier.
O An offsat into the segment where the section starts.
[0 The section'ssize. A section cannot overlap across two MemSys segments.

3.1.2.3 Section Access Privileges

Each section divides the universe of MemSys usersinto two groups. the section's current
owner (a most one user) and other users. Section access privilege settings are kept for
these two groups.
Possible privilege settings are:

MEM RW Read-write

MEM RO Read-only

MVEM_WO Write-only

MVEM_NA Not accessible
Using these privilege settings it is possible for a section's owner to control accessibility to
a section's underlying segment data.
For example, by setting a section's owner privilegesto MEM RWand other privilegesto
MEM_NA, asection's owner can effectively lock the section (i.e, its underlying segment
data) for himsdlf. Hisread and write operations to target areas within the section would

01/22/2004
Rev. No.: 4

MemSys 3-3

succeed. Other users attempting to read or write the same areas would either fail or block
if so oecified.

If the other users chose to block, their operations would not unblock and complete until
the section's other privilege setting was changed to permit other accessto the underlying
segment data

Aswewill see shortly, in most situations this form of locking can be effected usng a par
of MemSys function cals. MemLock() and MemUnlock(). The actud work of defining
sections, becoming owner and setting privileges gppropriately is done automaticaly by
these functions.

When a section isfirg defined, it is created with access privilege settings of read-write
for owner and other.

3.1.2.4 Section Ownership

A section can have a most one owner at any point in time. Ownership of asectionisa
prerequisite for modifying the section's access privilege settings.

Section ownership is controlled in the following manner: A user that does not currently
have read-write access to a section's complete underlying area cannot become the
section's owner. Put another way: ownership of a section can only be acquired by a user
having reed-write access to a section's entire area. The precise definition of "a user
having reed-write access to a section's entire ared’ is given below.

When a section isfirg defined it is created having no owner.

3.1.3 Segment Data Read-Write Accessibility

Many MemSys operations require that an area of aMemSys segment be "readable’ or
"writeable" (or both) by the user in order for the operation to succeed.

The best way to understand the concept of a segment's read-write bility isto
contragt it with the concept of section access privileges described earlier.

Aswe have seen, a section's access privilege settings describe the type of read-write
access available through that particular section. It does not, however, indicate the actua
read-write accesshility of the underlying segment data for any particular user. Other
sections having different privilege settings may overlay al or part of the same segment
area, causing the underlying data accessibility to be different from the origina section's
privilege settings indicated. The key hereisthat access privilegesrelate to sections,
not the underlying data.

01/22/2004
Rev. No.: 4

3-4 X+PC Version 3.4.0: QueSys/MemSys/SemSys User Guide

A segment's read-write accessibility is a subjective measure. It answers the question as to
whether a particular user has read or write access to a particular areaof aMemSys
segment. This determination is made based on the sections currently overlaying the area
in question, their current ownership and their current privilege settings. A segment's read-
write accessibility may vary from user to user, and from byte tobyte. The key hereis
that read-write accessibility is subjective and relates to the actual segment data.

Example:

A MemSys segmernt has been created. Its Mid (MemSys segment id) is 3. A section has
been defined over part of the segment.

The section is currently owned by user 14, has privilege settings of read-write for the
owner (i.e., user 14) and read-only for other users.

Since no other sections are involved, the read-write accessibility of the section's datais
exactly asindicated by the section's privilege settings: read-write by user 14 and read-
only by dl others. The remaining areas of the memory segment are currently not
accessble by any usersin the instance, because no sections are defined over them.
Asowner of Section A, user 14 can change the other privilegeto, eg., "no-access’, at
which point the data covered by the section would not even be readable by other users.

01/22/2004
Rev. No.: 4

MemSys 3-5

Now consider the next situation:

A second section, Section B, has been defined over adifferent portion of the memory

segment. Its owner isuser 3, itsowner privileges are "read-write' and its other privileges
are"'no-access'.

At thispoint:

O User 14 can read or write any of the bytes covered by section A, but cannot
access any of the other bytes in the segment.

[0 User 3 can read or write any of the bytes covered by section B, and can read
from the data in section A.

Next, consider the situation where a third section is defined over the memory segment in such away that it
overlaps part of each of the existing sections as follows:

A third section, Section C, has now been defined over the segment. Notice that Section C

overlays parts of the memory segment that aready have sections defined on them.
Individua user access to segment areas having more than one section over them is

01/22/2004
Rev. No.: 4

3-6 X+PC Version 3.4.0: QueSys/MemSys/SemSys User Guide

governed by the privileges of dl the section involved. More specificaly, auser
attempting to access a byte of segment datathat has multiple sections defined over it,
must have the appropriate access privilege through all of the sections overlaying that
byte.
The memory segmernt currently has Six distinct areas of accessbility, based on the way
the three sections overlay the segment and overlap each other. The following matrix
summarizes the current read-write bility status of the instance's users vis-a-visthe
ax marked areas of segment data:
[1] [2] [3] [4] [S5] [6]

User 3RO RO RO RW RO NA

User 5(RO RO NA NA RW NA

User 14 |[RW RO NA NA RO NA

Ohers |[RO RO NA NA RO NA
As an example, examine user 5's access to the area of segment data identified as[3].
Since area [3] of the segment has two sections defined over it (sections B and C), user 5's
accessis determined by the privilege settings of both these sections. User 5 isthe owner
of Section C, thus his access to the underlying segment data through Section C is RW.
His access through Section B isas an other, and isthus NA. Because area [3] isthe
overlap of sections B and C, user 5's read-write accessibility to the areamust satisfy both
of these sections current privilege settings, thisis accomplished by satisfying the more
stringent of the two. User 5's read-write accessibility to the [3] areaisthus NA.
This example was contrived to demondtrate alarge range of functiond posshilitiesina
sngle stuation. In fact, many of the access control and synchronization concepts
demonstrated can be applied to common application Stuations.

Example:

Congder a Customer Table that isto be maintained in an X«pc shared memory segment.
Let us assume that the gppropriately szed MemSys memory segment (Segment 1) has
been created by an initidization program. MemSys user 4 is now reedy to initidize it
with the most recent Customer Table data, perhaps saved on disk from the end of the
previous day's business.

User 4 firgt defines a section over the entire Customer Table segment and sets its
privileges RW for him (as owner) and NA to others This gives user 4 the dbility to
initidize the table while preventing other users from accessng it in the middle of the
initidization process. We will shortly see that thisform of section "locking” can be
effected with a sngle MemSys operation.

01/22/2004
Rev. No.: 4

MemSys 3-7

Oncetheinitidization of the Customer Table is complete, user 4 setsthe other privileges
of the section to RW. This makes the table read-write accessible to other users so that
they can make updates as the day progresses. User 4, the initidization program, can now
relinquish ownership of the origind section.

01/22/2004
Rev. No.: 4

3-8 X+PC Version 3.4.0: QueSys/MemSys/SemSys User Guide

Now, assume the following update scenario. User 2 wants to examine customer records 100 through 200 as
a single unit, while protecting them temporarily from other user write access. To do this, user 2 defines a
new section over records 100 through 200, and becomes the section’'s owner. He then sets the section owner
privileges to RW and other privileges to RO. User 2 can now examine records 100 through 200 with the
assurance that they will not change before his eyes. Other users can continue to read the focused records
and read-write the remaining records in the table.

01/22/2004
Rev. No.: 4

MemSys 3-9

Now suppose that user 2, as aresult of his examination, decides to update record number 187. He would
lock therecord by defining another section over that record alone, and setting its privileges appropriately.

At this point user 2 has exclusive access to record 187. Other users continue to have read-
only access to the range of records (100-200) being examined by user 2, and read-write
access to the remainder of the Customer Table.

MemSys operations that are prevented from succeeding because of impeding section
privileges on the segment can opt to block and wait until section privileges exist that
permit their operation to succeed.

Thus, had MemSys user 15 initiasted a MemRead() operation that was to read Customer
record 187, it would block until that area of the Customer Table segment became
readable by him. Thiswould occur in one of two ways. User 2 removes the sections he
had defined over the Customer Table as described. With only the origina section
remaining, user 15 would then be permitted to complete his MemRead() operation since
its target data (record 187) would be deemed once again as read-accessible by him.
Alternatively, user 2 can otherwise modify the privileges settings of his sections, to make
them readable by others. This too would unblock user 15.

3.1.4 Segment Data 'Locking' and 'Unlocking’

The most typicd form of segment access control activity isfor the purpose of gaining
exclusive access to a portion of a segment's data for a brief period of time, perhaps to
work with that part of the segment in an atomic manner. Thistype of activity is referred

to as "locking."

A pair of functions, MemLock() and MemUnlock(), are provided by MemSys to support
the locking and unlocking of segment areas. These two functions are actudly

implemented using sections, ownership and access privileges as described above. As such
they add nothing fundamentaly new to the basc MemSys functiondity. MemLock() and
MemUnlock() are just convenient shorthand function cals that actualy cdl the basic
MemSys functions needed to achieve the locking effect.

A segment area becomes "locked" by auser in three steps:

[0 A section is defined over the targeted area (if one does not exist yet).

01/22/2004
Rev. No.: 4

3-10 X¢IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

O The user becomes owner of the section.

O The section's access privileges are changed to MEM_RWfor owner and MEM_NA
for other.

Thisis precisely what MemLock() does when "locking" segment data. Firdt, it definesa
section over the targeted area (if no such section exists). Then it attains ownership of the
section, blocking if necessary. Findly, it setsthe section's privilegesto RW for the
cdling user and NA for al others. The net effect is that the specified part of the segment's
datais now locked for the caller’ s exclusve use.
MemUnlock() accomplishesits work by undoing the steps taken by MemL ock().

3.1.5 Atomic Read and Write Operations

MemSys read and write operations are guaranteed to be atomic in nature. User programs
having read or write access to atargeted area of a ssgment are guaranteed that their
read/write operations will execute atomicaly, regardless of the amount of data involved.
Xvpc MemSys enforces dl seridization of segment access when necessary.

3.1.6 Operation Blocking

Complementing the synchronization mechanisms described above, MemSys provides
optiona blocking for individual read, write or lock operations. A caller program thet is
currently unable to complete one of these operations due to an access barrier imposed by
one or more sections can opt to block until conditions permit the operation to complete.
In thisway, programs can be automaticaly synchronized when competing to read, write
or lock overlapping areas of a MemSys segment. Synchronization is enforced entirely by
MemSys.

3.1.7 Memory Pool

MemSys segments, when created, are dlocated from the instance's memory pool , and are
returned to the memory pool when deleted.

Two observations follow. First, no MemSys segment can be created larger than the
configured size of the memory pool. And second, the aggregate of dl MemSys segments
used smultaneoudy by an instance cannot exceed the Sze of the pooal.

The sze of an instance's memory pool is gpecified within the instance's configuration file.

There are two aspects to memory pool configuration:

O The sze of the poal.

O Thedlocation unit used by the pool.
3.1.7.1 Sizing
The memory pool size defines the total amount of memory alocated to the instance for
creating MemSys segments. The given vaue should be reasonably close to the actua
shared memory requirements of the instance.
A smplerule for etimating an efficient memory pool sze vdueisgivenin the
discusson on MemSys configuration below.

01/22/2004
Rev. No.: 4

MemSys

3.1.7.2 Allocation Unit Size

The second component of memory pool configuration is the Size of the pool's alocation
unit (i.e, itstick size). This vaue specifies the multiple by which al memory dlocations
to created segments are made.

An ingtance working exclusvely with smal MemSys segments should configure this
parameter to asmilarly smdl vaue. An ingtance working with large segments can
configure this parameter to alarge vaue, dthough asmdl vaue will usudly work as
wadl. An instance working with awide range of segment sizes should opt for a parameter
vaue close to the amdl end of the range.

A ampleformulafor choosng aMemSys adlocation unit Sze is provided below.

3.2 MemSys Configuration

The MemSys section of an Xspc ingtance configuration file describes the composition and
capacity of the insance's MemSys.

Six parameters must be set within the MemSys section of the instance configuration file.
Additiond operating system specific parameters (if required) are described in the relevant
Platform Notes.

The configuration parameters are:

3-11

O MAX_USERS, The maximum number of concurrent users. Should be set based
on the requirements of the prograns usng the ingance Note that
asynchronoudy blocked MemSys operations are trested as MemSys users. The
expected levd of MemSys asynchronous activity should therefore be factored

into this parameter.

O MAX_SEGVENTS, The maximum number of concurrent segments. Should be

st based on the requirements of the programs using the instance.

O MAX_NODES, The number of nodes. MemSys nodes are used internally for
tracking users that block on MemSys operations. As with SemSys and QueSys,
thereisno firm rule for caculating avaue for MAX_NODES; it depends largely
on the nature of the programs that will use the indance. A consarvative estimate
to sat with is:

MAX_NODES = (MAX_SEGVENTS * MAX_USERS *

Aver ageSegnent Secti ons) + (MAX_USERS* 4)

+ MAX_SEGMVENTS
where:

Aver ageSegnent Sect i ons isthe expected average number of sections that
will exigt concurrently on a segment.

O MAX_SECTI ONS, The maximum expected number of sections that will exigt

concurrently in the ingance. A garting formulafor MAX_SECTI ONS is

MAX_SECTI ONS = (MAX_SEGVENTS
Aver ageSegnent Secti ons)

01/22/2004
Rev. No.: 4

3-12 X¢IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

where:

Aver ageSegnent Sect i ons isasdefined above.

O SI ZE_ MEMPOOL ,The size of the memory pool (K-Bytes). SI ZE_ MEMPOOL
must exceed the Sze of the largest segment that will be created in the instance. It
must also exceed the largest aggregate of concurrent segments. A starting
foomulafor SI ZE_ MEMPOQOL is
SI ZE_ MEMPOOL = (MAX_SEGMENTS * Aver ageSegnent Si ze)

where:

Aver ageSegnent Si ze is the expected average segment Sze occurring
within the instance.

SI ZE_ MEMPOCQL is expressed in terms of K-Bytes. As such the calculated vaue
should be rounded up to the next K-Byte multiple. (E.g., if the caculation comes
to 1948 bytes, then 2 K-Bytes should be specified).

O SI ZE_MEMTI CK, The memory dlocation unit (bytes). Thisvaue specifiesthe
multiple by which memory pool dlocationsare made. SI ZE_ MEMT| CK should
be rounded up to amultiple of 4. A good sarting valuefor SI ZE_ MEMT| CK is

SI ZE_MEMII CK = 25PercentileSegmentSze
where:

25Per centi | eSegnment Si ze is the 9ze vdue for which it is expected that
75% of the ingance's segments will be larger in size and 25% will be smdler.

Example:
Consder the configuration for an ingances MemSys that will support an image
processing server goplication.

Assumptions:

1

a » w D

There will be between 5 and 10 users and/or MemSys asynchronous operations within the
instance at any onetime.

There will be no more than 8 segments active at any one time.
The average number of sections per segment is 25.
The expected average segment size is 50,000 bytes.

It is estimated that most segments will range in size between 12,800 and 102,400 bytes, with
25% of them being less than 20,000 bytes in size. A safe 25Percenti | eSegnent Si ze
valueisthen 20,000.

Then:

MAX_USERS can be safely set at 10. Little spaceisrequired for configuring extra users, so it paysto
play it safe.

MAX_SEGVENTS can be set at 8. The MAX_USER reasoning isvalid here too.
MAX_NODES followsthen as: (8 * 10 * 25) + (10* 4) + 8 =2,048.
MAX_SECTI ONS calculates as: (8 * 25) = 200.

S| ZE_MEMPOOL would be calculated as: (8 * 50,000) = 400,000. This should be rendered as 400K
bytes.

01/22/2004
Rev. No.: 4

MemSys 3-13

SI ZE_MEMT| CK would be set to 20,000 bytes.

File: /projects/local/inmage.cfg
Created: May 31, 2001

This Xl PC instance supports a high-perfornance
transacti on processi ng application.

Note: The instance is defined so that it only
supports Xl PC shared nenory. SenBys and QueSys
(and MonBys) are defined as NULL, by virtue of
not bei ng incl uded.

HHHHHH O HH R

[MEVBYS]

MAX_USERS 10

MAX_SEGVENTS 8

MAX_NODES 2048

MAX_SECTIONS 200

Sl ZE_ MEMPOOL 400 */ in kb */
SIZE MEMII CK 20000

A further note about MemSys configuration: the above formulae and rules generdly
produce acceptable parameter vaues. The values should however be adjusted as
necessary based on empirica observations using the MemSys monitor.

3.3 MemSys Functions

3.3.1 MemCreate() - Creating a New Segment

Thefirst gep in usng a MemSys segment within an ingance isto creete the segment.
MemCreate() takes two arguments:

[0 The name of the new segment.

O A vaue specifying the Sze (in bytes) of the segment.
MemCreate() returns the "MemSys segment id" (Mid) of the newly created segment. This
vaueis used as the segment's "handl€” in al subsequent MemSys function calsthat refer
to this segment.
Example:

Md = MenCreat e(" Custoner Tabl e", 1024L);

In the above example, the caling user attempts to create a new segment having the name

"Cust onmer Tabl e" . The new segment will be 1024 bytesin size.
A more likely scenario: There is atypedef that defines a customer record type (eg.,

CUSTOMER _RECORD) and a customer table is being alocated to support a certain
number of customers (eg., 100).

01/22/2004
Rev. No.: 4

3-14 X+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

Example:

/*
* Create a MenBys shared menory segment that will serve

* as a Custoner Table having capacity for 100 custoners.
*/

t ypedef struct
{

} CUSTQVER RECORD,

XINT RecSi ze = si zeof (CUSTOVER_RECCRD) ;
XI'NT NunmRecs = 100L;
Cust Tabl eM d = MenCr eat e(" Cust orrer Tabl ", NunRecs * RecSi ze);

A note regarding segment cregation: duplicate ssgment names are not dlowed within an
ingtance.

Specifying MEM_PRI VATE as the name of the new segment creates a segment
inaccessible viaMemA ceesy), effectively making its Mid private to the creating

program. Of course, the creating program can pass the 'Mid' to othersif it so wishes. The
advantage of usng MEM_PRI VATE asanameisthat it is guaranteed not to conflict with
any segment name currently in the instance.

3.3.2 MemAccess() - Accessing an Existing Segment

Once a segment has been created, other users can accessit (i.e., its Mid) using
MemA ccess().
MemA ccess() takes one argument:
[0 The name of an exising message segment.
MemAccess() returns the "MemSys segment id" (Mid) of the desired segment. Thisvaue
is used as the segment's "handl€”’ in dl subsequent MemSys function cals that refer to
this ssgment.
Example:
Cust Tabl eM d = MemAccess(" Cust oner Tabl e");

The above example accessesthe Cust oner Tabl e segment created in the previous
section.

3.3.3 MemWrite() - Writing Data to a Memory Segment

Writing datato a MemSys memory segment is accomplished via the MemWrite()
function cal. MemWrite() copies the specified data directly into the targeted memory
segment area. The write operation is guaranteed to be executed atomicaly.
Synchronization between competing users is handled automatically by MemSys.
MemWrite() attempts to write data into a specific area of amemory segment. This area
must be write accessible by the calling user. More precisdy, every byte of the targeted
areamust be write accessible by the caller at the time of the MemWite() cal.

MemWrite() takes five arguments:
O The Mid of the memory segment to be written to.

01/22/2004
Rev. No.: 4

MemSys 3-15

O The offset into the segment where the MemWirite() operation should commence.
[0 The number of bytes to be written (the target area size).

O A pointer to the data to be written, or a cadl to the MEM FI LL macro.

MEM FI LL when specified, identifies a byte vdue with which to fill the entire
targeted area.

O A blocking option code in case the operation needs to block.

Example:
/*
* Wite "Hello Wrld" into the first 11 bytes of the nmenory
* segnment identified by Md. Note: The offset and the size
* are "XINT's.
*/
Ret Code = MenmWite(Md, OL, 11L, "Hello Wrld", MEMWAIT);
Example:
/*
* Wite NewCustonerRecord into the 25th entry
* of the Custonmer Table that we created earlier.
*/

t ypedef struct
{

} CUSTOVER RECORD;

CUSTOVER _RECORD NewCust orrer Recor d;
XINT RecSi ze = si zeof (CUSTOVER_RECORD) ;

Ret Code = MemWVi t e(

Cust Tabl eM d, /* Target nenory segnent */
(XINT) (24 * RecSi ze), /* OFfset past 24 customers */

(XI NT) RecSi ze, /* Target area length */

&NewCust orrer Recor d, /* The new 25th custoner entry */
MEM VAI T) ; /* Block if target area busy */

The segment areathat is designated to receive the written data must be write-accessible
by the calling user. If any byte of the targeted areais not write-accessible, the
MemWrite() operation will not succeed.
If, in such acase, MEM WA T is specified as the function cdl's blocking option, then the
function will block and wait until the entire targeted area can be written to, a which point
it will complete,
If MEM _FI LL isgiven asthe data buffer argument, then the specified byte vaue is
written to the entire targeted memory area.
Example:
/*
* reate a 4K shared i nage segnent, define a witeable section
* over it and then initialize the segment's entire contents to
:/Hex "FF". NOTE: MenBecDef() is described later in the guide.
/*
:/Create the MenBys nenory segnent.
Md = MenCreate("| nmageSegnent”, 4096L);

/*
* Define a section over the entire segnment naki ng the segnent

01/22/2004
Rev. No.: 4

3-16 X+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

* read-wite accessible. (MenBecDef() and MenBection() are
* described bel ow.)
*/

Ret Code = MenBecDef (MenSection(M d, OL, 4096L));

/*
* Fill the entire segnent with hex FF.
*/

Ret Code = MenWite(Md, OL, 4096L, MEM FILL(OxFF), MEM WAIT);

An important efficiency congderation regarding MemWiitg() is the following:

If the entire targeted areais "locked" by the writer (i.e., dl overlaying sections are owned
by the writing user and have other privilegesof MEM_NA), then the atomic nature of the
write operaion is guaranteed implicitly and the actud data transfer is performed in its
mogt efficient form, without the need for explicit protection by MemSys.

If, however, any part of the targeted write areais not currently "locked" from other user
access (i.e., one or more of the overlaying sections are either not owned by the writing
user or are owned but do not have other privileges set to MEM_NA), then the atomic
nature of the write operation is explicitly enforced by MemSys.

Building on the earlier examples, consder the situation where customer records 100
through 200 have to be updated atomicaly. The MemWrite() operations will be executed
without any need for MemSys to provide explicit synchronization. Thisis because the
cdling program has atained exclusive rights to the segment area involved (viathe

MemL ock() cdl).

Had the targeted area of the write operations not been "locked," then MemSys would
have provided the necessary explicit synchronization for each MemWite() operation in
order to ensure its occurring atomicaly. This would have borne the necessary overhead
and would have been somewnheat |ess efficient.

Example:
typedef struct

} CUSTOVER_RECORD;
CUSTOMVER _RECORD NewCust oner Recor d;

XINT RecSi ze = si zeof (CUSTOVER_RECORD) ;

/*

* 'Lock' records 100 - 200 for updating purposes. (Memiock() will
* be described bel ow).

*/

Ret Code = MeniLock(...);
/*
* Update the | ocked records.

*/

for (i = 100; i <= 200; i++)

01/22/2004
Rev. No.: 4

MemSys 3-17

/*
* Update the i-th record.
*/

Ret Code = MemWi t e(

Cust Tabl eM d, /* Target nenory segnent */
(XINT)((i-1) * RecSize), /* Ofset past i-1 records */

(XI NT) RecSi ze, /* Target area size */

&NewCust oner Record, /* The new i-1th custoner entry */
MEM VAI T) ; /* Block if target area busy */

}

The above examples demongtrate MemWiite() using synchronous blocking options.
Asynchronous blocking is dso possible by specifying one of the three asynchronous
blocking options. Refer to the Advanced Topics chapter for adetailed description of the
asynchronous blocking options.

3.3.4 MemRead() - Reading Data from a Memory Segment

Reading data from a MemSys memory segment is accomplished viathe MemRead()
function call. The read operation is guaranteed to be executed atomicdly.
Synchronization between competing usersis handled automaticaly by MemSys.
MemRead() attempits to read data from a specific area of amemory segment. This area
must be read- accessible by the calling user. More precisdy, every byte of the specified
areamust be read accessible by the cdller at the time of the MemRead call.

MemRead() takes five arguments:
O The Mid of the memory segment to be read from.

O The offset into the segment where the MemRead() operation should commence.

O The number of bytes to read (the source area size).
O A pointer to adata buffer that recelves the read data
O A blocking option code in case the operation needs to block.
Example:
: Read the "Hello World" nessage witten to nenory segnent Md
* in the previous section into a |local buffer. Note: The offset
i/and the size are 'longs'.
CHAR Buffer[11];
Ret Code = MenRead(M d, OL, 11L, Buffer, MEM WAIT);

01/22/2004
Rev. No.: 4

3-18 X¢IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

Example:

/*

* Read the 25th entry of the Customer Table into the
* Customer Record vari abl e.

*/

t ypedef struct
{

} CUSTOVER_RECORD;
CUSTOMER_RECORD Cust orrer Recor d;

XINT RecSi ze = si zeof (CUSTOVER_RECORD) ;

Ret Code = MenRead(

Cust Tabl eM d, /* Source nenory segnent */
(XINT) (24 * RecSize), [* Ofset past 24 customers */
(XI NT) RecSi ze, /* Source area size */

&Cust oner Recor d, /* The 25th custoner entry */
MEM WAI T) ; /* Block if record is busy */

The segment areathat is specified as the source of the read operation must be read-
accessible by the cdlling user. If any byte of the source areais not read-accessible, the
MemRead() operation will not succeed.

If, in such acase, MEM_WAI T is pecified as the function cdl's blocking option, the
function will block and wait until the entire specified area becomes read- accessible by the
cdling user, a which point it will complete.

The same efficiency consderations described regarding writing "locked" areas of a
MemSys segment apply to MemRead() aswell. Namely that MemRead() operations on
"locked" segment areas are more efficient than Smilar operations to unlocked aress.
The above examples demonstrate MemRead() using synchronous blocking options.
Asynchronous blocking is dso possible by specifying one of the three asynchronous
blocking options. Refer the Advanced Topics chapter for a detailed description of the
asynchronous blocking options.

3.3.5 MemSection(), MemSectionBuild() - Initializing a Section Variable

Aswas described earlier, many MemSys operations make use of the notion of sections.
MemSys sections logicdly overlay dl or part of a MemSys segment.

MemSys provides a 'typedef' defined object called SECTI ON for easy manipulation of
sections within a program. MemSection() and MemSectionBuild() are functions that can
be used to initidize SECTI ON variables.

MemSection() takes three arguments:
O The Mid of the memory segment to be used.
O The offset into the segment where the section darts.
O The sze of the section.

01/22/2004
Rev. No.: 4

MemSys 3-19

Example:

/*

* Initialize a SECTION variable that will eventually be used for
* |ocking the first 1024 bytes of MenBys segnent M d.

*/

SECTI ON LockSect i on;

LockSection = MenBection(Md, OL, 1024L);

In the above example aSECTI ON variable "LockSection” has been initidized
describing a section on the first 1024 bytes of MemSys segment Mid.

It is very important to note that the MemSection() function is not reentrant and should not be used in an
environment where reentrant code is required, such as in a threaded environment or in code that handles
signals or interrupts. The MemSectionBuild() function should be used inits place.

MemSectionBuild() takes four arguments:
O A pointer to asection variable.
O The Mid of the memory segment to be used.
[0 The offset into the segment where the section starts.
O The sze of the section.

Example:

/*

* Initialize a SECTION variable that will eventually be used for
* |ocking the first 1024 bytes of MenBys segnent M d.

*/

SECTI ON LockSecti on;

MenSect i onBui | d(& ockSection, Md, OL, 1024L);

In the above example, a SECT| ON variable "LockSection” has been initialized describing
asection on the first 1024 bytes of MemSys segment Mid.

Note that, unlike MemSection(), MemSectionBuild() requires that a SECTI ON variable
be defined. MemSectionBuild returns a pointer to the SECTI ON variable and, like
MemSection, it can be used anywhere a SECTI ON variable isrequired.

MemSection() and MemSectionBuild() do not define a new section to MemSys. They are
amply ashort-cut for initidizing aSECTI ON variable. A number of MemSys functions
expect SECTI ON variables as arguments. Usng MemSection() and MemSectionBuild()
on the fly, when invoking these functions, makes working with them easier. We will see
examples of this below.

3.3.6 MemListXxx() — Functions for Manipulating Section Lists

MemSys operations that manipulate memory sections do so using memory section ligs.
Manipulating asingle memory section within these functionsis accomplished using a
sngledement lig. A list of memory sectionsisreferedtoasaM DLI ST.A M DLI ST

data type is defined for cresting and working with MidLists. Functions expecting alist of
memory sections as one of their argumentstakeaM DLI ST datatype for this purpose.

01/22/2004
Rev. No.: 4

3-20 X¢IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

There are two functions for building MidLigs: MemLigt() and MemListBuild().
MemLisi() takesalist of memory sections asits arguments with MEM_EOL marking the
end of thelist. MemList() crestesaM DLI ST initsinterna static area. For this reason,
the returned M DLI ST can be safely used only once.
MemL ock() expectsaM DLI ST asits second argument (MemLock is described below).
In the next example, MemList() isused "on the fly" to crestetheM DLI ST argument for
MemL ock().
MemUnlock(), like MemLock(), expectsaM DLI ST asone of its arguments. The
M DLI ST built for MemLock in the next example must be rebuilt for MemUnlock().
Example:

/* Lock menory sections 'a', 'b', 'c' and 'd'. The user can then

* work with themunder his exclusive control. Unlock when done.
*/

SECTION a, b, c, d;

a = MenBection(...);
b = MenBection(...);
c = MenBection(...);
d = MenBection(...);

Ret Code = MermLock(MEM ALL, Meniist(a, b, ¢, d, MEMEQ), ...);
/* Work with the | ocked sections */

Ret Code = Menlnl ock(MenList(a, b, ¢, d, MEMEQ)), ...);

MemLigBuild() tekesa M DLI ST vaiable asitsfirs algument. The remaining
arguments are alist of memory section variables as described for MemList().
MemLigBuild() createsaM DLI ST inthe user-provided M DLI ST varigble. This
M DLI ST can safely be reused by the programmer.

01/22/2004
Rev. No.: 4

MemSys 3-21

Example:

SECTION a, b, c, d;
M DLI ST M dLi st;

a = MenBection(...);
b = MenBection(...);
c = MenBection(...);
d = MenBection(...);

Menii stBuild(M dList, a, b, ¢, d, MEMEQ);

/*

* Lock menmory sections '"a', 'b', 'c' and 'd'.

* The user can then work with them under his exclusive control.
* Unl ock the sane sections when done.

*/

Ret Code MemLock(MEM ALL, MdList, ...);
/* Work with the | ocked sections */

Ret Code

MenUnl ock(M dList, ...);

Unlike the previous example, the M DLI ST built for MemL ock() can be reused by
MemUnlock(). In thisway theM DLI ST needsto be built only once.

A MidLigt must not exceed MEM LEN_M DLI ST eements. Thisisusudly not a great
concernsnce MEM_LEN_M DLI ST is currently defined to be 8.

Two additond functions, MemLigtAdd() and MemListRemove(), alow for updating
MidLigs dynamicaly, and another function, MemListCount(), alows determination of
the number of dementsinaMidLid..

MemLigtAdd() is provided to alow the programmer to add sections to an existing
MidLig (i.e.,, onethat has been created by MemListBuild()). Thisisacommon
requirement in Stuations where the needed MidList must be built dynamicaly, based on
certain run-time conditions.

MemListRemove() is provided to alow the programmer to remove sections from an
exiging MidList when necessary.

The cdling sequence for MemListAdd() and for MemListRemove() isidentica to that of
MemListBuild(). These too expect a user-provided MidList asther first argument. The
listed sections are added to or removed from that MidList.

The following example is Smilar to the ones above, except that only one memory section
islocked at atime, leaving the others unlocked.

01/22/2004
Rev. No.: 4

3-22 X¢IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

Example:

SECTION a, b, c, d, LockedSection;
M DLI ST M dLi st;

a = MenBection(...);
b = MenBection(...);
c = MenBection(...);
d = MenBection(...);

Menii stBuild(M dList, a, b, ¢, d, MEMEQ);

/*
* Lock menmory sections "a', 'b', 'c' and 'd', one at atime, in
* what ever order they becone avail able. The user can then work with
* each one under his exclusive control, |eaving the others free.
* Unl ock each section when done working with it.
*/
whi | e (MenLi st Count (M dLi st) >0)
{
Ret Code = MenlLock(MEM ANY, M dList, &LockedSection, MEM WAIT);
/* Work with whichever section was | ocked (LockedSecti on),
* then unlock it and renmove it fromthe M dList
*/
Ret Code = Menbnl ock(MenLi st (LockedSection, MEM ECL), NULL):
MenLi st Remove(M dLi st, LockedSection, MEMEQ.);
}

3.3.7 MemLock() - Locking Memory Sections

Locking all or part of aMemSys segment can be accomplished using the MemL ock() function call. Recall
that a section cannot be locked unless and until all of the segment bytesit overlays are read-write accessible
by the calling User.

MemL ock() takes four arguments:
O A type code indicating the type of lock operation to perform.
O A M DLI ST holding alist of memory sectionsto lock.
O A pointer to a SECTI ON variable that gets assigned by MemL ock().
0 A blocking option code in case the operation needs to block.

01/22/2004
Rev. No.: 4

MemSys 3-23

BExample:

XINT M d;
SECTION a, b;
SECTI ON Ret Sec;
M DLI ST M dLi st;

/-k
* Create a 4K MenBys segnent.
*/

Md = MenCreat e(" Test Segment ", 4096L);

/*

* |Initialize SECTION variables "a' and 'b' to overlay the
* first and last 1K bytes of the created segnent

*/

MenBSectionBui l d(&, Md, OL, 1024L);
MenSecti onBui | d(&, Md, 3072, 1024L);

/*

* Build a MDLIST contai ning menory sections "a' and 'b'.
*/

Menli st Bui | d(M dList, a, b, MEMEQ);

/*

* Lock nmenmory sections 'a' and 'b'. The user can then work
* with themunder his exclusive control. Unlock the sanme

* sections when done.
*/

Ret Code = MenmLock(MEM ALL, M dList, &RetSec, MEM WAIT)

/*
* Work with the | ocked sections
*
/
Ret Code = Menlnl ock(M dLi st, &Ret Sec);

MemL ock() attemptsto lock alist of memory sections. Section locking can occur in one of three ways:
O MEM_ANY: Lock any of the memory sections listed.

O MEM ALL: Lock dl of the memory sections listed as they become available
(i.e, cumulatively).

O MEM ATOM C: Lock dl of the memory sections ligted, waiting until al of them
are avallable a the same time (i.e,, aomicaly).
In the above example, MEM_ALL is specified asthe first argument to MemLock(). This
ingtructs MemL ock() to lock the listed sections as they become available. Had
MVEM_ATOM C been specified then the function would not have locked any of the listed
sections until dl of the listed sections were accessible for locking at the same time. Of

course, had the function specified MEM_ANY, then the function would return as soon as
any of the listed sections became lock-able.

01/22/2004
Rev. No.: 4

3-24 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

There is no sgnificance to the order of section specification withinthe M DLI ST when
employing MEM_ALL or MEM_ATOM C. WithinaMEM_ANY cdl, thelisted Mids are
locked in the order listed.

When MemLock() succeeds, "RetSec” is returned identifying the last memory section
locked. For single-section operations, thisis not very useful information. For MemLock()
operations involving multiple memory sections, however, thisinformation can be
important. A NULL RetSec argument can be specified.

When MemLock() fails, and the cause of the failure isrdated to one of the listed memory
sections, RetSec is st to identify the problematic section.

The previous example could have been coded in the following manner producing equd
results. Note, in particular, how the memory section descriptions are passed to
MemList().

Example:

XINT Md;
SECTI ON Ret Sec, TenpSec;

/~k
* Oreate a 4K MenBys segnent.
*/

Md = MenCreat e(" Test Segrment ", 4096L);

* Lock the first and | ast K bytes of segnent M d. The user
* can then work with themunder his exclusive control.

* Unl ock the sane sections when done.

*/

Ret Code = MeniLock(

MEM ALL,

Mermii st (
*MenBect i onBui | d(&TenpSec, M d, OL, 1024L),
*MenBect i onBui | d(&TenpSec, M d, 3072, 1024L),
MEM EQL)),

&Ret Sec,

MEM WAI T) ;

/*
* Wrk with the | ocked secti ons.
*/

Ret Code = Menbnl ock(
Memii st (
*MenBect i onBui | d(&TenpSec, M d, OL, 1024L),
*MenBect i onBui | d(&TenpSec, M d, 3072, 1024L),
MEM EQL)),
&Ret Sec) ;

The above examples demonstrate MemL ock() using synchronous blocking options.
Asynchronous blocking is dso possible by specifying one of the three asynchronous
blocking options. Refer to the Advanced Topics chapter for adetailed description of the
asynchronous blocking options.

01/22/2004
Rev. No.: 4

MemSys 3-25

3.3.8 MemUnlock() - Unlocking Memory Sections

Theinverse of memory section locking is memory section unlocking. As we have dready
seen in some of the examples, this is accomplished usng MemUnlock().

Locked sections of amemory segment must be unlocked in order for underlying detato
become once again read-write ble by other users. Recdl that when a section of a
memory segment islocked, its other privileges are set to MEM_NA, meaning thet al other

users are not able to read, write or lock the segment areaiinvolved.
MemUnlock() takes two arguments:

O A M DLI ST holding alist of memory sectionsto unlock.

O A pointer to avariable that gets assigned by MemUnlock().
Example:

/*
* Unlock the first and | ast 1K sections of MenBys segnent
* Md. (It is assunmed that they were | ocked earlier on.)
*/

Ret Code = Mermnl ock(Menii st (MenBection(M d, OL, 1024L),
MenSection(M d, 3072, 1024L),
VEM EQL) ,
&Ret Sec) ;

Itis, of course, an error to attempt to unlock a memory section not currently locked by
the user. In such a case, RetSec would be returned with the identity of the invalid section.
It is acceptable to specify aNUL L RetSec argument.

3.3.9 Memory Section Primitive Functions

MemSys manipulation of memory sections using MemLock() and MemUnlock() is
actualy achieved viaa group of memory section primitive functions. These functions
provide the greatest level of control over access to MemSys segment data.

To best understand the relationship between MemLock(), MemUnlock() and the memory section primitive
functions, consider the following:

MemLock() = MenBecDef () + MenBecOmn() + MenBecPriv()

Menmbnl ock() = MenBecPriv() + MenBecRel () + MenBSecUndef ()

MemL ock() is conceptudly implemented in three steps. Firdt it calls MemSecDef() to
define the specified section. The section upon cresation has RW-RW privileges and has no
owner. MemSecOwn() is then cdled for acquiring ownership of the section.
MemSecPriv() isfindly caled to change to privilegesto RW-NA. The net result isthat
the specified section of shared memory is now locked by the caling user.

MemUnlock(), when called, reverses the process.

3.3.9.1 MemSecDef() - Defining A Memory Section

The MemSecDef() function is used for defining a new section over a specific areaof a
MemSys memory segment. Defining a section is the first step in gaining access to, or
control of, an area of a memory segment.

01/22/2004
Rev. No.: 4

3-26 X¢+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

MemSecDef () takes one argument:
0 A SECTI ON variable describing the new section to be defined.

Example

/*

* Oreate a MenBys nenory segnment of size 10K bytes. The
* segment will be used to hold a table of codes having
* varying security requirenents.

*/

SECTI ON TopSecr et ;

XINT M d, RetCode;

XINT KByte = 1024L;

/*

* Create the "CodeTabl e" MenBys segmnent.
*/

Md = MenCreat e("CodeTabl e", 10 * KByte);

/*

* |Initialize the "TopSecret" SECTION variable. The
* "TopSecret" section is to start at the top of the
* table and be 2K in size.

*/

TopSecret = MenSection(Md, OL, 2 * KByte);

/*

* Define to MenSys the TopSecret section using the
* TopSecret SECTION variable we just initialized.
*/

Ret Code = MenBecDef (TopSecret);

A 10K byte MemSys segment named "CodeTabl€e’ is created in the above example. A
section is then defined over the first 2K bytes of the segment. (We will build on this
examplein the next few sections,) Memory sections can be owned. A newly defined
section initidly has no owner. Initid privilege settings of anew section are MEM_RWfor
owner and others.
The above example might have been coded more concisdy as:
Example:

/* Create a MenBys nenory segnent of size 10K bytes. Then,

* define a section over the first 2K bytes.
*/

Md = MenCreat e("CodeTabl e, 10 * KByte);

Ret Code = MenBecDef (MenBection(Md, OL, 2 * KByte));
Recdl that al read and write operations to and from a MemSys segment only succeed
when the cdling users have the proper access to the underlying segment areainvolved.

Thisimpliesthat no read or write operation can succeed on a segment unless at least one
section has been defined over at least some part of the segment.

01/22/2004
Rev. No.: 4

MemSys 3-27

MemSys segments, when created, have no sections defined over them and are hence
initidly inaccessible. 1t is therefore quite common to define a section over al or part of a
Ssegment soon after it is crested so as to give it some degree of accessibility.

On the other hand, MemL ock() autometicaly defines the sections it intends to lock (if
they do not yet exist), as part of its locking function. Section definition isthus not
required when reading or writing to and from locked segment aress.

Returning to an earlier example:

/*

* (reate a 4K shared i nage segnent, define a section over
* it and then initialize the segnent's entire contents to
* Hex "FF". Note: New sections have privileges of MEM RW
* for Omer and Ot hers.

*/

Md = MenCreate("| nageSegnent™, 4 * KByte);
Ret Code = MentecDef (MenSection(Md, OL, 4 * KByte));

Ret Code = MemWite(Md, OL, 4 * KByte, MEM FILL(OXFF), MEM WAIT);

Locking a section of a MemSys segment via MemLock implicitly causes the definition of the specified
section. The last example could thus have been coded as:

/*

* COreate a 4K shared inage segnent, lock it for exclusive use,

* initialize the segnent's entire contents to Hex "FF' and then

* unlock it. Note: Menlnl ock() unlocks and undefines the section

* it is passed. (Using MenBecUndef () for nmanually undefining a

* section is described bel ow)

*/

Md = MenCreate("| nageSegnent", 4 * KByte);

Ret Code = Menlock(
MEM ALL,
Memii st (MenSecti on(Md, OL, 4 * KByte), MEMEQ),
&Ret Sec,
MEM VAI T) ;

Ret Code = MemWite(Md, OL, 4 * KByte, MEM FILL(OXFF), MEM WAIT);

Ret Code = Menbnl ock(
Memii st (MenSection (Md, OL, 4 * KByte), MEMEQL),
&Ret Sec) ;

3.3.9.2 MemSecOwn() - Becoming Owner Of Memory Sections

Owning one or more sections of a MemSys segment can be achieved using the
MemSecOwn() function cdl.

Aswas the case with section locking (i.e., MemLock()), auser cannot attain ownership of
asection unless and until dl of the bytes overlaid by the section are read and write

ble by the user.

MemSecOwn() takes four arguments:
O A type code indicating the type of MemSecOwn() operation to perform.
O AM DLI ST holding alist of memory sections of which to atain ownership.

01/22/2004
Rev. No.: 4

3-28 X¢IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

O A pointer to a SECTI ON variable that gets assigned by MemSecOwn().

O A blocking option code in case the operation needs to block.
Returning to our Code Tabl e example, we now acquire ownership of the TopSecr et
section of the table.

Example:

/*

* Oreate a MenBys nenory segment of size 10K bytes. Then,
* define a section over the first 2K bytes.

*/

SECTI ON TopSecr et ;
Md = MenCreat e("CodeTabl e", 10 * KByte);
TopSecret = MenSection(Md, OL, 2 * KByte);

Ret Code = MenBecDef (TopSecret);

* Now, becone owner of the TopSecret section of the
* CodeTable, (i.e., the table's first 2K bytes.) The
* user can then nmodify the privileges of the section
* as he sees fit.

Ret Code = MenBecOan(
VEM ALL,
MenLi st (TopSecret, MEM EQL),
&Ret Sec,
MEM VAI T) ;

Notice the smilarity between the MemLock() and MemSecOwn() calling sequences. In
fact, they are identica. The rules describing argument specification for MemLock() apply
equally to MemSecOwn(). Refer to the MemL ock() description for the detalls.

The above examples demonstrate MemSecOwn() using synchronous blocking options.
Asynchronous blocking is dso possible by specifying one of the three asynchronous
blocking options. Refer to the Advanced Topics chapter for a detailed description of the
asynchronous blocking options.

3.3.9.3 MemSecPriv() - Modify Memory Section Privileges

A user who owns a section may want to modify its read-write privilege settings. Thiscan
be accomplished using the MemSecPriv() function.

MemSecPriv() takes three arguments:
O A SECTI ON vaiable describing the section whose privileges are to be
modified.
O The section's owner privilege setting code.
O The section's other privilege setting code.

01/22/2004
Rev. No.: 4

MemSys

Expanding further on the CodeTabl e examples:

/*
* Create a MenBys nenory segment of size 10K bytes. Then,
* define a TopSecret section over the first 2K bytes,
* define a Sem Secret section over the next 2K bytes,
* define a Publiclnfo section over the remaining 6K bytes.
*
* Attain ownership of the three sections and then set their
* privileges as follows:
* TopSecret: read-only by owner, non-accessible by others.
* Sem Secret: read-wite by owner, read-only by others.
* Publiclnfo: should be read-wite by all users.
*/
SECTI ON TopSecr et ;
SECTI ON Seni Secret ;
SECTI ON Publ i cl nf o;
XINT Md;
XI NT Ret Code;
SECTI ON Ret Sec;
Md = MenCreat e("CodeTabl e", 10 * KByte);
TopSecret = MenBection(Md, O * KByte, 2 * KByte);
Sem Secret = MenSection(Md, 2 * KByte, 2 * KByte);
Publiclnfo = MenBection(Md, 4 * KByte, 6 * KByte);
Ret Code = MenBecDef (TopSecret);
Ret Code = MentecDef (Sem Secret);
Ret Code = MentecDef (Publicl nfo);
/*
* Become the owner of all three sections of the segnent.
*/
Ret Code = MenBecOmn(
MEM ALL,
Menli st (TopSecret, Sem Secret, Publiclnfo, MEMEQ.),
&Ret Sec,
MEM VAI T) ;
/*
* Set the section privileges as specified.

*/

Ret Code = MentecPriv(TopSecret,
Ret Code = MentecPri v(Sem Secret,
Ret Code = MenBecPri v(Publiclnfo,

MEM RO, MEM NA);
MEM RW MEM RO);
MEM RW MEM RW ;

Note that the last call to MemSecPriv(), setting the privileges of the Publiclnfo section to
MEM_RWhy al, is not necessary since newly defined sections have privilege settings of
MEM_RWfor owner and other by default.

01/22/2004
Rev. No.: 4

3-29

3-30 X¢IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

Assuming that the calling processis MemSys user 2, the resulting situation is as follows:

CodeTabl e
(0134
Omer: 2 TOP- SECRET
Omer Priv: RO
G her Priv: NA
2K
Omer: 2 SEM - SECRET
Omer Priv: RW,
G her Priv: RO
4K
Owmer: 2 PUBLI C- | NFO
Omer Priv:
G her Priv: m
10K

3.3.9.4 MemSecRel() - Relinquishing Ownership Of Memory Sections

A user can relingquish ownership of one or more sections that he owns, using the
MemSecRel () function. The listed sections then become ownerless. Of course, if one or
more users are blocked waiting for a chance to own any of the released sections, then the
longest waiting user becomes the new owner.

MemSecRel () takes two arguments:
OO AM DLI ST holding alist of memory sections to relinquish ownership of.

O A pointer to a SECTI ON variable that gets assgned by MemSecRel().

Returning once moreto the CodeTabl e example:
/*
* Rel i nqui sh ownership of the Publiclnfo section.
*
/

Ret Code = MenBecRel (Menli st (Publiclnfo, MEMEQL), &Ret Sec);

3.3.9.5 MemsSecUndef() - Undefining A Memory Section

The MemSecUndef() function is used for removing a section definition from aMemSys
segment. Undefining a section removes the section and any of its access contral influence
from the underlying segmen.

A user can only undefine a section that he owns or that has no owner. Otherwise, the call
will reeurnwithan MEM_ER_ACCESSDENI ED error code.

MemSecUndef() takes one argument:
O A SECTI ON variable describing the section to be undefined.

01/22/2004
Rev. No.: 4

MemSys 3-31

Example:

/*
* Undefine the "Publiclnfo" section.
*/

Ret Code = MentecUndef (Publ i cl nfo);

Undefining a section can affect the accessibility to al or part of the MemSys segment
arealit overlays. For segment areas upon which no other sections are defined,
accessibility to that portion of the segment will be impossible until anew section is
defined over that area or until the section isimplicitly re-defined via MemL ock().

For segment areas upon which multiple sections have been overlaid, undefining one of
the sections can change the bility to the underlying segment data for one or more
users, depending on the privilege settings of the section removed and of those that
remain.

It isimportant to undefine a section as soon asit isno longer of use. Extra section
definitions over a ssgment, even if they exert no influence on the accessihility of
underlying segment data, can cause some performance degradation.

3.3.10 MembDelete() - Deleting a Segment

A ssgment should be deleted from its instance when it is no longer needed. This recycles
internal MemSys resources and makes the MemView monitor less cluttered.

MemDelete() takes one argument:

[0 The Mid of the segment to be deleted.
Example:

Ret Code = MenDel ete(M d);

MemDe ete() will succeed only if the subject segment is completdly inactive a the time.
Segments that have one or more sections defined over it cannot be deleted.

If asegment must be removed regardless of its current status, then MemDestroy() should
be employed.

3.3.11 MembDestroy() - Destroying a Segment

A segment that must be removed from its instance can be destroyed usng MemDestroy().
MemDestroy() removes the subject segment regardless of the segment’s current status.

MemDestroy() takes one argument:

O The Mid of the segment to be destroyed.
Example:

Ret Code = MenDestroy(Md);

When a segment is destroyed, a number of things occur:

O All MemRead(), MemWrite(), MemLock() and MemSecOwn() operations
involving the destroyed segment are cancelled and returned with Ret Code =
MEM_ER_DESTROYED.

01/22/2004
Rev. No.: 4

3-32 X¢IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

O All users locking or owning sections over the destroyed segment have those
sections removed from their ownership. This occurs dlently and it is the
responsbility of the program to adjust to the segment's destruction.

For obvious reasons, MemDestroy() should be used sparingly. Its most likely application
would be within the execution of a system's "cleanup” program a which time the above
Sde-effects are normaly of no concern.

3.3.12 MeminfoSys() - Information About an Instance's MemSys

X«pPc provides a set of MemSys functions that can be used to access Satus information
about various aspects of an instance's MemSys.

The returned data can be used to make run-time decisions about on-going gpplication
processing.

MeminfoSys returns with information about the instance's MemSys that the user is logged into.
MeminfoSys() takesone argument:

O A pointer to a MEM NFOSYS gructure that is to be returned filled with the
ubsystem's status informeation.

Example:
MEM NFOSYS SysDat a;

Ret Code = Meml nf oSys(&SysDat a) ;

A complete description of how to use the Info functions is presented in the Advanced
Topics chapter of the X4pc User Guide, in the section entitled, "Info Function List
Manipulation.”

The definition of the MEM NFOSYS datatype isincluded in the User Data Structures
chapter of the QueSysMemSys/'SemSys Reference Manud.

3.3.13 MemlinfoUser() - Information about a MemSys User

MemlinfoUser() returns with information about a specified user. MeminfoUser() takes two arguments:
O The Uid whose status is desired.

O A pointer to a MEM NFOUSER dructure that is to be returned filled with the
user's gatus information.

Besides statistical data, the MEM NFOUSER structure returns with "list" data related to the specified user.
Each user has an HList, QList and WList associated with it.

O The HLig is the list of Sections currently held (owned or locked) by the subject
user. The Sections are listed in the order that they were acquired.

O The QLig is the lig of Sections currently being requested by the subject user.
The QLigt will have dements only when the user is blocked on a MemSecOwn()
or MemLock() operation.

O The WLig s the lig of Sections currently being waited on by the subject user.
The WLig is the subset of the QLigt that has not yet been satidfied. It too will
only have edements when the user is blocked on a MemSecOwn() or MemLock()
operation.

01/22/2004
Rev. No.: 4

MemSys 3-33

Theligswithin MEM NFOUSER are arrays that can accommodate up to
MEM LEN | NFOLI ST dements. The actud lists may, at times, be greater than
MEM LEN | NFOLI ST dementsin length. A cal to the MeminfoUser() function must
therefore be preceded by the setting of three VMEM NFOUSER structure members
(HListOffset, QListOffset andWListOffset) with vaues specifying what portions of the
three respective lists are desired.
More specificaly, before MeminfoUser() is cdled, the three list offset variables within
the MEM NFOUSER structure must be set, indicating from which point in eech lig to
return data. Setting the offsets to zero directs the function to return with list data from the
dart of thelids.
Example:

MEM NFQUSER User Dat a;

User Dat a. HLi st Of f set
User Dat a. Qi st O f set

0;
0;
User Dat a. W.i st OF f set 0;

Ret Code = Meml nf oUser (Ui d, &UserData);

A complete description of how to use the Info functions is presented in the Advanced
Topics chapter of the Xipc User Guide, in the section entitled, "Info Function List
Manipulation.”

The definition of the MEM NFOUSER datatype isincluded in the User Data Structures
chapter of the QueSysMemSys/'SemSys Reference Manud.

3.3.14 MeminfoMem() - Information about a MemSys Segment

MemlnfoMem() returns with information about a specified memory segmern.
MeminfoMem() _ XE "MeminfoMem()" _ takes two arguments:

O The Mid whose statusis desired.

O A pointer to a MEM NFOVEM dructure that is to be returned filled with the
memory segment's satus information.

Besides statistical data, the MEM NFOVEMSstructure returns with "list" data related to the specified memory
segment. Each memory segment has an SList and WList associated withiit.

O The SLig is the ligt of Sections currently defined over the specified memory
segment. Each lig éement contains location, Sze, ownership and access
privilege data about a Section exising on the subject memory segment, at the
time of the MeminfoMem() cdl.

O The WLig is the lig of blocked MemSys operdions involving the specified

memory segment. The operations are listed in the order that they blocked.
Theligswithin MEM NFOVEMare arraysthat can accommodate up to
MEM _LEN_| NFOLI ST dements. The actud lisis may at times be greater than
MEM LEN | NFOLI ST dementsin length. A cdl to the MemlnfoMem() function must
therefore be preceded by the setting of two MEM NFOMEM structure members
(SListOffset and WListOffset) with vaues specifying which portions of the two respective
lists are desired.

01/22/2004
Rev. No.: 4

3-34 X¢IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

More specificaly, before MeminfoMem() is caled, the two list offset variables within

the MEM NFOVMEMsiructure must be s, indicating from what point in each ligt to return
data. Setting the offsets to zero directs the function to return with list data from the start

of theligs.

Example
MEM NFOVEM MenDat a;

MenDat a. SLi st O f set
MenDat a. W.i st Of f set

0;
0;

Ret Code = Mem nfoMen{M d, &MenDat a) ;

A complete description of how to use the Info functions is presented in the Advanced
Topics chapter of the X«pc User Guide, in the section entitled, "Info Function List
Manipulation.”

The definition of the MEM NFOMVEMdatatype isincluded in the User Data Structures
chapter of the QueSysMemSys/SemSys Reference Manud.

3.3.15 MemlinfoSec() - Information About an Instance's Section

MeminfoSec() returns with information about a Section currently defined in MemSys. MeminfoSec() takes
two arguments:

O A SECTI ON varigble identifying the section whose status is desired.

O A pointer to a MEM NFOSEC dructure that is to be returned filled with the
section's status information.
Example:
MEM NFOSEC SecDat a;

Ret Code = Meml nf oSec(&SecDat a) ;

A complete description of how to use the Info functionsis presented in the Advanced
Topics chapter of the Xapc User Guide, in the section entitled, "Info Function List
Manipulation.”

The definition of the MEM NFOSEC datatype isincluded in the User Data Structures
chapter of the QueSysMemSys/SemSys Reference Manud.

3.3.16 MemPointer() - Accessing a Pointer to a Segment

MemPointer() obtains a pointer to the first byte (offset 0) of the MemSys segment it is
passed. The pointer can then be used for directly accessing the data within the segment.

MemPointer() takes two arguments:

O The Mid of the segment whose pointer is desired.

O The address of a pointer variable to be filled with the segment pointer.
MemPointer() returns MEM_ER_NOT L OCAL when the cdling program isworking within
anetwork instance that was started on another node.

Thisfunction is a double-edged sword. On the one hand, it provides the most basic
method of manipulating aMemSys segment. This can smplify certain coding tasks. On
the other hand, using a direct pointer into a MemSys segment for manipulating its data

01/22/2004
Rev. No.: 4

MemSys 3-35

completely circumvents the software synchronization and access control mechanisms
inherent in MemWiite() and MemRead() It also introduces the risk of overrunning
MemSys segment boundaries.

As such, adirect ssgment pointer should only be used (if at all) to access areas of a
MemSys segment that are currently "locked" by the user. To use it otherwise could
produce unpredictable results at best.

Example:

/*
* Create a Data Segrment, lock it and then access a
* pointer to the segnent for nanipulating its data.
* This exanpl e assunes that the instance is |ocal.
*/

XINT M d;

Xl NT Ret Code;

SECTI ON Ret Sec;

CHAR *p;

/*

* Create the MenBys segnent.
*/

Md = MenCreate("Data", 256L);

/*
* Lock it for exclusive access.
*/
Ret Code = Menlock(
VEM ALL,
Merli st (MenSection(Md, OL, 256L), MEM ECL),
&Ret Sec,
VEM WAI T) ;
/*
* Get a pointer to the segnent.
*/

Ret Code = MenPointer(Md, &p);

/*

* Set the bytes of the Data segnent to: 0, 1, 2, 3,
* directly, via pointer "p".

*/

for (i =0; i < 256; i++)
*(p+i) = (BYTB)i;
/*
* Unlock it.
*/
Ret Code = Menbnl ock(Menii st (MenBection(Md, OL, 256L)), &RetSec);

MemPointer() will return avalid pointer to a segment of aMemSysingtance, if the
ingance involved isloca to the caling program (not over the network). Requests for

01/22/2004
Rev. No.: 4

3-36 X¢IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

pointers to MemSys segments regarding instances that are non-locd return the NUL L
pointer.

A more robust verson of the above example would have tested the value returned by
MemPointer() to determine whether the instance being used was local or not. Code for
handling the non-local case would then be included.

An examplefollows.

01/22/2004
Rev. No.: 4

/*
* (reate a Data Segrment, lock it and then access a
* pointer to the segnent for nmanipulating its data.
*/

XINT M d;

XI' NT Ret Code;

SECTI ON Ret Sec;

CHAR *p;

CHAR Buffer[256];

XINT Renot eFl ag = FALSE;

/*
* Create the MenBys segnent.
*/

Md = MenCreate("Data", 256L);

/*
* Lock it for our exclusive access.
*/
Ret Code = Menlock(
VEM ALL,
Menii st (MenSecti on(M d, OL, 256L)),
&Ret Sec,
MEM VWAI T) ;

/*
* Attenpt to access a pointer to the MenBys segment.
*/

Ret Code = MenPointer(Md, &p);
if (RetCode == MEM ER NOTLOCAL)

MenRead(M d, OL, Buffer, 256L, MEM WAIT);
p = Buffer;
Remot eFl ag = TRUE;

}

/*
* Set the bytes of the Data segnent to: 0, 1, 2, 3,
* directly, via pointer "p".
*/
for (i =0; i < 256; i++)
“(pti) = (BYTB)i;
/*
* Update the segnent, if it's not local.
*/

i f (RenoteFl ag == TRUE)
MemWite(Md, OL, Buffer, 256L, NEM WAIT);

/*
* Unlock it.
*/

Ret Code = Mermnl ock(Menii st (MenBection(M d, OL, 256L)),

01/22/2004
Rev. No.: 4

&Ret Sec) ;

MemSys 3-37

3-38 X¢IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

3.3.17 MemFreeze() - Freezing MemSys

X«pc aso provides the user with the ability to atain exclusve control over an instance's
MemSys. This mechanism alows a user to execute a series of MemSys operations, with
the assurance that no other user's MemSys operations are interwoven with his.

Such a capability is important when a user requires exclusive access to the subsystem for
abrief period of time. As an example, aneed for this feature would arise when writing a
function that increments an arbitrary four byte "word" of MemSys shared memory in an
"aomic’ manner.

One solution would be to lock the targeted bytes usng MemLock(), perform the
increment operation and then do MemUnlock(). While thiswould work, an dterndtive
gpproach would be more efficient in Stuations where dl competing users always have
read-write access to the targeted area.

In that case, temporarily freezing the subsystem for the duration of the three necessary
MemSys operations would work more efficiently.

Example:

XI NT

Mem ncr (M d, Ofset)
XINT Md;

XINT Of f set;

{
XI'NT Dat a;

Menfr eeze();

MenRead(M d, O fset, (CHAR *)&Data, 4L, MEM NOMIT);
Data ++;
MemWite(Md, Ofset, (CHAR *)&Data, 4L, MEM NOMIT);

Menmnf reeze();

return (Data);
}

A more complete verson of this example appears in the Advanced Topics section of this
Guide.

A further note regarding MemFreeze(). It is an error for auser to issue a blocking
MemSys function call specifying a blocking option code (i.e, MEM WAI T or

MEM_TI MEQUT) once the user has frozen the subsystem.

3.3.18 MemUnfreeze() - Unfreezing MemSys

MemUnfreeze is the bracketing function to MemFreeze. It returns the MemSys
subsystem to its unfrozen state. Other MemSys users resume norma MemSy's operations.

Example:
Mennfreeze() ;

MemUnfreeze() will fail if the caling user has not frozen the subsystem.

3.4 The MemSys On-Line Monitor: MemView

MemView isthe online monitor for X«4pc MemSys.

01/22/2004
Rev. No.: 4

MemSys 3-39

3.4.1 Starting MemView
MemView is sarted from the command line usng the "MemView" command.
MemView takes two arguments:
O The firg agumett is the initid “intevd" sngpshot sdting. It defines in
millissconds the initid update frequency of the monitor. The interval argument
is mandatory.

O The second argument is the ingtance file name of the ingtance to be monitored.
This agument is optiond. If it is omitted, MemView uses the vaue of the xi pc
environment variable for the indance file name of the indance to dHart
monitoring.

Example

nmenvi ew 100 /usr/deno

The above command gtarts the MemView monitor for the MemSys subsystem of the
[usr/ deno ingance. Theinitia update interva is set to 100 milliseconds.

3.4.2 MemView Layout

MemView's main display is matrix-like in appearance. Users logged into the instance and
existing MemSys segments form the axes of the matrix. Interaction between ingtance
users and segments is displayed within the body of the "interaction matrix".

MemSys operations that block asynchronoudly are treated as pseudo-users of MemSys.
These Asynchronous Users are displayed in the same manner as ordinary users, thus
providing aconagtent visud display of al pending MemSys asynchronous operations.

St at us
I nt erval Segnents. ..
Users User - Segnent
| nteraction
Mat ri x
Command Statistics | Capaci ty

Monitor status and interval setting are shown at the top left portion of the screen.
MemSys memory pool and other capacity datais displayed at the lower right portion of
the screen. The command entry window is at the lower left of the screen.

01/22/2004
Rev. No.: 4

3-40 X+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

3.4.2.1 Sample MemView Screen

ommand Prompt - memview 1500

Uersion: *#36% XTPC HemSys Monitor e
Instance: c:hdannyigsmitest [sample]
SEGMENTS 1 2

CustTable CodeTable ImageDB
USERS (IF]] (IF]] (1F]1]
01 Hemliew 0/81%2 0.0/10.0 0.0432.0

02 ThlInit
03 Thllpdt
04 UserPrgi
0% UserPrg2
06 UserPrgl

e e e e e e e

[
Status: [
Req List
Wait List
Held List

UserPrg2
178
Hov 25 1%2:05:00

+
1
1
]
]
1
1
1
]
+

TTEHE! Section: 4 :
| MemPool:z SO.2764_0 C 78 Users :
! Fragmnt: 230 O 1#) Hodes :

3.4.2.2 User Entries

Userslogged into the ingtance are listed on the left Side of the interaction matrix, one line

per user.
Each user entry includes.

O A MemSysuser ID.

O Theuser'slogin name.

O The user's blocking status (if any).
O The blocking time out value (if any).

An example (not associated with the screen presented above) follows.

02 TblInit
03 Thl Updt WRT ...
06 NetProg RD 27
29 A029-006 ALL

In this example, four MemSys users are identified with three ordinary and one
asynchronous MemSys operation.

O MemSys user 2 has the login name "Thllnit" The user is not blocked on any
MemSys operation.

O MemSys user 3 has logged in as "ThlUpdt." It is blocked on a MemWrite()
operation and is blocked indefinitdy, thus having no time out vaue.

01/22/2004
Rev. No.: 4

MemSys 3-41

O MemSys user 6, logged in as "NetProg,” is blocked on a MemRead() operation
and has a time out pending. There are 27 seconds remaining until the operation
times out.

O MemSys user 29 is an aynchronous MemLock (MEM_ALL) operation that was
initiated by user 6.

3.4.2.3 Memory Segment Entries
The ingance's memory segments are identified across the top of the interaction matrix.
Each segment entry includes:

O The Mid of the segment.

O The user-assigned ASCII name of the segment.

[0 The segment's section status (Locked Sections/Tota Sections).

O The segment's byte status (Locked Bytes/Tota Bytes).

An example (not associated with the screen presented above) follows.

0 1 5
Cust Tabl e CodeTabl e | mmgeDB
4/ 6 1/1 0/0
100/ 8192 1.2/10.0 0.0/64.0

Inthis example:

O Segment "CudTable' is shown to have a Mid of 0. It is a segment that is 8192
bytes in sze. It currently has 6 sections defined over it, of which 4 sections are
"locked." The locked sections cover 100 bytes of the segment's 8192 bytes.

O Segment "CodeTable' has Mid 1. Its size is 10K bytes. There is currently one
section defined over the segment, it is 1.2K bytesin sze and it is locked.

O Segment "ImageDB" has Mid 5. It is being used to hold a memory resdent
Image Database. The segment is 64K bytes in sze. There are currently no
sections defined over the segment.

3.4.2.4 Interaction Matrix Cells
Each cdl on the MemView interaction matrix describes the current relationship between
auser and a segment.

Possible cell valuesinclude:
Indicating that the user is not blocked in any manner on the intersecting segment,
nor has he locked any of the segment’s sections.

nn nmm Indicating that the user has locked nn sections on the intersecting segment, and
that he is blocked waiting to lock an additional mm sections on the same segment.

nn R Indicating that the user has locked nn sections on the intersecting segment, and
that he is blocked waiting to read (R) data to the segment.

01/22/2004
Rev. No.: 4

3-42 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

nn W

that he is blocked waiting to write (W) data to the segment.

3.4.3 Monitoring Modes

Indicating that the user has locked nn sections on the intersecting segment, and

The topic of monitoring modes -- the available options and when they should be used -- is

described in detail in the X«pc User Guide.

3.4.4 MemView Zoom Windows

MemView provides the developer with three zoom window capabilities.

3.4.4.1 Zooming in on a User

The MemView user zoom window creates a detailed display of the Satus of a particular
MemSys user. The command string for user zooming is"zuN" where N isthe Uid to be

zoomed in on.
Example:

The command for opening azoom window on the user having aUid of 4 is.

Command> zu4

Status: [NOT BLOCKED]
Req Li st
Wait List
Hol d Li st (1 100 8)

ud: 4
Nane:
Pi d:
Logi n:

Tabl eDaenpn
23
Dec 23 12:23

Usar "TableDaemon™ has locked one section for its exclusve use. The section is on
segment Mid 1, at offset 100 and is 8 bytes long. The user is otherwise not currently

blocked.
Status: [BLOCKED ATOM C] ud: 4
Req Li st (0 064)(1 0 64) Name: Tabl eDaenon
Wait List (0 0 64)(1 0 64) Pid: 23
Hol d Li st (1 100 8) Login: Dec 23 12:23

The user has now blocked attempting to lock the first 64 bytes of both segments 0 and 1.
The user will not be unblocked until both of the pending sections are available at the

sametime (i.e, ATOMIC).

Status: [NOT BLOCKED]

Req List :

Wait List

Hol d Li st (1 100 8)(0 0 64)(1 0
64)

uid: 4
Name:
Pi d:
Logi n:

Tabl eDaenpn
23
Dec 23 12:23

The request has been satisfied and the user is no longer blocked.

The three ligs included in the MemSys user zoom window serve the same function as
their counterparts in the SemSys user zoom window. Refer to the SemSys chapter for an

example that fully describes the information being provided.

01/22/2004
Rev. No.: 4

MemSys 3-43

3.4.4.2 Zooming in on a Segment

The memory segment zoom window provides a complete report of a segment's current status. The
command string for zooming on a segment is "zmN" where N is the Mid to be zoomed in on.

Example:
The command for opening a zoom w ndow on nmenory segnent 2 is:

Conmand> zn?

Map: Md: 6
...0000...0..00........ 000000. ... 00. Name: | mageDB
Lock: 2000/4096 (49% Createlid: 2
[*Hxxkxx L.] Created: Jan 4
Last Uid: 5 O fset: 1024 Size: [9:30

32
Wait List : 8 14

Memory segment 6 is shown to be 4K bytes in size (4096) and 2000 of the segment’s
4096 bytes (49%) are currently locked. The approximate location of the locked sections
on the segment are indicated viaamap. The '0' characters mark the relative position and
Sze of locked sections on the segment.

The last user to have locked a section on the segment was user 5. The section locked was
at offset 1024 and was 32 bytesin size.

Thewait ligt indicates that users 8 and 14 are currently blocked on operations involving
the segment. The details of their individua blockages can be viewed on their respective
user zoom windows.

3.4.4.3 Zooming in on Memory Pool Status

A zoom window for monitoring the MemSys memory pool status can be opened using
the "zp" command gring.
Example:

Command> zp

Capcty: 21.1/40.0 (53% Pool Size: 40K
[*Hxxkxx L.] Tick Size: 1024
Frgmt : 24/ 208 (12%
[**.
Largst Bl k: 29008

Theinterpretation of the memory pool window is the same as the QueSys text pool
window described in the QueSys chapter.

01/22/2004
Rev. No.: 4

3-44 X+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

3.4.5 Watching Memory Segment Contents - The Watch Window

A key dement of MemView isthe memory Watch Window facility. With it, a developer
can view shared memory contentsin red-time .

A watch window is opened using the command string "wN," where N isthe Mid to be
watched.

Unlike the zoom windows already described, the watch window uses the top 3/4 of the monitor
screen. The system statistics and command windows remain visible at the bottom of the screen.

A sample screen display follows.

1: Mid = 0 Size = 8192 Hame = Lustlable Se. - i
I

LOGB6?7d 20697320 73616470 GcdS207h 65787820 ! This is sample text
Thede17h 20697320 63757272 656elhbc 7P20776% | that is currently wi
Thedbe?6e 20786865 20736861 T2656020 6dé56déf | thin the shared memo
F2792073 65676d65 Gelbleld doe??20 6461746 ry segment. fAny data
2063616e 2 [1 656 6F 6el? can be stored in a

ot e et et et e e et

1
1
1
1
1
]
[1
]
[1
]
1
1
1
1
1
1
]
[1
]
[1
]
[1
]
1
1
1
1
1
1
]
[1
]
<

Er
plil

FILESL Section: 10410 # Segmnt: 3710 (30¥)
i MemPool: 50.2764.0 (78 Users 2 8710 C 80D
i Fragmnt: /230 O 18 | Hodes © 467100 46d) i

A replication of a different Watch Window is provided below, as an example for reading sample screen
data:

Segnment Md =2 Size = 8192 Nane = CustTable Sections

50 |2/4

AW 10 32) 7R(1024 128)

01/22/2004
Rev. No.: 4

MemSys 3-45

08020: 00000000 00000000 00313030 | ... 1000011
08040: |[30303131 Har vey Schm dl ap
08060: 48617276 65792053 63686e69 p 094-40-2819 37
08080: | 646c6170 Street Lex City.
08100: 70203039 342d3430 2d323831 07761....23.00..
08120: |39203337 o 4311901
08140: 53747265 6574204c 65782e20 Joe WIlson 072-4
08160: |[43697479 5-8019 Peteville
08180: 30373736 31000101 73323347 | ...
30307274
00000000 00000000 00343331
31393031
4a656520 57696¢73 6f 62030
37322d34
352d3830 31392050 65746556
696c6C65
00000000 00000000 00000000
<Break> to Secti on: 4/ 50 (Segmt: 1/10 (10%
Command 8% Users: 11/40 (27%
MemPool : 1.1/10.0 Nodes: 37/80 (46%
(10%
Fragmt : 2/ 36 (
5%

The watch window can operate in the same update modes as those available from the
monitor screen.

The screen example immediately above for example, depicts awatch window monitoring
the contents of segment 2, in flow mode, with an interva rate of 50 milliseconds. In such
amodeit is possible to watch each and every shared memory update asit occurs, with the
updates occurring in dow motion.

The watch window presents the segment's data contents in the same format as used by the
QueSys browse fecility. The screen is broken into three regions. Offsets appear on the
left, segment datain HEX appearsin the middle and the same datain ASCI| format
appears on theright.

The top of the watch window identifies the segment being watched, as well as providing
the segment's section statitics.

Also included a the top of the watch window isthe list of users (if any) that are currently
blocked trying to read or write data to or from the segment being watched.

In this example, user 4 is currently blocked attempting a write operation to the segment.
The write operation target starts at offset 10 in the segment and extends for 32 bytes. A
second user, user 7, is blocked attempting to read 128 bytes starting at offset 1024 in the
segment.

01/22/2004
Rev. No.: 4

3-46 X+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

3.4.5.1 Watch Window Commands

MemView commands can be used from within the watch window in the same way that they are used from
the main monitor window. Examples:

Commeand Effect

in Sat the interva to n milliseconds

tf Enter trace flow mode

ts Enter trace step mode

wn Open awatch window on segment n
sn Open a section window on segment n
bn Browse the contents of segment n

q Exit the watch window

Additional commands are available that are specific to the watch window. They provide a means for
moving the watch window to different parts of the segment. These movement commands are:

Command Effect

Y (up arrow) Scrall up one line (20 Bytes)

(3 (down arrow) Scroll down oneline (20 Bytes)

PAGE- UP Scroll up one page (260 Bytes)

PAGE- DOWN Scroll down one page (260 Bytes)

HOVE Scrall to the top of the memory segment
END Scroll to the bottom of the memory segment.

Scrolling only works where it makes sense. Otherwise, the command isignored.

3.4.6 Monitoring a Segment's Sections - The Section Window

MemView aso provides awindow for monitoring the details of section activity occurring
on asegment Thiswindow is the Section Window.

The section window provides a detailed picture of dl the sections that are defined on a
segment, including a summary of the users that are attempting to Lock or Own any of the
segment's sections.

A section window is opened using the command string "sN," where N isthe Mid to be
monitored.

Like the watch window, the section window uses the top 3/4 of the monitor screen. The
system gatistics and command windows remain visible a the bottom of the screen.

01/22/2004
Rev. No.: 4

A sample screen presentation follows.

"4 Command Prompt - memyiew 1500

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
i

{

[
Fa

i} Section: 21 «
HemPool:

Fragmnt:

47230 (

1
S0.2/6h.0 C 78HD
14

MemSys 3-47

¢ 30
¢ 202
¢ 472 Bd

3410
/10
477100

Users :
Hodes :

A replication of a different Section Window is provided below, as an example for reading sample screen

data:
Segnment Md =2 Size = 8192 Nane = CustTable Sections =
50 | 2/ 4
Fl ow *
AW 10 32) 7R(1024 128)
0 o |RWIRW ==
1024 400 7 | RW 000............ 5L 1IN
5000 14 |[RW .. |........... 00. 8L
8190 |2000 O RW|RO|................ =
226
2
<Break> to Secti on: 4/ 50 (Segmmt: 1/10 (10%
Command 8% Users: 11/40 (27%
User 14: MenmPool : 1.1/10.0 Nodes: 37/80 (46%
Menmnl ock (10%
Fragmnt : 2/ 36 (
5%

The section window a0 operates in the same update modes as those available from the

main monitor window.

The screen example immediately above monitors the section activity occurring on
segment 2, in flow mode, with an interva rate of 50 milliseconds. In such amodeit is

01/22/2004
Rev. No.: 4

3-48 X+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

possible to observe section related operations as they occur, with updates reported
continuoudly.

The section window presents its information with each row representing a section. For each section, the
following information is given:

Of f set The offset where the section starts.

Si ze The dze of the section.

Omer The owner of the section, if oneexigs. ".." indicates a section with
no owner.

Owner Pri v The section's Owner privilege setting. ".." indicates No Access.

Ot her Pri v The section's Other privilege setting. ".." indicates No Access. A
section that isinaccessible by Othersis considered locked.

Map A map depicting the Size and location of the section rdative to the
entire segment. Sections that are locked are indicated by a string of
'0' characters. Otherwise the section's relative Sze and location is
marked with '=' characters.

Wait List Thelis of userscurrently blocked attempting to either lock or own
the section.

In the sampl e section window, four sections are currently defined over the "CustTable" segment (Mid = 2):

O The firg section darts a offset 0 of the segment and is 400 bytes in Sze. The
section is currently ownerless. The privilege setting for both owner and other is
RW. The section, as expected, appears a the beginning of the ssgment map.
Finally, there are no users blocked trying to lock or own the section.

O Next, is a 2000 byte section darting at offsst 1024. This section is currently
locked by user 7. Thus the privilege settings for owner and other are RV and
NA ("..") respectively. The map indicates the section’s location. Usars 5 and 1
are currently blocked, trying to lock (L) and own (N) the section respectively.

O The next section is locked by user 14. User 8 is waiting in turn to lock it. The
other information has the same interpretation as given for the previous two
sections.

O The last section covers the last two bytes of the segment. The section is owned
by user O, The privilege setings aa'e RW and RO for owner and other
respectively. The section is thus protected from other users write access.

The top of the section window identifies the ssgment being monitored, aswell as
providing the segment's section datistics. Specificaly, section "CudtTable' (Mid = 2) is
8192 bytes in sze and has four sections defined on it, two of which are locked.

Also included at the top of the section window isthe list of users (if any) thet are
currently blocked trying to read or write data to or from the segment being monitored.

01/22/2004
Rev. No.: 4

MemSys 3-49

In the example, user 4 is currently blocked attempting a write operation to the segment.
The write operation target starts at offset 10 in the segment and extends for 32 bytes. A
second user, user 7, is blocked attempting to read 128 bytes starting at offset 1024 in the
segment.

Findly, because the monitor isin atrace mode, the next MemSys operation to be
executed is reported in the Trace Window. User 14 is about to unlock the section heis
holding.

Section Window Commands

MemView commands can be used from within the section window in the same manner that they are used
from the main monitor window. Examples:

Command Effect

I n Set theinterva to n milliseconds flow mode
ts Enter trace step mode

wn Open a watch window on segment n

sn Open a section window on segment n

bn Browse the contents of segment n

q Exit the watch window

Additional commands are available that are specific to the section window (and watch window). They
provide a meansfor scrolling within the section window data. These commands are:

Command Effect
((up arrow) Scroll up oneline
((down arrow) Scroll downoneline

PAGE- UP Scrall up one page

PAGE- DOVWN Scroll down one page

HOVE Scroll to the top of the section data
END Scroll to the bottom of the section data

Scralling only works where it makes sense. Otherwise, the command isignored.
3.4.7 Browsing a Shared Memory Segment

Segment browsing is dso provided from within MemView. Using this capability, a
programmer can verify a segment's data content or search for specific Hex or ASCII
memory patterns.

Unlike the windows just described, when the browse facility is used, it temporarily
freezes the subject MemSys instance.

Browsing isinitiated using the command string "bN," where N isthe Mid to be browsed.

Example
The command to initiate browsing of Mid 5is

Command> b5

The browse facility uses afull screen window for displaying shared memory contents.

01/22/2004
Rev. No.: 4

3-50 X¢+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

Example:
Segnent: Md =2 Size = 8192 Nane = CustTable Sections = 2/4
AW 10 32) 7R(1024 128)
08020: 00000000 00000000 003123030 | ..., 1000011
08040: | 30303131 Har vey Schmi dl ap
08060: 48617276 65792053 63686€69 p 094-40-2819 37
08080: | 646c6170 Street Lex City.
08100: 70203039 342d3430 2d323831 07761....23.00..
08120: 39203337 e 4311901
08140: 53747265 6574204c 65782e20 Joe WIlson 072-4
08160: | 43697479 5-8019 Peteville
08180: 30373736 31000101 73323347 | ...
30307274
00000000 00000000 00343331
31393031
42656520 57696¢73 6f6e2030
37322d34
352d3830 31392050 65746556
696¢c6C65
00000000 00000000 00000000
Conmand:
Ofset =0

The top line identifies the segment being browsed. Benegth thet isthe list of users
currently blocked writing or reading the segment.
The body of the screen presents the segment's text in hex and ASCII. The format used

should be familiar by now. It isthe same format as the one used for browsing in QueSys
and the watch window in MemSys.

3.4.8 Browse Facility Commands

Navigating in and about shared memory segments is accomplished using the browse

facility commands.
Scroll commands are:
Command Effect
Y (up arrow) Scrall up one line (20 Bytes)
3 (down arrow) Scrall down one line (20 Bytes)
PAGE- UP Scroll up one page (260 Bytes)
PAGE- DOVWN Scroll down one page (260 Bytes)
HOVE Scrall to the top of the memory segment

END Scrall to the bottom of the memory segment
Scrolling only works where it makes sense. Otherwise the command is ignored.
Wewill seein the next section that searching for a paitern within a ssgment can cause the
segment to scroll to the offset where the pattern is found.

01/22/2004
Rev. No.: 4

MemSys 3-51

3.4.8.1 ASCII Pattern Searching

The search commands available within the MemSys browse facility are identica to those
avalablein QueSys, except that they gpply to a memory segment instead of messages on
aqueue.

Forward ASCII pattern searching is executed by specifying a pattern between two /'
characters and hitting return. Backward searches are specified using two ‘\ ‘ characters.
The second bracket character is not always necessary, as shown in the following
examples. Repesat patterns are remembered. The following examples demondrate these

points:
Command Effect
/1 Repest the search
/ Same
\' | BM Search backward in the current segment for the ASCII string
"IBM"
\\ Repest the search
\ Same

3.4.8.2 Hexadecimal Pattern Searching

Searching for Hexadecimd patternsis very smilar to ASCII pattern searching. The only
differences are that the pattern specified isaHex string, and that an 'x' is gppended to the
end of the search command.

| 4f 37/ x Search forward for the hex pattern "4f37" within the segment
\ 4f 37\ X Search backward for the hex pattern "4f37" within the segment

3.4.8.3 Switching to Another Segment

Switching to browse another segment is accomplished using the b n" command as
described above.

This dlows navigation between segments without having to exit the browse facility. This
isimportant, Snce the entire MemSys ingtance remains frozen. Exiting the browse
facility, however briefly, unfreezes the ingtance.

3.4.8.4 Exiting the Browse Facility

The browse facility is exited usng the "q" command. Once browsing is terminated, the
MemSysingance is unfrozen.
Example:

Comand> q

3.4.9 Panning with MemView

Panning within MemView lets the devel oper observe different portions of the interaction
matrix. Thisis especidly useful when azoom window is open and parts of the matrix are
not visble

All "panning” commands start with 'p'.

Vertica panning (Up and down) to observe other usersis done by specifying a'u’ (for
user) and a Uid to pan to.

01/22/2004
Rev. No.: 4

3-52 X¢IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

Example:
Comrand> pu8

The above command scrolls the interaction matrix so thet Uid 8 is at the top of the
disolay.
Horizontd panning (right and left) to monitor other ssgments is accomplished specifying
a'm’ (for ssgment) and an Mid to pan to.
Example:

Comand> pmi

The above command scralls the interaction matrix so that Mid 4 isthe first displayed
(left-most).

Example:

Comrand> po

The command "po” returns the display to the origin of the activity matrix.
3.4.10 Stopping MemView
MemView monitoring is terminated via the 'q’ command.

Example:
Comand> q

Bringing down MemView has no effect on the underlying activities of the MemSys
instance. It continues to function unaffected. Any overhead incurred by monitoring is
eiminated.

01/22/2004
Rev. No.: 4

SemSys 4-1

4. THE X' IPC SEMAPHORE SYSTEM (SEMSYS)

4.1 SemSys Concepts

Two classes of ssemaphores are available usng SemSys.
O Event semaphores

O Resource semaphores

4.1.1 Event Semaphores

X+pc event semaphores are Boolean in nature and are used for sgnaling the occurrence of
events. Event semaphores are either "sat” or "clear.” Users can wait for "clear” event
semaphoresto be "set" by other users. The "setting” of an event semaphore will usudly
unblock (i.e., wake up) at least one of the users waiting for the event to occur.

We will seethat it is possble with X«ipc to wait on groups of event semaphoresin a
variety of ways.

4.1.2 Resource Semaphores

X+PC resource semaphores are numerica devices for enforcing accurate and fair resource
access control. Resource semaphores are typically used for limiting the concurrent usage
of aresource to some preset level. User programs that wish to access or use the resource
attempt to acquire a copy of the designated semaphore, perhaps blocking until a copy of
the resource is available. Users that release held copies of the resource may in turn cause
the wake-up of users which were previoudy blocked when trying to acquire the resource.
Here, too, we will seethat it is possible to attempt to acquire multiple resource
semaphoresin avariety of ways.

4.1.3 Multiple Semaphore Operations
XvPC SemSys supports operations involving multiple ssmaphoresin a sraight-forward
manner. Using this capability, it is possble to build sophisticated interprocess
synchronization schemes.
It is, for example, easy to desgn systems that:

O "Block until ANY of 5 events have occurred.”

O "Block until ALL of a group of resources ae avalable smultaneoudy
(Atomicdly)."

O "Block until ALL of a group of resources become avalable over time
(Cumulétivdy).”

0 "Block until ALL of aligt of events have occurred.”
The specifics for coding such congtructs are included below in the sectionson
SemAcquire() and SemWait().

01/22/2004
Rev. No.: 4

4-2 XsPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

4.2 SemSys Configuration

Aswe saw earlier, an X«Pc indance is defined by its configuration (. cf g) file The
SemSys section of the configuration file describes the composition and capacity of the
instance's SemSys.

Three parameters must be set within the SemSy's section of the instance configuration
file. Additional operating system specific parameters (if required) are listed in the
relevant Platform Notes.

The configuration parameters are;

O MAX_SEMS, The maximum number of concurrent semaphores. It should be set

based on the requirements of the programs using the | nstance.

O MAX_USERS, The maximum number of concurrent users and Simultaneous

asynchronous operations. It should be set based on the programs usng the
instance. Note that asynchronoudy blocked SemSys operations are treated as
SemSys usars. The expected levd of SemSys asynchronous activity should
therefore be factored into this parameter.

O MAX_NODES, The maximum number of nodes. It defines the number of nodes

that are to be made available to the instance. SemSys nodes are used interndly
for recording blocking and ownership of the instance's ssmaphores.

There is no had and fast rule for cdculaing an appropriate vaue for
MAX_NODES. It depends on the mix of event vs. resource semaphores to be
employed, the number of user programs involved, and the degree of blocking
that is expected. An gpproximating formulato sart with is

MAX_NODES = (MAX_SEMS*2) + (MAX_USERS*4) + (MAX_USERS* MAX_SEMS)
Empiricad observations via SemView should be made to monitor node usage.

Adjustments should follow as necessary.

4.3 SemSys Functions

4.3.1 SemCreate() - Creating a New Semaphore

The firg step toward using an X«pc semaphore within an ingtance isto create it. Aswe

saw earlier, there are two types of semaphores. Event and Resource. A semaphore's type

is specified when the semaphore is created.
SemCreate() takes two arguments:

O The name of the new semaphore
O A vaueindicating the type of the semaphore to be created

SemCreate() returns the "semaphore id” (Sid) of the newly created semaphore. Thisvaue

is used as the semaphore's "handle” in dl subsequent SemSys function cdls that refer to
this semaphore.

Example:
Sid = SenCreate("CritSectSent, 1);

01/22/2004
Rev. No.: 4

SemSys 4-3

In the above example, the calling user attempts to create a new semaphore having the
nameCr i t Sect Sem The new semaphore will be a resource semaphore having a
maximum resource count of one. Such a semaphore could be used to enforce single
access to an application's critica section.

Example:
Sid = SenCreate("BufferSent, 5);

In this example, the calling user is cregting a resource semaphore having the name
Buf f er Semand a maximum resource count of five. Such a semaphore might be used to
control orderly access to a system's five usable buffers.

Example:
Sid = SentCreat e(" Net wor kDownSent', SEM CLEAR) ;

Here the calling process creates an event semaphore with the name Net wor kDownSem
The semaphoreis creasted with an initid state of "clear." Such a semaphore might be
employed to notify user programs within an gpplication that a network has come down.
Event semaphore creation differs from resource semaphore creetion in the vaue given for
SemCreate()'s second argument. Resource semaphore creation pecifies the maximum
resource count. Event semaphore creation specifies the semaphoresinitid sate as
SEM_SET or SEM_CLEAR.

Duplicate semaphore names are not alowed within an ingtance.

Specifying SEM PRI VATE as the name of the new semaphore creates a semaphore
inaccessible via SemA ccesy(), effectively making its Sid private to the creating program.
Of course, the creating program can pass the Sid to others, if it so wishes. The advantage
of usng SEM PRI VATE asanameisthat it is guaranteed not to conflict with any
semaphore name currently in the instance.

4.3.2 SemAccess() - Accessing an Existing Semaphore

Once a semaphore has been created, other users can access its Sid using SemAccess().
SemA ccess() takes one argument:

O The name of an exigting semaphore.
SemAccesy() returns the "semaphore id”" (Sid) of the desired semaphore. Thisvaueis
used as the semaphore's "handle” in dl subsequent SemSys function cdls that refer to the
semaphore.

Examples:
Gitsid = SemAccess("Crit Sect Seni');
Buff Si d = SemAccess("Buf f er Sent') ;
Net DownSi d = SemAccess(" Net wor kDownSent') ;

The above example accesses the three semaphores created in the previous section.
4.3.3 SemListXxx() — Manipulating Semaphore Lists

SemSys operations that mani pul ate semaphores do so using semaphoreid lists.
Manipulaing a single semaphore is accomplished usng alist having one eemert.

01/22/2004
Rev. No.: 4

4-4 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

A lig of SdsisreferredtoasaSdList. A SI DLI ST daatypeisdefined for cregting
and working with SidLigts. Functions expecting alist of Sids as one of their arguments
takea Sl DLI ST datatype for this purpose.

There are two functions for building SdLists SemList() and SemLigtBuild()

SemLid() tekesalig of Sdsasitsargumentswith SEM_EOL marking the end of the ligt.
SemList() createsa SidLigt initsinterna static area. For this reason, the returned SidList
can be safely used only once.

Example:
Ret Code = SenRel ease(SenList(Sidl, Sid2, Sid3, SEMEQ), ...);

SemReeasy() expectsa SidLigt asitsfirst argument. (SemReeasx() is described in alater
section.) In the above example, SemList() is used "on the fly" to create the SdList
argument for SemReleas().

SemLigBuild() takesa SI DLI ST variadble asitsfirst argument. The remaining
arguments are alist of Sids as described for SemList(). SemListBuild() createsa SidList
inthe user-provided SI DLI ST variable This SidList can safely be reused by the
programmer.

Example:
SI DLI ST Si dLi st;
XINT Sidl, Sid2, Sid3;
SenLi st Bui | d(Si dList, Sidl, Sid2, Sid3, SEMEQ);
Ret Code = SemAcqui re(SEM ALL, SidList, NULL, SEMWAIT);

[*

* Work with resources associated with resource
* semaphores Sidl, Sid2 and Sid3

*/

Ret Code = SenRel ease(Si dList, NULL):

SemAcquire(), like SemReleass(), takes a SidList as an argument (SemAcquire() and its
SEM_ALL option are described in alater section). The SidList built with SemListBuild()
can be used repeatedly.

A SidList must not exceed SEM LEN_SI DLI ST dements. Thisisusudly not a great
concern snce SEM_LEN_SI DLI ST iscurrently defined to be 32.

Two additiond functions, SemListAdd() and SemListRemove(), dlow for updating
SdLigs dynamicdly, and another function, SemListCount(), alows determination of the
number of dementsinaSdLig.

SemLigAdd() is provided to alow the programmer to add SidList eementsto an existing
SdLig (i.e, onethat has been created by SemListBuild()). Thisisacommon
requirement in Stuations where the needed SidList must be built dynamically based on
certain run-time conditions.

SemListRemove() is provided to alow the programmer to remove SdList dements from
an exising SdList when necessary.

01/22/2004
Rev. No.: 4

SemSys 4-5

The caling sequence for SemLigAdd() and for SemListRemove() isidentica to that of
SemLigtBuild(). It too expects a user-provided SdLig asitsfirst argument. The listed
SidList lements are added to or removed from that SidLi<t.

Example:

/*

* A SidList containing Sidl, Sid2 and Sid3 is created
* one elenent at a tine using SenlistAdd(), as follows:
*/

SI DLI ST SidLi st;
XINT Sidl, Sid2, Sid3;

Senli st Bui | d(Si dLi st, SEM EQL);

Senli st Add(Si dList, Sidl, SEMEQL);
Senli st Add(Si dList, Sid2, SEMEQL):
Senli st Add(Si dList, Sid3, SEMEQL):

In the following example, SemListRemove() is used so that the resource semaphores Sidl, Sid2 and
Sid3 are each acquired (SemAcquire() and its SEM_ANY option are described in a later section), then
released, in whatever order they become available:

SIDLI ST Si dLi st;

XINT Sidl, Sid2, Sid3, AcquiredSen D

SenLi st Bui | d(Si dList, Sidl, Sid2, Sid3, SEMEQ);
/*

* Acquire and rel ease resource semaphores Sidl, Sid2, and Sid3,
* one at a tine, in whatever order they beconme avail abl e.

*/
whi | e (Senli st Count (Si dLi st) >0)
{
Ret Code = SemAcquire(SEM ANY, SidList, &AcquireSem D, SEM WAI T);
/* Work with resource associ ated wi th whi chever resource senmaphore
* was acquired (AcquiredSem D), then release it and renove it
* fromthe SidList
*/
Ret Code = SenRel ease(Sernli st (Acqui redSem D, SEM EQL), NULL);
Senli st Renove(Si dLi st, AcquiredSem D, SEM EQL);
}

4.3.4 SemAcquire() - Acquiring Resource Semaphores
SemAcquire() and SemRelease() are used for manipulating SemSy's resource semaphores

The maximum semaphore vaue specified when a resource semaphore is crested
determines the maximum number of copies of the semaphore that can exigt a any one
time. Users vying for access to the resource represented by the semaphore do so by
acquiring and releasing copies of the semaphore.

A user attempts to attain copies of one or more resource semaphores usng SemAcquire().
It subsequently releases held semaphore copies using SemReleass().

01/22/2004
Rev. No.: 4

4-6 X+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

SemAcquire() takes four arguments:
O A type code indicating the type of acquire operation to perform.
O A SdLig holding alist of Sd copiesto acquire.

O A pointer to a variable that gets assgned by SemAcquireg(). (This vaue can be
NULL if no return vaue is desired.)

O A blocking option code in case the operation needs to block.

Example:

/*

* Create a critical section semaphore.

* Then, gain access to the critical section by
* acquiring the only copy of the semaphore.

*/

CitSid = Senreate("CritSectSent, 1);

Ret Code = SenAcquire(SEM ALL,
SenList(CritSid, SEMEQ),
&Ret Si d,
SEM WAI T) ;

SemAcquire() attempts to access alist of resource semaphore copies. Semaphore
acquisition can occur in one of three ways.

O SEM_ANY: Acquire any of the semaphore copies listed.

O SEM ALL: Acquire dl of the semaphore copies listed as they become avallable
(i.e, cumulatively).

O SEM ATOM C: Acquire dl of the semaphore copies liged, waiting until al of
them are available a the same time (i.e,, atomically).

In the above example, the SidList hasonedement (Cr i t Si d). It istherefore
inconsequentia which acquire type is gpecified, Snce they are dl equivdent when
goplied to asngle dement lig.
When SemAcquire() succeeds, Ret Si d isreturned with the Sid of the last semaphore
acquired. For sngle-semaphore operations, thisis not very useful information. For
SemAcquire() operations involving multiple semaphores, this information can be
important. It isacceptable to specify aNULL RetSid argument.
When SemAcquire() fails, and the cause of the fallureis related to one of the listed
semaphores, Ret Si d isassgned the Sid of the problematic semaphore.

01/22/2004
Rev. No.: 4

SemSys 4-7

Now consider the following example:

/*

* (Oreate a buffer access semaphore to control
* access to five available buffers.

* Then access two copies of the semaphore.

*/

Buf f Si d

Sen(r eat e(" Buf f er Sent', 5);

Ret Code = SemAcqui r e(SEM ATOM C,
SenLi st (BuffSid, BuffSid, SEMEQ),
&Ret Si d,
SEM VWAI T) ;

Thisform of SemAcquirg() (usng SEM_ATOM C) succeeds only when dl of the listed

Sid copies are available a one time. The calling user blocks until this occurs, based on

the SEM WAI T argument. At that time, the process is alowed to proceed, presumably to
make use of the buffers that have become available.

If the calling user needed control of the critical section as well as access to two buffers before
proceeding, then the SemAcquire() would be coded as:

Ret Code = SenmAcquire(SEM ALL,
SenList(CritSid, BuffSid,
Buf f Sid, SEMEQ.),
&Ret Si d,
SEM WAI T) ;

Note that in this example we have assumed that the listed copies could be acquired
cumuldively (viaSEM_ALL).

Thereisno Sgnificance to the order of Sid specification within the SidList when
employing SEM_ALL or SEM_ATOM C. WithinaSEM_ANY cdl, thelisted Sids are
pursued in the order listed.

Example:

Ret Code = SenAcqui r e(SEM_ANY,
SenList(SidA SidB, SidC, SEMEQ),
&Ret Si d,
SEM WAI T) ;

In this example, the Sids are checked for avallability in the order specified (Si dA, Si dB
andthen Si dC). If none are available, blocking occurs and the first of the three copiesto
become available is acquired. The order of specification is by then no longer relevant. In
ether case, Ret Si d isreturned with the Sid of the semaphore that was acquired.

The above examples demonstrate SemAcquire() using synchronous blocking options.
Asynchronous blocking is aso possible by specifying one of the three asynchronous
blocking options. Refer to the Advanced Topics chapter for a detailed description of the
asynchronous blocking options.

4.3.5 SemRelease() - Releasing Resource Semaphores

The flip Sde of resource semaphore acquigtion is releasing resource semaphores. Thisis
accomplished using SemRel eas().Resource semaphorecopies must be released by
holding usersin order for them to be successfully acquired by other users.

01/22/2004
Rev. No.: 4

4-8 X+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

SemRelease() takes two arguments:
O A SidLigt holding aprepared list of Sid copiesto release.
O A pointer to avariable that gets assigned by SemReleass().

Example:

/*

* Rel ease the critical section semaphore, and two
* copi es of the buffer semaphores being hel d.

*/

Ret Code = SenRel ease(SenList(CritSid, BuffSid,
Buf f Sid, SEM EQ),
&Ret Si d) ;

Itis, of course, an error to attempt to release a semaphore copy not currently held. Here,
too, Ret Si d isreturned with the identity of aninvaid Sd, if one was encountered. As
with SemAcquire(), it is acceptable to specify aNULL RetSid argument.

4.3.6 SemSet() - Setting Event Semaphores

Semaphores are often needed for interprocess event synchronization and notification.
Event semaphores are ided for such Stuations. Event semaphores are Boolean in nature.
They are either "s#t" or "dear” a any point intime.

Users waiting for an event to occur typicaly block on a"cdear” event semaphore
associated with the event. A user detecting the event's occurrence then "sets' the
semaphore, thus alowing the blocked users to proceed.

The ability to operate on multiple resource semaphoresin asingle operation, described in
the section on SemAcquire(), applies smilarly to event ssmaphores. It isthus possible to
"st," "dear” and "wait" on multiple events (viatheir ssmaphores) usng SidLigts.

Event semaphore "satting” is accomplished via SemSet().

SemSet() takes two arguments:
O A SdLig holding alist of event Sdsto set.
O A pointer to avariable that gets assigned by SemSet().

Example:

/*
* Network is detected to have gone down.
* Set the Network Down event semaphore.
*/

Ret Code = SenSet (Senli st (Net DownSi d, SEM ECL), &Ret Sid);

A samaphore remains "set” until it is"cleared.” It is often required to "clear” an event
semaphore some time &fter it has been "set” o that the event can be waited on again. This
is done using the SemClear() function.

Ret Si d isreturned with the identity of aninvdid Sid, if one was encountered. Aswith
SemClear(), it is acceptable to specify aNULL RetSid argument.

01/22/2004
Rev. No.: 4

SemSys 4-9

4.3.7 SemClear() - Clearing Event Semaphores

SemClear() is the reverse of SemSet() in that it places the listed semaphores into the "clear” state.
SemSet() takes two arguments:

O A SdLig holding aligt of event Sidsto clear.
O A pointer to avariable that gets assgned by SemClear().

Example:

/*
* Network has cone back up.

* Clear the Network Down event semaphore.
*/

Ret Code = Sen(ear (Senli st (Net DownSi d, SEM EQL), &RetSid);

4.3.8 SemWait() - Waiting on Event Semaphores

When a user wants to block until one or more events have occurred, it issues a SemWait()
cdl with alig of event Sids as one of the arguments.

Occasiondly it isimportant that only one of the users blocked on an event semaphore be
alowed to proceed once the semaphore is"set.” To assure this form of control,
SemWait() includes an option flag indicating that the "set” semaphore(s) should be
"cleared”" once the SemWiait() request has been fully satisfied. In effect, the user isgiven
the option of "shutting the door behind him.”

SemWait() takes four arguments:

[0 A type code indicating the type of wait operation to perform.
O A SdLig holding alist of event Sdsto wait on.

O A pointer to a variable that gets assigned by SemWait(). (This vaue can be
NULL if no return valueis desired.)

O A blocking option specifying the action to be taken in case the SemWait() needs
to block. An optiond SEM CLEAR flag may be logicaly ORed to the left of the
specified blocking option, indicating that "set" semaphores should be "cleared”
once the SemWait() request has been fully satisfied. An example of this will be
provided shortly.

Example:
/*

* Create an event senaphore that will be set when
the database is full. The calling user then bl ocks
(via SemMit()) until sone other user detects the
condition and sets the semaphore. The seraphore

remai ns set after SemMit() returns.
/

E T

DBFul | Sid = SenCr eat e(" Dat abaseFul | Senf, SEM CLEAR xe "SEM CLEAR');

Ret Code = SemMit (SEM ALL,
SenLi st (DBFul | Sid, SEM EQL),
&Ret Si d,
SEM WAI T) ;

01/22/2004
Rev. No.: 4

4-10 X+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

SemWait() attempts to wait on a list of event semaphores. Semaphore waiting can take one dof three
forms:

O SEM_ANY: Wait for any of the listed semaphoresto bein the "set" state.

O SEM ALL: Wait until dl of the lised semaphores have been in the "st" date at

least once since the start of the SemWait() operation. All semaphores must have
been in the "set" state once, but they are not required to stay "set.”

O SEM ATOM C. Wait until dl of the listed semaphores are concurrently in the
"t date (i.e., aomicdly).

In the above example, the SidList has one dement (DBFullSid). It istherefore
inconsequentia which wait type is specified, asthey are dl equivaent when gpplied to a
sngle-dement lig.
When SemWait() succeeds, Ret Si d isreturned with the Sid of the last ssmaphore
waited for. For single-semaphore operations, thisis not very useful information. For
SemWait() operations involving multiple semaphores, this information can be important.
It is acceptable to specify aNULL RetSd argument.
When SemWiait() fails and the cause of the failureis related to one of the listed
semaphores, "RetSid" is assigned the Sid of the problematic semaphore.

Now consider the following example:
/*
* Block until any of the following crisis situations arise:
* Excessive tenperature, humdity or pressure. Cear the set

* semaphore after the SemMit() operati on conpletes.
*/

Ret Code = SenlMi t (SEM_ANY,
Senii st (TenpSi d, Hum dSid,
PressureSid, SEM EQ.),
&Ret Si d,
SEM CLEAR | SEMWAI T);

i f (RetCode >= 0) /* Success */
{
/*
* SemMit has assigned to "RetSid" the Sid
* of the event semaphore that was set.
*/

swi t ch(Ret Si d)

{
case TenpSi d:

/* react to excessive Tenperature */

case. I—Um dsi d:
/* react to excessive Humdity */

case PressureSid:
/* react to excessive Pressure */

01/22/2004
Rev. No.: 4

SemSys 4-11

In the above example, we see how Ret Si d can be used for identifying and reecting to
the event that has occurred. Ret Si d isaso used to determine the identity of an invdid
Sd (eg., anonexigent Sd: Ret Code = SEM _ER BADSI D) if oneis encountered.
Note that the SEM_CL EAR option flag, when specified, must be ORed to the left of
whatever blocking option is designated.

Example:

/*

* Oreate two event senmaphores that indicate network and
* dat abase startup status. Wait 60 seconds for the two

* semaphores to be in the "set" state concurrently

* indicating that they both have conme up and are acti ve.
*/

Net Si d = SentCreat e(" Net wor kUpSent, SEM CLEAR);
Dat abaseSi d = SenCr eat e(" Dat abaseUpSent, SEM CLEAR);

Ret Code = SemMi t (SEM ATOM C,
SenLi st (Net Si d, Dat abaseSid, SEM EQ),
&Ret Si d,
SEM TI MEQUT(60)) ;

if (RetCode >= 0) /* Success */

/*
* Dat abase and Network are up.
*/

[0 Bnad

| se
if (RetCode == SEM ER TI MEQUT)

~_~——

/*
* Dat abase and Network have not come up together.
*/

}

Thisform of SemWait(SEM_ATOM C) succeeds only when dl of the listed event
semaphores are concurrently in the "set" state. Based on the 60 second timeout vaue, the
caling user blocks for a maximum of 60 seconds, waiting for this scenario to occur. If the
SemWait() does not succeed within 60 seconds, the function return’sthe

SEM _ER_TI MEQUT error code. The program can then react accordingly.

When it isimportant to react to a certain set of events that occur over a period of time, a
user can be garted to wait cumulatively for the list of corresponding event semaphores.
Thiswould be done usng the SEM_AL L wait type.

01/22/2004
Rev. No.: 4

4-12 X+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

Example:
/*
* (reate event semaphores that are "set" when the nachine
* conponents they represent are down and ot herw se are

* "clear." Then block and wait until all three conponents
* have failed (been in the "set" state) at |east once.

*/
EnglSid = SenCreate("Engi nelSeni, SEM CLEAR);
Eng2Sid = SenCreate("Engi ne2Sent, SEM CLEAR);
HydroSid = SenCreat e("HydrolicSent, SEM CLEAR);

Ret Code = SemMit (SEM ALL,
Senli st (EnglSi d Eng2Si d,
HydroSid, SEM EQL),

&Ret Si d,
SEM VWAI T) ;
/*
* React to the unreliable equipnent.

*/

The above examples demongrate SemWait() using synchronous blocking options.
Asynchronous blocking is aso possible by specifying one of the three asynchronous
blocking options. Refer to the Advanced Topics chapter for a detailed description of the
asynchronous blocking options.

4.3.9 SemCancel() - Cancel Blocked SemSys Operations

The SemCancdl () function is useful for cancdling blocked SemAcquire() or SemWait()
operations involving specific semaphores.

This might be necessary if it has been determined that a blocked request can no longer be
satisfied. For example, consider a user that has blocked on acquiring three resources, and
one of the resources has become disabled and is no longer in service. Issuing a
SemCancel() on that resource semaphore interrupts any and al users blocked on
SemAcquire() calstrying to access the no longer available resource.

SemCancel() takes two arguments:
O A SdLigt holding a prepared list of Sdsto cance blocking on.
O A pointer to avariable that gets assigned by SemCancel().

Example:

/*
* Cancel any bl ocked SemAcquire()

* operations involving a resource Sid.
*/

Ret Code = Sentancel (Senli st (ResourceSid, SEM EQL), &RetSid);
SemCancel() can dso be used to cancd SemWait() operations involving event
semaphores that will never be "set.”

SemCance()’'s"RetSid" isreturned with the identity of aninvaid Sd, if oneis
encountered. It is acceptable to specify aNULL RetSid argument.

01/22/2004
Rev. No.: 4

SemSys 4-13

SemAcquire() and SemWait() cdlsthat are cancdlled return with Ret Code =
SEM ER_CANCELLED, and havetheir Ret Si d assgned to the Sid of the cancelled
semaphore.

4.3.10 SemDelete() - Deleting a Semaphore

A semaphore should be ddeted from itsinstance when it is no longer needed. This
recyclesinternd SemSys resources and makes the SemView monitor less cluttered.

SemDelete() takes one argument:
O The Sid of the semaphore to be deleted.

Example:
Ret Code = SenDel ete(Sid);

SemDed ete() will succeed only if the subject semaphore is completely inactive at the
time. Resource semaphores that have copies"held” by users or that are being waited on
cannot be deleted. Event semaphores that are being blocked cannot be del eted.

If a semaphore must be removed regardless of its current status, then SemDestroy()
should be employed.

4.3.11 SemDestroy() - Destroying a Semaphore

A semaphore that must be removed from its instance can be destroyed using
SemDestroy(). SemDestroy() removes the subject semaphore regardiess of the
semaphore's current status.

SemDestroy() takes one argument:
[0 The Sid of the semaphore to be destroyed.

Example:
Ret Code = SenDestroy(Sid);

When a semaphore is destroyed, a number of things happen:

O All SemAcquire() or SemWait() operations involving the destroyed semaphore
are cancdled and returned with Ret Code = SEM ER _DESTROYED. Ther
Ret Si d isassgned the Sid of the destroyed semaphore.

O All users holding one or more copies of a destroyed resource semaphore have
these copies removed from their ownership. This occurs slently and it is the
responsibility of the program to adjust to the semaphore's destruction.

For obvious reasons, SemDestroy() should be used sparingly. Its most likely gpplication
would be within the execution of a sysem’s "cleanup” program a which time the above
sde-effects are normally of no concern.

4.3.12 SeminfoSys() - Information about an Instance's SemSys
X+PC provides a set of SemSys functions that can be used to access status information
about various aspects of an instance's SemSys.

The returned data can be used to make run-time decisions about ongoing gpplication
processing.

01/22/2004
Rev. No.: 4

4-14 X+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

SeminfoSys() returns with information about the instance's SemSys that the user is logged into.
SeminfoSys() takes one argument:

OA pointer to a SEM NFOSYS dructure that is returned filled with the
subsystem's status information.

Example:
SEM NFOSYS SysDat a;

Ret Code = Senl nf 0Sys(&SysDat a) ;

A complete description of how to use the Info functions is presented in the Advanced
Topics chapter of the X«pc User Guide, in the section entitled, "Info Function List
Manipulation.”

The definition of the SEM NFOSY'S datatype isincluded in the User Data Structures
chapter of the QueSysMemSys/SemSys Reference Manud.

4.3.13 SeminfoUser() - Information about a SemSys User

SemlnfoUser() returns with information about a specified user. SemInfoUser() takes two arguments:
O The Uid whose status is desired.

O A pointer to a SEM NFOUSER dgructure that is returned filled with the user's
datus information.

Besides statistical data, the SEM NFQUSER structure returns with "list" data related to the specified
user. Each user has an HLigt, QList and Wist associated with it.

O The HLig is the list of resource Sid copies currently held by the subject user.
The Sds are listed in the order in which they were acquired.

O The QLig is the list of Sds currently being requested by the subject user. The
QLig will have dements only when the user is blocked on a SemAcquire() or
SemWait() operation.

O The WLig is the list of Sids currently being waited on by the subject user. The
WLig is the subset of the QLig that has not yet been satisfied. It too will only
have dements when the user is blocked on a SemAcquire() or SemWait()
operation.

Theligswithin SEM NFOUSER are arrays that can accommodate up to

SEM LEN_I NFOLI ST dements. The actud lists may, at times, be greeter than

SEM LEN I NFOLI ST dementsin length. A cdl to the SeminfoUser() function must
therefore be preceded by the setting of three SEM NFOUSER structure members
(HListOffset, QListOffsetand WListOffset) with vaues specifying what portions of the
three respective lists are desired.

More specificdly, before SeminfoUser() is cdled, the three ligt offsat variables within the
SEM NFOUSER dgructure must be set, indicating from what point in each list to return
data. Setting the offsets to zero directs the function to return with list data from the start
of theligs.

01/22/2004
Rev. No.: 4

SemSys 4-15

Example:
SEM NFOUSER User Dat a;

User Dat a. HLi st Of f set
User Dat a. Qi st O f set

0;
0;
User Dat a. W.i st OF f set 0;

Ret Code = Senl nfoUser (U d, &UserData);

A complete description of how to use the Info functions is presented in the Advanced
Topics chapter of the X«pc User Guide, in the section entitled, "Info Function List
Manipulation.”

The definition of the SEM NFOSY'S datatype isincluded in the User Data Structures
chapter of the QueSysMemSys/SemSys Reference Manudl.

4.3.14 SemliInfoSem() - Information about a SemSys Semaphore

SemlnfoSem() returns with information about a specified semaphore. SeminfoSem() takes two
arguments:

O The Sid whose status is desired.

OA pointer to a SEM NFOSEM dructurethat is returned filled with the
semaphore's gatus information.

Besides statistical data, the SEM NFCSEM structure returns with "list" data related to the specified
semaphore. Each semaphore has an HList and WList associated with it:

O The HLig is the lig of Uids currently holding copies of the subject resource
semaphore. The HLigt of event semaphores is dways empty. The Uids are listed
in the order that they acquired the semaphore copies.

O The WLig is the lig of Uids currently waiting on the subject semaphore. The
Uids are ligted in the order that they began waiting.

Theligswithin SEM NFOSEM are arrays that can accommodate up to
SEM LEN_| NFOLI ST dements. The actud lists may, at times, be greater than
SEM LEN I NFOLI ST dementsin length. A cdl to the SeminfoSem() function must
therefore be preceded by the setting of two SEM NFOSEM structure members
(HListOffset and WListOffset) with vaues specifying what portions of the two respective
lists are desired.
More specificaly, before SeminfoSem() is called, the two list offset variables within the
SEM NFOSEM gructure must be s&t, indicating from what point in eech list to return
data. Setting the offsets to zero directs the function to return with list data from the start
of thelids.

Example:
SEM NFCSEM SenDat a;

SenDat a. HLi st O f set
SenDat a. W.i st O f set

0;
0;

Ret Code = Seml nf oSen{Si d, &SenData);

01/22/2004
Rev. No.: 4

4-16 X+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

A complete description of how to use the Info functions is presented in the Advanced
Topics chapter of the X«pc User Guide, in the section entitled, "Info Function List
Manipulation.”

The definition of the SEM NFOSEMdatatype isincluded in the User Data Structures
chapter of the QueSysMemSys/SemSys Reference Manudl.

4.3.15 SemFreeze() - Freezing SemSys

X«pc provides the user with the ability to attain complete and exclusive control over the
SemSys subsystem of an ingtance.

This mechanism alows a user to execute a series of SemSys operations, with the
assurance that no other user's SemSy's operations are interwoven with his.

Such acgpability is of particular importance when a user requires a complete and
conggtent view of the state of activity occurring within SemSys. With it, multiple
SemlnfoXxx function calls can be executed for collecting status data with the guarantee
that the subsystem's state is unchanged between the SeminfoXxx cals.

SemFreeze() takes no arguments.

Example:
/*
* Produce SenBys snapshot status report.
*/
Senfreeze();
/*
* Col |l ect the data.
*/
Sem nf oSys(...);
Sen1 nfoSen(...);
Sem nfoUser(...);
/*
* Unfreeze SenBys and report results.
*/
Sennf reeze() ;

printf(...);

A further note regarding SemFreeze(): It isan error for a user to issue a blocking
SemSys function cdl, specifying a blocking option code (i.e, SEM WAI T or
SEM_TI MEQUT), once the user has frozen the subsystem.

4.3.16 SemUnfreeze() - Unfreezing SemSys

SemUnfreeze() is the bracketing function to SemFreeze(). It returns the SemSys
subsystem to its unfrozen state. Other SemSy's users resume norma SemSy's operations.

Example:
Sennf r eeze() ;

SemUnfreeze() will fall if the calling user has not frozen the subsystem.

01/22/2004
Rev. No.: 4

SemSys 4-17

4.4 The SemSys On-Line Monitor: SemView

SemView is the on-line monitor for X«pc SemSys.
4.4,1 Starting SemView
SemView is garted from the command line using the SemView command.

SemView takes two arguments:
O The fird agument is the initid “intervd" sgpshot sHting. It defines in
milliseconds the initid update frequency of the monitor. The interva argument
IS mandatory.

O The second argument is the ingtance file name of the ingance to be monitored.
This argument is optiond. If it is omitted, SemView uses the vadue of the Xi pc
environment variable for the indance file name of the indance to dHat
monitoring.

Example:
senvi ew 100 /usr/ deno

The above command garts the SemView monitor for the SemSys subsystem of the
/usr/demo ingtance. Theinitid update interva is set to 100 milliseconds.

4.4.2 SemView Layout

SemView's main display is matrix-like in gppearance. Users logged into the ingtance and
exiging SemSys semaphores form the axes of the matrix. Interaction between instance
users and semaphores is displayed within the body of the "interaction matrix."

SemSys operations that block asynchronoudy are treated as pseudo-users of SemSys.
These Asynchronous Users are displayed in the same manner as ordinary users, thus
providing a consstent visud display of al pending SemSys asynchronous operations.

St at us
I nterva Semaphores. ..
I
Users User - Semaphore
I nteraction
Mat ri x
Conmmrand | Capacity

Monitor status and interval setting are shown at the top left portion of the screen. SemSys
capacity datais displayed at the lower right portion of the screen. The command entry
window is & the lower |eft of the screen.

01/22/2004
Rev. No.: 4

4-18 X+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

4.4.2.1 Sample SemView Screen Display

ommand Prompt - semview 750

Version: 3.0.0 *x% HIPC SemSvs Monitor e
Instance: c-hdannvigsmitest [sample]
1 2

SEMAPHORES
ritSec HetLines HetReady
Senll1ew 10] [CLEAR]

Startlp
CormProg 0
DBPFrog
Userl
User?
Userd

Al 7-007
Al1E-006
AD1%-005

[
Status: [
Req List
Wait List
Hold List

218
How 25 1%:28:40

3710
Users: 10520 :
Hodes: 637100 ¢ 63¥) ha

o —————

4.4.2.2 User Entries
Userslogged into the ingtance are listed on the |eft Sde of the interaction matrix, one line
per user.
Each user entry includes:
O The user's SemSysuser ID
O The usr'slogin name
O The user's blocking status (if any)
O The blocking timeout vaue (if any)

An example (not associated with the screen presented above) follows.

02 StartUp
03 CommProg ANY
06 DBProg ALL 24
39 A039-003 ATM

In this example, four SemSys users are identified--three real users and one asynchronously blocked
operation.

O SemSys user 2 has the login name St art Up. The user is not blocked on any
SemSys operation.

O SemSys user 3 has logged in as ConmPr og. He is blocked on a SemAcquire()
or SemWait()operation involving SEM_ANY. He is blocked indefinitely and thus
has no timeout vaue.

01/22/2004
Rev. No.: 4

SemSys 4-19

OO0 SemSys user 6 has logged in as DBPr og. He is blocked on a cumulative dl

(SEM_ALL) operation and has a timeout pending with 24 seconds remaining on
the blockage.

0 SemSys user 39 is a pending asynchronous operation. It is blocked on an atomic
dl (SEM_ATOM C) operation. The user name ASYNC- 03 is assgned to the
asynchronous operation to indicate that the operation was initiated by user 3.

4.4.2.3 Semaphore Entries
The instance's semaphores are identified across the top of the interaction matrix.
Each semaphore entry includes:

O The Sid of the semaphore.

O The user-assigned ASCII name of the semaphore.

O The semaphores current datus. for resource semaphores, it is the currently
avalable and the maximum number of copies for event semaphores, it is the
current state of the semaphore (CLEAR or SET).

An example (not associated with the screen presented above) follows.
0 1 4

Crit Sect Buffers Net Up
[0 1] [3 10] [SET] ...

In this example:

O Semaphore Cri t Sect is shown to have an Sid of 0. It is a resource semaphore
with a maximum copy count of 1 and a currently available copy count of O (i.e,
auser isholding the critical section).

O Semaphore Buf f er s has Sid 1. It has current and maximum copy counts of 3
and 10 respectivey (i.e., 7 buffers are currently checked out).
O Semaphore Net Up has Sid 4. It is an event semaphore. It is currently "set.”
4.4.2.4 Interaction Matrix Cells

Each cdl on the SemView interaction matrix describes the current relaionship between a
user and a semaphore. The exact information appearing in the call depends on the type of
semaphore involved.

For resource semaphores, the cell reports:
O The number of copies of the resource semaphore held by the user.
O The number of copies of the resource semaphore requested by the user.

Examples:
A cell value of " 3 1 " indicates that the user holds three copies of the resource semaphore and is
currently blocked attempting to acquire an additional copy.

A cell containing " . 2 " means that the user does not hold any copies of the semaphore and is
attempting to acquire two.

A cell containing " 1 . " means that the user holds one copy of the semaphore and is not attempting
to acquire any more.

01/22/2004
Rev. No.: 4

4-20 X+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

A cell containing " . . " means that the user isn't holding or attempting to acquire any copies of the
semaphore.

For event semaphores, the cell reports:

? Whether or not the user is blocked on the semaphore, i.e., waiting for the event
semaphore to become "s&t."

Examples:

A cell having " ! " (an exclamation mark) means that the user is waiting for the semaphore to be
"set."

A cell with" . ." meansthat the user is NOT waiting for the semaphore to be "set."

4.4.3 Monitoring Modes

The topic of monitoring modes-the available options and when they should be used-s
described in detail in the X«pc User Guide.

4.4.4 SemView Zoom Windows

SemView provides the developer with two zoom capabilities.

4.4.4.1 Zooming in on a User

The SemView user zoom window creates a detailed display of the Satus of a particular

SemSys user. The command siring for user zooming isz uN where N isthe Uid to be
zoomed in on.

Example:

The command for opening a zoom window on the user having a Uid of 4 is.
Command> zu4

Status: [NOT BLOCKED] ud: 4
Req List : Name: DownLoad
Wait List : Pid: 1023
Hold List : 2 2 4 Login: Dec 23
12: 23

User DownLoad holds two copies of the resource Sid 2 and one copy of resource Sid 4.
The user is otherwise not currently blocked on any SemSys semaphores.

Status: [BLOCKED: ALL] ud: 4
Req List : 0 1 Name: DownLoad
Wait List : 0O 1 Pid: 1023
Hol d Li st 2 2 4 Logi n: Dec 23
12: 23

The user is now blocked acquiring a copy of semaphore Sid0and Sid 1 (i.e,, ALL).

01/22/2004
Rev. No.: 4

SemSys 4-21

Status: [BLOCKED: ALL] ud: 4
Req List : 0 1 Name: DownLoad
Wait List : 1 Pid: 1023
Hold List : 2 2 4 0 Logi n: Dec 23
12: 23

Sid 0 has become available and was acquired. The user continues to block for Sid 1.

Note that the original request is reported as Req Li st :, and the outstanding part of the request is
identified as Wait List:.

Status: [NOT BLOCKED] ud: 4
Req List : Name: DownLoad
Wait List : Pid: 1023
Hold List : 2 2 4 0 1 Login: Dec 23
12: 23

The request has been satisfied and the user is no longer blocked.

4.4.4.2 Zooming in on a Semaphore

It isaso possible to zoom in on a SemSys semaphore. The information contained in the
zoom window depends on the type of semaphore being watched.

The SemView semaphore zoom window creetes a detailed display of the status of a
particular SemSys semaphore. The command string for semaphore zoomingiszs N
where N isthe Sid to be zoomed on.

Example:

The command for opening a zoom window on the semaphore having Sid of 6 is:

Command> zs6

If Sid 6 is a resource semaphore, the zoom window will appear as.

Maxi mum Val ue: 5 Current Value: 1| Sid: 6 [Resource]
Last uid : 3 Nane: Buffer Sem
VWait List : Createlid: 2
Hold List : 2 2 1 3 Login: Dec 23 12:23

BufferSem is aresource semaphore with a maximum copy vaue of five. It currently has
only one copy avalable. The remaining four copies are held by Uid 2 (holding two
copies), Uid 1 and Uid 3. There are currently no users blocked on the sesmaphore. The
Last Ui d: fiddidentifiesthe user that most recently acquired or released the
semaphore.

Maxi mum Val ue: 5 Current Value: 0| Sid: 6 [Resource]
Last Uid : 4 Name: Buffer Sem
Wait List : 6 Createlid: 2
Hol d Li st 2 2 1 3 4 Login: Dec 23 12:23

01/22/2004

Rev. No.: 4

4-22 X+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

Uid 4 has acquired the last copy of Sid 4. Uid 6 has dso attempted to access a semaphore
copy and is currently blocked.

If Sid 7 is an event semaphore, the zoom window will appear as:

Status: [CLEAR] Sid: 7 [Event]
Last Ud : 1 Nanme: Radi ati onLeak
Wait List : 4 2 12 1 CreatelUid: 13
Login: Dec 23 12:23

The event semagphore window is very smilar to the resource zoom window. Themain
differenceisthat thereisnoHol d Li st : line That isbecause event ssmaphores are
not held.

Here, event semaphore Radi at i onLeak isbeing monitored by four Uids (i.e., users).
If aradiation leak is detected, prescribed stepswill be taken (e.g., containing the accident,
shutting access to the accident's location, notifying plant personnd, etc.).

4.4.5 Panning within SemView

Panning within SemView lets the developer observe different sections of the interaction
matrix. Thisis especidly useful when azoom window is open and parts of the matrix are
not vishle

All panning commands sart with p.

Vertica panning (up and down) to observe other usersis done by specifying au (for
user) and a Uid to pan to.

Example:
Comand> pu8

The above command scrolls the interaction matrix so that Uid 8 is at the top of the

display.
Horizontal panning (right and left) to monitor other semaphoresis accomplished by
goecifyingan s (for semaphore), and a Sid to pan to.

Example:
Comand> ps4
The above command scrolls the interaction matrix so that Sid 4 isthefirgt displayed (Ieft-
most).
Example:

Comrand> po

The command po returns the display to the origin of the interaction matrix.
4.4.6 Stopping SemView
SemView monitoring isterminated viatheq command.

Example:
Comand> q

01/22/2004
Rev. No.: 4

SemSys 4-23

Bringing down SemView has no effect on the underlying activities of the SemSys
ingtance. It continues to function unaffected. Any overhead incurred by monitoring is
eiminated.

01/22/2004
Rev. No.: 4

Advanced Topics 5-1

5. ADVANCED TOPICS

5.1 Asynchronous Operations

5.1.1 Introduction

X+pcC operations that can block can complete synchronoudly or asynchronoudy. The WAI T
and TI MEQOUT synchronous blocking options actudly block the program that initiated the
Xvpc operation until the operation completes-either successtully or in failure—at which
time the program becomes unblocked and continues its processing.

X«pc asynchronous options provide a more powerful set of dternatives. Unlike the
synchronous options, asynchronous options indicate that the subject X«pc operation
should complete in the background, without blocking the caling program. The program

is alowed to proceed. When the operation completes, some form of natification is given
by X«Pc, depending on the asynchronous option specified at the start of the operation.
X«pc supports three asynchronous options. Each describes a different form of notification
to be given by X«pc at the completion of the operation.

O The CALLBACK option directs X«Pc to execute a user-specified callback function
upon completion.

O The POST option directs X4pCc to set a SemSys event semagphore when the
operation completes.

O The | GNORE option directs X«pc to dlow the operation to complete "slently”
with no explicit form of natification.
The three options are described in more detail below. An operation that isinvoked
asynchronoudy returnsthe MOM_ER_ASYNC, QUE_ER_ASYNC return code as
appropriate.
5.1.2 The Asyncresult Control Block (ACB)

Tracking of an asynchronous X«IPc operation is achieved using an Asynchronous Result
Control Block (ACB). An ACB is a user-declared structure (of type ASYNCRESULT)
that is associated with an asynchronous X+ipc operation. Each X«pc operation that is coded
with an asynchronous blocking option is required to specify an ACB (actualy, a pointer

to an ACB) dong with the option. (Examples are provided below.) The ACB isthe
vehide by which Xspc transmits return data when the operation completes.

An ACB dso contains anumber of fields that support the tracking of asynchronous
operations while they are dill pending.

When an X«PC operation executes asynchronoudly, the operation's ACB is set with
information for tracking the operation.

O An asynchronoudy blocked operation is treated as a pseudo-user within the
subsystem that it blocked. As such, the pending operation is recorded as an
entry in the subsysem's user table and is assgned its own User ID—or, more
precisely, an Asynchronous User Id (AUid). The AUI d fidd of the ACB is st

with the blocked operation's AUid.

01/22/2004
Rev. No.: 4

5-2 X+PC Version 3.4.0: QueSys/MemSys/SemSys User Guide

O

O

O

User information functions that accept a Uid as an argument, such as
SeminfoUser(), accept an AUId as wel. Xdpc 's subsystem monitors present
datus on AUids in the same manner as for ordinary Uids. This provides the
developer with the means for tracking al pending asynchronous operaions
occurring within an indance, without having to "invent® gpecidized async
monitoring tools.

Asynchronous operations that succeed without blocking have the AUId fidd of
their associated ACB et to zero.

The Async St at us fidd remans set as XI PC_ASYNC | NPROGRESS aslong
as the operation is pending completion. When the operation completes, the fied
is sat to XI PC_ASYNC_COWMPLETED. This is mog useful for asynchronous
operations started with the 1 GNORE option. In that case, the AsyncStatus field
being set to XI PC_ASYNC_COMPLETED is the only direct indication given by
Xvpc that the operation has completed.

The User Dat a fidds are useful for passng application information between
the point where the asynchronous operatiion is initiated, and the logic that
handles its natification of completion. The information passed is application
dependent.

The OpCode fidd is set to the appropriate XI PC_OPCODE_ APl NAME macro
vaue that identifies the X«pc function call associated with the ACB. Examples
indude XI PC_OPCODE_SEMMAI T, XI PC_OPCODE_QUESEND, €tc.

The remaining dements within the ACB are a union of structures, one structure per
blockable X«pc API. The appropriate structure is set with return data from the completing
asynchronous operation with which it is associated.

The ASYNCRESULT dructure is defined as.

/*

*

*

The ASYNCRESULT Control Block (ACB) structure is used for exam ning the
results of an asynchronous operation. The structure contains a union
that defines returned fields for every XIPC operation that may bl ock.

*/

/***

* *

Macr os

'k**/

#define XI PC_ASYNC | NPROGRESS 1
#def i ne XI PC_ASYNC_COVPLETED 2

#define ACB_FI ELD(AcbPtr, Function, Field) AcbPt r - >Api . Function. Fi el d

/***

* %

"ACB' - ASYNCRESULT Control Block ---

***/

struct _ASYNCRESULT /* Result of Async APl call */
XINT AU d; /* Async Ud "receipt" */
XINT AsyncSt at us; /* Xl PC_ASYNC_| NPROGRESS or
Xl PC_ASYNC_COMPLETED*/
XINT UserDat al; [* --- user defined usage ---- */
01/22/2004

Rev. No.: 4

Advanced Topics 5-3

XINT User Dat a2; [* --- user defined usage ---- */
XI NT User Dat a3; [* --- user defined usage ---- */
XINT OpCode; /* Async operation, key to union */
uni on
{
struct
XI NT Ret Si d;
XI'NT Ret Code; /* of conpl eted async operation */
}
SemMi t;
struct
XI NT Ret Si d;
XI'NT Ret Code; /* of conpl eted async operation */
}
SemAcqui r e;
struct
MSGHDR MsgHdr; /* The resultant MsgHdr */
CHAR FAR *MsgBuf ;
XI NT Ret Code; /* of conpleted async operation */
}
QeWite;
struct
{
MSGHDR MsgHdr ; /* The resultant MsgHdr */
XI NT Ret Q d;
Xl NT Ret Code;
}
QuePut ;
struct
{
MSGHDR MsgHdr ; /* The resultant MsgHdr */
Xl NT Priority;
XI NT Ret Q d;
XI NT Ret Code;
}
QueCet ;
struct
{
CHAR FAR * MsgBuUf ;
XI NT Ret Q d;
Xl NT Ret Code;
}
QueSend;
struct
{
CHAR FAR * MsgBuUf ;
XI NT MsgLen;
XI NT Priority;
XI NT Ret Q d;
XI NT Ret Code;
}

01/22/2004
Rev. No.: 4

5-4 X+PC Version 3.4.0: QueSys/MemSys/SemSys User Guide

QueRecei ve;

01/22/2004
Rev. No.: 4

Advanced Topics 5-5

struct
{
/*
* Only used for passing error info re
* failed QueBurstSend() operation.
/

XI NT SeqNo; /* of burst-send nmessage that failed */
XI'NT Target Q d;
XI NT Priority;
XI NT Ret Q d;
Xl NT Ret Code;
}
QueBur st Send;
struct
{
/*

* Only used for handling an asynchronous
* QueBur st SendSync() operation.

*/
XI'NT SegNo; /*of |ast burst-send nsg enqueued */
XI NT Ret Code;

}
QueBur st SendSync;

struct

{
Xl NT M d; /* of target */
XI NT Ofset; /* of target */
XI NT Lengt h; [* of target */
CHAR FAR *Buf f er;
XI NT Ret Code;

}

MenmWite;

struct

{
Xl NT M d; /* of target */
XI NT Ofset; /* of target */
XI NT Lengt h; [* of target */
CHAR FAR *Buf f er;
XI NT Ret Code;

}

MenRead;

struct

{
SECTI ON Ret Sec;
XI NT Ret Code;

}

MenSecOmn;

struct

{
SECTI ON Ret Sec;
Xl NT Ret Code;

}

MenlLock;

01/22/2004
Rev. No.: 4

5-6 X+PC Version 3.4.0: QueSys/MemSys/SemSys User Guide

struct
MOM MSG D Msgl d;
XI NT Ret Code;
}
MonSend;
struct
{
CHAR FAR *MsgBuUf ;
XI NT MsglLen;
MOM MBA D Msgl d;
XI NT Repl yAppQueue;
XI NT Ret Code;
Xl NT Tracki ngLevel ;
}
MonRecei ve;
struct
{
XI NT Ret Code; /* of conpleted async operation */
}
MonEvent
}
Api ;

}s

5.1.3 ACB Return Values

The results of an asynchronously blocked operation are returned within the ACB of the

completed operation. The one important exception to thisis the treetment of what can be
generdized as "text data.”

When an X«Pc operation that specifies atext buffer as an argument blocks asynchronoudy and then
subsequently completes, the originaly specified user text buffer is used when the operation
completes. So, for example, acompleting QueReceive() operation receives data into the text data
buffer that was specified when the QueReceive() was initidly cdled. Thisistruefor dl of the X«pc
functions that manipulate "text data" They are MomSend(), MomReceive(), QueWrite(),
QueSend(), QueReceaive(), MemWrite() and MemRead().

It istherefore a dangerous practice to pass stack space variables as text data arguments to
asynchronoudy blocking X«pc functions cals. Static or hegp storage variables should be

used instead.

5.1.4 The Callback Option

The CALLBACK option directsX«Pc to interrupt the calling program when the
asynchronoudy blocked operation completes by having it execute a user specified
cdlback function. Thisform of completion natification isthe most severe in terms of
"rudeness’ and should be used in Situations where the indicated urgency is cdled for.
Example

01/22/2004
Rev. No.: 4

Advanced Topics 5-7

/*

* Wit for any one of three event semaphores to becone set.

* A callback function will execute when the operation conpletes.
*/

ASYNCRESULT Acbh;

VO D Funct () ;
XI NT Ret Si d;
Xl NT Ret Code;

Ret Code = SenmMit (SEM ANY,

SenLi st (Sidl, Sid2, Sid3, SEMEQ),
&Ret Si d,

SEM CALLBACK(Funct, &Ach)

)
i f (RetCode == SEM ER ASYNC)
{
/*
* (Qperation executing asynchronously.
*/
printf ("SemMit executing asynchronously, AUd = %l\n",
Acbh. AU d);
}
el se
{
/*
* Error !!
*/
}
va D
Funct (Acb)

ASYNCRESULT *Acb;

printf ("SemMit conpleted.\n");
printf ("RetCode = %\ n", Ach->Api.SemMit. RetCode);
printf ("RetSid = %l\n", Acb->Api.SemMit.RetSid);

}

Because it is sometimes important that an operation return synchronoudly if it can
complete without blocking, resort to the asynchronous option only when the operation
cannot immediately complete.
The above example could be modified as follows to force such behavior:
/* Wait for any one of three events semaphores to become set.
* Bl ock asynchronously, if necessary. therw se, return

* immediately with the operation's result.
*/

01/22/2004
Rev. No.: 4

5-8 X+PC Version 3.4.0: QueSys/MemSys/SemSys User Guide

ASYNCRESULT Acb;

VA D Funct () ;
XI NT Ret Si d;
XI' NT Ret Code;

Ret Code = Semit (SEM ANY,
Senlist(Sidl, Sid2, Sid3, SEMEQ),
&Ret Si d,
SEM RETURN | SEM CALLBACK(Funct, &Ach)
)

if (RetCode == SEM ER ASYNC)

{
/*
* (Qperation bl ocked asynchronously.
*/
printf ("SemMit bl ocked asynchronously, AUd = %\ n",
Acbh. AU d);
}
el se
{
/*
* Qperation conpleted i mediately. Process results in-line.
*/
}
VO D
Funct (Acb)
ASYNCRESULT *Acb;
{
printf ("SemMit conpleted.\n");
printf ("RetCode = %\ n", Acb->Api.SemMit.Ret Code);
printf ("RetSid = %l\n", Acb->Api.SemMit.RetSid);
}

It is often convenient to have asingle calback function serve multiple pending
asynchronous operations. The application coud then use the various ACB User Data
filds to discern between the pending operations as they complete. One option: assign an
identifying code to each ACB, using one of the User Datafidlds.

5.1.5 The Post Option

The POST option directsX«IPc to set the specified SemSys event semaphore upon
completion of the specified operation. Thisform of completion notification isless
intrusive than the CAL L BACK option in that no program is directly interrupted as aresult
of the operation's completion.
Example

/* Recei ve nessage having Priority = 100.

* Semaphore "PostSid" is to be set when the nessage is received.
*/

01/22/2004
Rev. No.: 4

Advanced Topics 5-9

Ret Code = QueReceive (QUE_Q_ANY,
Queli st (QUE.M PREQ(Q d1, 100), QUE_EQ),
MsgBuUf ,
MsglLen,
&Ret Pri o,
&Ret Q d,
QUE_POST(Post Si d, &Ach)
)

if (RetCode == QUE_ER ASYNC)

{
/*
* (Qperation executing asynchronously.
*/
printf ("QueReceive executing asynchronously, AU d = %\ n",
Acb. AU d);
}
}
el se
{
/*
* Error !!
*/
}

This example may aso be modified to return synchronoudly if the operation succeeds
without blocking:

01/22/2004
Rev. No.: 4

5-10 X+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

/*

* Receive nessage having Priority = 100. Bl ock

* asynchronously if necessary. Qherw se, operation
* results are returned i mredi ately.

*/

Ret Code = QueRecei ve (QUE_Q _ANY,

Queli st (QUE_M PREQ(Q d1, 100), QUE EQ.),
MsgBuf ,

MsglLen,

&Ret Pri o,

&Ret Q d,

QUE_RETURN | QUE_PCST(Post Sid, &Ach)

)
if (RetCode == QUE_ER ASYNC)
{
/*
* (Qperation bl ocked asynchronously.
*/

printf ("QueReceive bl ocked asynchronously, AU d = %\ n",
Acbh. AU d);
}

el se

{
/*
* Qperation Conpleted inmediately. Process results in-line.
*/

}

Reacting to a completed asynchronous operation that specified the POST option can be
handled by the origind caling program a some later point in itslogic when it is
convenient for it to issue a SemWait() cal regarding the post semaphore, or possibly by a
second program waiting for the post ssmaphore to become set.

In fact, the wait for the post semaphore can be asynchronous aswell. It is plain to see
how a domino- effect can very easily be created between processes.

5.1.6 The Ignore Option

Thel GNORE option directs X«Pc to complete the subject operation slently, if it blocks
asynchronoudy. Thisform of natification is the most passive of the asynchronous options
in that no explicit notice of the operation's completion is given by X«pc. The ACB's
AsyncSatus fidd isset to XI PC_ASYNC _COMPLETED when the operation it represents
completes. The field may be examined periodically to determine when this has occurred.
Consder the following example: If segment Mid islocked a the time of the MemWrite()
cdls, then the two operations will remain pending asynchronoudy until the ssgment is
unlocked and the MemWiite() operations are permitted to complete. No explicit noticeis
given by X«pc when the operations complete. The two ACB's can be examined later to
confirm completion.

Example

01/22/2004
Rev. No.: 4

Advanced Topics 5-11

/*

* Wite two records to a shared nenory table.

* The operations conplete silently in the background.
*/

Xl NT Md, Ofsetl, Ofset?2;
XI NT Si zel, Size2, RetCode;
ASYNCRESULT Acbl, Acbh2;

Ret Code = MenWite (Md, Ofsetl, Sizel, MEM | GNORE(&Acbl));

if (RetCode != MEM ER _ASYNC)
/*
* Error !!
*/

Ret Code = MenWite (Md, Ofset2, Size2, MEM | GNORE(&Acb2));
i f (RetCode != MEM ER_ASYNC)
/*

* Error !!
*/

Here again the MemWrite() function calls could have been coded to return
synchronoudly, if they complete without blocking, by specifying the MEM_RETURN flag
logicaly ORed with the MEM | GNORE option.
Example

Ret Code = MemWite(..., MEM RETURN | MEMIGNORE(...));

5.1.7 Aborting a Pending Asynchronous Operation

It is occasiondly necessary for a program to abort a pending asynchronous operation
before it completes. The functions MomAbortAsync(), QueAbortAsync(),
SemAbortAsync() and MemAbortAsync() can be used to cancel blocked asynchronous
operations in their respective subsystems.

The functions take one argument:

O The AUid of the asynchronous operation to abort.
Example

01/22/2004
Rev. No.: 4

5-12 X+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

if (Semit(SEM ANY,
Si dLi st
&Ret Si d,
SEM | GNORE(&Ach)) == SEM ER_ASYNC)
/*
* Do other work ...
*/

/*

* |f operation is still pending, then
* abort it.

*/

if (Acb. AsyncStatus == Xl PC_ASYNC_| NPROGRESS)
SemAbor t Async(Acb. AU d) ;

5.1.8 Mixing Asynchronous and Synchronous Operations

The current version of Xgpc employs an interrupt mechanism for implementing

asynchronous functiondity on mogt of its supported platforms. Exceptionsinclude MS-
Windows 3.x, Windows NT and X-Windows. This means that a process that issues an
X«Pc asynchronous operation must be prepared to be silently interrupted by Xe«pc when the
operation completes. At that time X«pc internaly reacts to the operation's completion.
Thisis an important congderation if the process can block synchronoudy & points within
itslogic. Calsto such synchronous operations should be coded so that they are restarted

if interrupted.

The interrupt mechanisms employed are platform-specific. Information about each
mechanism can be found within the relevant Platform Notes.

5.1.9 Conclusion

Using X«Ipc ‘s asynchronous blocking options, it is possible to have asngle program
initiate multiple pardld X«pc operations and to react to them individualy asthey
complete. When used in conjunction with X«Pc ‘s asynchronous trigger mechanism, it
becomes possible to build elaorate event-driven network applications of immense
capability—and to do so with relative ease.

01/22/2004
Rev. No.: 4

Advanced Topics 5-13

5.2 X" IPC Triggers

X+PC triggers provide ameans for asynchronoudy monitoring ongoing activity within an
instance's QueSys and MemSys subsystems.

5.2.1 QueTrigger() - Defining a QueSys Trigger

A QueSystrigger isalogicd link between a QueSys event and a SemSy's event
semaphore. The semaphore becomes set when the QueSys event occurs.
A QueSystrigger definition has two components:

O The Sd of the event semaphore that is to be set when the monitored QueSys
event occurs.

O A specification of the QueSys event that is to be monitored.
The list of QueSys events that can be specified is quite extensive and alows for awide
range of possible trigger specifications. The entireligt is given below.
Defining a new QueSys trigger is accomplished using the QueTrigger() function.
QueTrigger() takes two arguments:

O Thetrigger's Sid

O The trigger's QueSys event specification.
Example:
/*
* Create a trigger that will set Sidl when the nunber

* of messages on Q dl exceeds 75%of its message capacity.
*/

QueTrigger (Sidl, QUE_T MSG H GH Q@ d1, 75));

The above example creates atrigger that will set Sid1 when the message capacity rises
above the 75% full mark. This can be used for automaticaly starting a queue's spoaling.
A process or thread can wait for Sid1 to be set a which point it could start spooling for
Qid1. It may aso spawn additiona message consuming programs.
It is a0 possible to create a second trigger that will "fire" when the queue's message
capacity dips below 50% full.
Example

/* Set a second trigger to "fire" when the queue drops

* bel ow 50% nessage capacity. This trigger uses Sid2.
*/

QueTrigger (Sid2, QUET_MGS LONQ d1, 50));

This second trigger can smilarly be used to automaticaly turn a queue's spoaling off
when the queue has emptied below 50%.

01/22/2004
Rev. No.: 4

5-14 X+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

The complete ligt of QueSys event specificationsis:

Trigger

Description

QUE_T_BYTES HIGH(Q d, N)

QUE_T_BYTES_LONGQ d, N)

QUE_T_MSGS_HI GH(Q d, N)

QUE_T_MSGS_LON Qi d, N)

QUE_T_PUT(Q d)
QUE_T_CET(Q d)
QUE_T_PUT_PREQ(Q d, P)

QUE_T_CET_PREQ(Q d, P)

QUE_T_PUT_PRGT(Q d, P)

QUE_T_CET_PRGT(Q@ d, P)

QUE_T_PUT_PRLT(Q d, P)

QUE_T_CET_PRLT(Q d, P)

QUE_T_USER PUT(Q d, Uid)

QUE_T_USER GET(Q d, Uid)

QUE_T_POOL_HI GH(N)

QUE_T_POOL_LOA(N)

QUE_T_HEADER_HI GH(N)

QUE_T_HEADER_LOA(N)

Trigger event when number of bytes written to queue Qid
becomes higher than N percent of queue bytes capacity.

Trigger event when number of bytes written to queue Qid
becomes lower than N percent of queue bytes capacity.

Trigger event when number of messages written to queue Qid
becomes higher than N percent of queue messages capacity.

Trigger event when number of messages written to queue Qid
becomes lower than N percent of queue messages capacity.

Trigger event when amessage is put onto queue Qid.
Trigger event when amessage isremoved from queue Qid.

Trigger event when a message of priority P is put onto queue
Qid.

Trigger event when a message of priority P isremoved from
queue Qid.

Trigger event when a message of priority greater then P is put
onto queue Qid.

Trigger event when a message of priority greater then P is
removed from queue Qid.

Trigger event when a message of priority less then P is put
onto queue Qid.

Trigger event when a message of priority less then P is
removed from queue Qid.

Trigger event when a message is put onto queue Qid by user
vid.

Trigger event when a message is removed from queue Qid by
user Uid.

Trigger event when the allocated size of the message text pool
becomes higher than N percent of its capacity.

Trigger event when the allocated size of the message text pool
becomes lower than N percent of its capacity.

Trigger event when the number of allocated message headers
becomes higher that N percent of the capacity.

Trigger event when the number of allocated message headers
becomes lower that N percent of the capacity.

5.2.2 QueUntrigger() - Undefining a QueSys Trigger
A program can undefine a previoudy defined QueSystrigger by issuing acal to the

QueUntrigger() function.

The QueUntrigger() function takes the same pair of arguments as the QueTrigger()

function:
O Thetrigger's Sid

01/22/2004
Rev. No.: 4

Advanced Topics 5-15

O The trigger's QueSys event specification.
The vdue of the two arguments must match those that were specified when the trigger
wasinitidly defined.
Example
/*
* Undefine the two triggers defined above.
*)

QueUntrigger (Sidl, QUE T MSG H GHQd1, 75));
QueUntrigger (Sid2, QUE_ T _MSG LOW(Q@ d1, 50));

5.2.3 MemTrigger() - Defining a MemSys Trigger

A MemSystrigger isalogicd link between aMemSys event and a SemSys event
semaphore. The semaphore becomes set when the MemSys event occurs.
A MemSystrigger definition has two components:

O The Sd of the event semaphore that is to be set when the monitored MemSys
event occurs.

O A specification of the MemSys event that is to be monitored.
Theligt of MemSys events that can be specified is quite extensive and dlows for awide
range of possible trigger specifications. The entire ligt is given below.
Defining anew MemSys trigger is accomplished using the MemTrigger() function.
MemTrigger() takes two arguments.

O Thetrigger'sSd
O The trigger's MemSys event specification.
Example
/*
* Create a Trigger that will set Sidl when any data is

* witten to the first 1K bytes of segment M d1l.
*/

Menirri gger (Sidli, MEM T _WR TE(M dl1, 0, 1024));

The complete list of MemSys event specifications follows:

Trigger Description

MEM T_READ(M d, O fset, Size) Trigger event when data is read from the shared
memory area specified by Mid, Offset and Size (or
any part of it).

MEM T WRITE(M d, O fset, Size) Trigger event when data is written into the shared
memory area specified by Mid, Offset and Size (or
any part of it).

MEMT LOCK(Md, Ofset, Size) Trigger event when the shared memory area
specified by Mid, Offset and Sze (or any part of it)
is locked.

MEM T_UNLOCK(M d, Offset, Size) Trigger event when the shared memory area specified

by Mid, Offset and Size (or any part of it) isunlocked.

01/22/2004
Rev. No.: 4

5-16 X+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

MEM T_USER READ(M d, Offset, Size,
MEM T_USER WRI TE(M d, Offset, Size,
MEM T_USER LOCK(M d, Offset, Size,

MEM T_USER_UNLOCK(M d, Offset, Size,

MEM_T_POOL_HI GH(N)

MEM T_POOL_LOWA(N)

MEM_T_SECTI ON_HI GH(N)

MEM_T_SECTI ON_LOW(N)

Ui d)

Trigger event when user Uid reads data from the
shared memory area specified by Mid, Offset and Size
(or any part of it).

Ui d)

Trigger event when user Uid writes data into the
shared memory area specified by Mid, Offset and Size
(or any part of it).

Ui d)

Trigger event when user Uid locks the shared
memory area specified by Mid, Offset and Sze (or
any part of it).

Ui d)
Trigger event when user Uid unlocks the shared
memory area specified by Mid, Offset and Sze (or
any part of it).

Trigger event when the allocated size of the shared
memory pool becomes higher than N percent of its

capacity.
Trigger event when the allocated size of the shared
memory pool becomes lower than N percent of its
capacity.

Trigger event when the number of allocated sections
becomes higher than N percent of the capacity.

Trigger event when the number of allocated sections
becomes lower than N percent of the capacity.

5.2.4 MemuUntrigger() - Undefining a MemSys Trigger
A program can undefine a previoudy defined MemSys trigger by issuing acdl to the

MemUntrigger() function.

The MemUntrigger() function takes the same pair of arguments as the MemTrigger()

function.
O Thetrigger's Sid

O The trigger's MemSys event specification.

The vaue of the two arguments must match those that were specified when the trigger

wasinitidly defined.
Example
/*
* Undefine the trigger defined above.
*/

Menntrigger (Sidl, MEMT _WR TE(M d1,

5.2.5 Trigger Performance Considerations

0, 1024)):

Thereis certain overhead incurred when using X«Pc triggers within an gpplication. This
pendty is proportiona to the number of trigger definitions in the system.

01/22/2004
Rev. No.: 4

Advanced Topics 5-17

The correct gpproach for minimizing overhead is to undefine triggers when they are no
longer necessary. Dormant triggers (i.e,, triggers that are monitoring events that will

never happen) should not be left defined as they can accumulate to dow an gpplication's
performance.

01/22/2004
Rev. No.: 4

5-18 X¢+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

5.3 Using Message Select Codes and Queue Select Codes

QueSys provides the systems devel oper with great flexibility in sending and receiving
messages. It is this feature that most sets QueSys gpart from existing message queuing
facilities. The key to successful utilization of QueSysisagood understanding of when
and how to use the various message and queue saect codes. This section offers a brief
tutorial that describes these ‘whens and hows.

All QueSys operations that dispatch or retrieve messages to and from QueSys queues
require a QueSelectCode and a QidList argument. It is the combination of these two
arguments that determines the destination queue of digpatched messages, as well asthe
identity of retrieved messages. It is therefore essential to understand the function of these
two arguments and how they interact.

This document uses a shorthand notation for writing QueSelectCode and QidList
argument specifications. Using this shorthand it is possible to examine and explore the
open-ended possihilities afforded to the systems devel oper. Instead of formally
describing the shorthand notation, the document demonstrates via examples.

5.3.1 Dispatching Messages onto QueSys Queues

Dispatching messages via QueSend() and QuePut() is presented first, sinceitisless

complex than the retrieva of messages.

gt)isoatchi ng messages onto QueSys message queues can be viewed as occurring in two
eps:

o Firg, alig of one or more queuesis defined.

O Then, the message is placed onto one of the queues in the list, depending on
some criteria

As an example, consder a programmer who wishes to send a message onto the shortest
queue of theligt of queues a, b and ¢ (perhaps to guarantee balanced queue loads). The
programmer would first define the queue list {a, b, ¢}, and then specify the 'Shortest
Queue criteria together with the queue list when digpatching the message using the
QueSend() or QuePut() function cals. This can be easily expressed as:

QE QSHQYa, b, c}
gmilarly, the expression for sending a message onto the longest queue in the list would
e:

QUE_Q LN a, b, c}

The syntax for such dispatch expressons is thus of the form:
QueSel ect Code{Q dLi st}

The QueSel ectCodes that may be used to dispatch a message using QuePut or QueSend
are:
QUE _ QSHQ The shortest queue

&j & Thelongest queue o
E_ The queue having the highest priority message
The queue having the lowest priority message
E EA The queue having the earliest arrived (oldest) message
E_ The queue with the latest arrived (most recent? message
QUE QANY Theflrst queuein thelist that has room (not full)

01/22/2004
Rev. No.: 4

Advanced Topics 5-19

Examples of their usage include;
QUE _Q LPQ(x, vy, z} Pace the outgoing message on one
of the queuesx, y or z, having the lowest priority
m e.

€SSag
QUE_Q EAQXqg, r, s} Place the outgoing message on one
of thequeues g, r or s, having the earliest arrived
(oldest) message. This salects queuesin a'least recently
accessed' manner.
QUE_Q LAQXm n} Pacethe outgoing message on one of the queuesmor n,
having the latest arrived (most recent) message.

QUE_Q SHQ{j, k, nt Place the outgoing message on the
shortest of the three queuesj, k or m. Thisachieves
gueue bdancing.

QUE_Q ANY{a, b, c} Pace the message on the firgt of the

queue g, b or ¢ that has room for another message. The
gueues are examined in the order of specification.

5.3.2 Retrieving Messages from QueSys Queues

Retrieving messages in the QueSys system can smilarly be viewed as occurring in two
geps, but with a minor variation:

o Frg, the progran defines a lisg of message queues. As pat of this definition,
one message is desgnated as the 'candidate message for each of the listed
queues, usng aMsgSelectCode. For example, the specification

QUE_M HP(a), QUE_M EA(b), QUE M LA(c)}
defines alist of three queues a, b, and ¢, where the candidate messages are:
QUE_M HP(a), thehighes priority message on queue a
QUE_M EA(b), theearliest arrived message on queueb.
QUE_M LA(c), thelatest arrived message on queueC.

o A messsge then gets sdected from the lis of candidate messages usng a
QueSdlectCode. The sdected message is retrieved and returned to the cdling
function. Thus, for example, the specification

QUE_Q HP{QUE_M EA(a), QUE_M EA(b)}
compares the oldest (earliest arrived) messages on queue a and queue b and
returns the one with the higher priority. Similarly, the specification

E EA E M HP(X), E M HP , E M HP(z
retur(rgllsJ thTe(ngest %thHe highest- p()rio)rity rr%é%@es‘frorrg alaajes%)yénd' i (2)}

Now congder ancther retrieval example having adightly different twist:
QUE_Q LNQ{QUE_M HP(a), QUE_M HP(b), QUE_ M HP(c)}
Theinterpretation of this expression is asfollows: Firg, the highest priority
message on the three respective queues a, b and ¢ are designated as candidate
messages. The returned message is that candidate message which resides on the
longest queue.
Notethat the ' QUE_Q LNQ QueSdectCode when used in a candidate
message salection capacity chooses the candidate message that resides on the
longest queue of a, b, and c. Thisis adeparture from the message retrievd
examples demongtrated until now where the candidate message selection
process was based on a QueSd ectCode that compared the designated candidate
messages from each queue directly, one with the other. Here, by contrast, the

01/22/2004
Rev. No.: 4

5-20 X+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

message selection is performed based on characterigtics of the underlying

queues.
The possible MsgSelectCodes follow.
QUE_M EA(Q The earliest arrived (oldest) message on the queue Q.
QUE_ M LA(Q The latest arrived (most recent) message on the queue Q.
QUE_ M HP(Q The highest priority message on the queue Q.
QUE_M LP(Q Thelowest priority message on the queue Q.
QUE_M PREQ(Q n) The first message on queue Q having a priority of n.
QUE_M PRNE(Q, n) The first message on queue Q not having a priority of n.
QUE_M PRGT(Q, n) The first message on queue Q with a priority greater than n.
QUE_M PRGE(Q, n) The first message on queue Q with a priority greater than or
equa ton.
QUE_M PRLT(Q n) Thefirg message on queue Q having a priority less than n.
QUE_M PRLE(Q n) Thefirst message on queue Q with a priority lessthan or
equa ton.
QUE_M PRRNG(Q n, The fird message on queue Q with apriority in the range[n,
m m).
QUE_M SEQEQ(Q Thefirst message on queue Q with a vaue equd to sequence
seqn) number segn.
QJE M SEQGE (Q The first message on queue Q with a vaue greater than or equa
seqn) to sequence number seqn.
QUE M SEQLE(Q The first message on queue Q with a vaue lessthan or equa to
gn sequence number segn.
QU | SEQGT(Q, The first message on queue Q with a vaue greater than
seqn) Sequence number segn.
QJE M SEQLT(Q The first message on queue Q with a vaue less than sequence
seqn) number segn.

The possble QueSelectCodes that can be used for selecting a candidate message from
one of the listed queues during retrieval operations are listed below. Beware of some of
ther differing interpretations as compared to their usage within message digpatch
operations.

QUE_Q EA The earliest arrived (oldest) candidate message.
E LA The |atest arrived (most recent) candidate message.
E Q HP The highest priority candidate message.
QUE Q LP The lowest priority candidate message.
QUE_Q LNQ ITshte candidate message from the longest queue in the
[
QUE_Q SHQ The candidate message from the shortest queuein thelist.
QUE_Q HPQ The cg/ndl date message from the queue having the highest
priori
QUE_Q LPQ The msc?ate message from the queue having the lowest
iority
QUE_Q _EAQ [:I)'rhe e‘@g?ae message from the queue having the earliest
ariv
QUE_Q LAQ The gﬁ&e message from the queue having the latest
arived mgg
QUE_Q ANY The first candidate message.

01/22/2004
Rev. No.: 4

Advanced Topics 5-21

5.3.3 Expression Simplification

Expression amplification can be employed in certain cases. Smplification is sraight
forward, involving Smple defaults.
Whenever amessage retrieva QidList has an entry in which aMsgSdectCode is not
provided for agiven queue (i.e., only the Qid is given), then the retrieva operation's
QueSdectCode is employed as the message sdlect criteriafor that given queue.
Thefollowing examples demondirate this concept. The following two message retrieva
expressons are equivaent:

QUE_Q HP{QUE_ M HP(X), QUE_ M EA(Y), QUE MHP(z)}

QUE_Q HP{x, QUE_MEA(Y), z}

They both consider three candidate messages.
The highest priority message on queue X.
The earliest arrived message on queuey.
The highest priority message on queue z

The candidate message having the highest priority is the one retrieved.

Note that the first and third Qids of the smplified expresson lack aMsgSelectCode. Asa
result they inherit the criteria of the expresson's QueSelectCode (Highest Priority).
Smilaly:

QUE_Q HP{QUE_ M HP(q), QUE M HP(r), QUE_MHP(s)}
QE_QHP{g, 1, s}

Both of these retrieva expressons return the overdl highest priority message found on
the three queues g, r and s.

How theexpresson QUE_Q HP{q, r, s} returnsthe highest priority message of dl
three queues g, r and s is accomplished as follows (consdering the unamplified form of
the expression):

QUE_Q HP{QUE_ M HP(q), QUE_MHP(r), QUE_MHP(s)}

Fird, the candidate messages from the three queues g, r and s are designated. They are
the highest priority message of their respective queues. These three candidate messages
are then compared and the highest priority message of the three candidatesis chosen.
Note, therefore, that a QidList of theform {q, r, s} can be used interchangesably within
message dispatch and retrieva functions.

5.3.4 Priority Specification During Retrieval

A number of the MsgSelectCodes ded with priorities. A variety of priority values or
ranges can be specified.
For example:

QUE_Q EA{QUE_M PREQ(a, 100), QUE_M PRLT(b, 50)}

designates the first message on queue a having a priority of 100 as the candidate message
of queue a, and the first message on queue b having a priority lessthan 50 asthe
candidate message of queue b. It then returns the earliest arrived (oldest) of these two
candidate messages.
Smilaly:

QUE_Q LNQ{ QUE_M PRRNG(a, 100, 200), QUE_M PRRNG(b, 100, 200)}

01/22/2004
Rev. No.: 4

5-22 Xs+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

consders the first message on queue a having a priority in the range [100,200], and does
the same for queue b. It then returns the candidate message from the longer of the two
queues.

5.3.5 Conclusion

This presentation has outlined a few guideines and examples of how to dispatch and
retrieve messages to and from queues within the X«pc QueSys subsystem. The possible
combinations are far more numerous than can be presented in amanud. These examples

and the shorthand used to express them should provide a good starting point for using the
system correctly and to its full potentid.

01/22/2004
Rev. No.: 4

Advanced Topics 5-23

5.4 Understanding QueSys Message Sequence Numbers

QueSys messages are assigned sequence numbers when they are sent onto a queue. These
numbers serve two purposes.

1. Todlow an gpplication to compare the relative times that messages were sent, and

2. Todlow an application to check that is has not missed any messages coming through
aparticular queue.

These two objectives are made possible by two distinct sequence number values that are

assigned to each message when it is inserted onto a QueSys queue: the QueSys Sequence

Number and the Queue Sequence Number. These two values, their usage and

interpretations are now described.

5.4.1 The QueSys Sequence Number

Each message that is sent viaa call to QuePut() or QueSend() is assigned a unique
positive integer value that stamps the sequence, or rdative “time,” that the message was
sent. The QueSys subsystem assigns a QueSys Sequence Number to each QueSys
message that is sent within an indtance, garting with thevalue ‘1’ from when the ingtance
is started. The QueSys Sequence Number assigned to a message is accessible at the
message- header leve viathe MSGHDR. Ti neVal fidd.
The MSGHDR. Ti neVal vaue of amessage is guaranteed to be unique within an
ingtance' s QueSys from the time the ingtance was started. It is thus possible to use this
vaue to compare two retrieved messages and determine which message was sent firdt.
Example

: * QueCet () two nessages fromtwo queues and deternine

* which one was sent earlier.
*/

QueGet (&Msghdrl, QG dList(QdA ..), ..., QUEWAIT);
QueGet (&bghdr2, QdList(QdB...), ..., QUE WAIT);

i f (MsgHdrl.TinmeVal < MsgHdr2. TineVal)

/* MsgHdr1l message is ol der */
/* (i.e., it was sent earlier) */

}

el se
i f (MsgHdrl. Tinmeval > MsgHdr2. Ti neval)
{

/* MsgHdr2 message is ol der */
/* (i.e., it was sent earlier) */

}

el se
if (MsgHdrl. TimeVal == MsgHdr2. Ti neVal)

{
/* | MPCSSI BLE case */

01/22/2004
Rev. No.: 4

5-24 X+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

5.4.2 The Queue Sequence Number

Each message is additiondly stamped with a second sequence number that marks the
sequentia pogition of the message within the specific queue that it is sent. Thisisreferred
to as the message’ s Queue Sequence Number. A separate sequence count is kept for each
gueue created within QueSys.
QueSys assgns a queue-pecific sequence numbers to each message that issent to a
queue, Sarting with the value ‘1’ from when the queue is created. The Queue Sequence
Number that was assigned to a message is accessible a the message-heeder leve inthe
MSGHDR. SegNumfidd.
The MSGHDR. SegNumvalue of messages placed onto a queue is guaranteed to be
unique within that queue from when the queue was created. This alows an gpplication to
check that is has received al messages sent through that queue. Thisis particularly
important when the queue is being used as amulticasting channd that has multiple
programs reading its messages. (See Section 5.5, “QueSys Message Multicasting,” for
details on this QueSys usage.)
Example

/ * QueCet () two nessages froma single queue and check

* that no messages were received off the queue

* between the two QueCet() calls.
*/

QueCet (&Vsghdrl, QueList(QdA ..), ..., QUEEWAIT);
QueGet (&sghdr2, QueList(QdA ..), ..., QUEEEWAIT);

if (MsgHdr2. SeqNo == MsgHdr 1. SeqNo +1)
{

/* No messages m ssed. */

Yes, nessages m ssed.

The nunber of m ssed nessages is:
MsgHdr 2. SeqNo — MsgHdr 1. SeqNo + 1
/

I

5.4.2.1 Sequence Number - Message Select Codes

The QueSys API provides ameans for an application to receive a message based on its
Queue Sequence Number vaue. Thisis accomplished using one of the sequence number
message select codes.

Example

01/22/2004
Rev. No.: 4

Advanced Topics 5-25

/*
* Receive the message from queue Q dA
* havi ng a queue sequence nunber of 2.
*/
QueRecei ve (QUE_Q_ANY,
Queli st (QUE_M SECEQ(Q dA, 2), QUE_EQL),

QE WAI T ;

The complete list of sequence number message select codesis found in Section 5.3.2 of
the QueSysMemSys'SemSys User Guide and Section 5.2.2 of the
QueSysMemSys'SemSys Reference Manud.

5.4.2.2 Sequence Number — Using the QUE_RETSEQ Flag

The QueSys message retrieva functions—QueGet() and QueReceive()—dlow an
goplication to receive ether the retrieved message' s priority or its Queue Sequence
Number vauewithinthe cal’s* Ret Val parameter. In truth, thisis not very important
when using QueGet(), sincein that case the entire message header is returned containing
both vaues.

This isimportant, however, when usng QueReceive() since in this case the message
header is not returned. By default the* Ret Val parameter is set with the retrieved
message’ s priority. It is possible to override this default by issuing the QueReceaive() cdll
specifying the QUE_ RETSEQ flag asfollows:

Example

/* * Receive a message. Get its queue
* sequence nunber returned as RetVal.
*/

XI NT Ret Val ;

QueReceive(..., &RetVal, ..., QUE RETSEQ | QUE WAIT);

01/22/2004
Rev. No.: 4

5-26 X+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

5.5 QueSys Message Multicasting

X«pc Versgon 3.0.0 introduces support for two forms of message multicasting over
QueSys queues. The two methods address distinct forms of multicast gpplication
requirements, described in the following pages.

5.5.1 The “QUE_REPLICATE” Approach

Thefirg form of QueSys message multicagting is the smplest form to code and is geared
toward applications where the messages being multicast may occasondly be missed by
some of the listeners, depending on the processing speed of received messages. Typical

of such applicationsisthat the sent datais constartly being updated, so that the

occasond missng of amulticast message is tolerable. Examples include: stock-ticker
applications, wind-speed reading applications, tc.

The QUE_REPLI CATE option to QuePut() and QueSend() supports this capability. This
option, when specified, directs the function to send message copies to multiple (zero or
more) users waiting on the specified queue for the sent message. In this case, the

messages are never actualy placed on the queue. Message copies are sent to those users

QueRecei ve(..);

QueSend or

S, QueGet(.): QueCopy(.);
QuePut (..., QUE REPLICATE) _..____|, ‘

T > QueGet(.); QueRead(.);

- QueGet (.); QuePut(.);

that are waiting for the message at the time of the sender’s QueSend() or QuePut() call.
This feature has the following generd coding approach: The multicaster sends messages
using either the QuePut() or QueSend() cdls, specifiying the QUE_REPLI CATE option
asthe cdl’ s blocking option. Receiving programs can receive messages in severd ways,
some of which are depicted below.
The advantage of the above approach isthat:
It does not require any message selection to be specified by the receiver programs.
They smply issue requests for the next message on the queue, and that is whet they
get. In fact, they get whatever is the next message to be multicast.
The disadvantage of the above approach is that:
It is possible for receiver programs that are processing messages at a dower rate than
the multicagter is sending messages to occasondly miss amulticast message. Unlike
the next approach, this method does not provide for dow clients, as no message
history is kept.
5.5.2 The “Sliding Queue Window” Approach

Thismethod is a bit more involved than the smple replication agpproach described above.
It employs a number of the QueSys features to create the desired functiond effect.

01/22/2004
Rev. No.: 4

Advanced Topics 5-27

An abbreviated coding description of this gpproach is as follows.
QueRecei ve(. . .SeqNo, NCREMOVE | .);

QueSend(. . . QUE_REPLACE_XX) 7 QueRecei ve(. . . Seqhb, NORENDVE | .) -
| 2 »

"A QueRecei ve(. . .SeqNo, NOCREMDVE | .);

With this method, the multicaster creates a well-known queue having some sgnificant
capacity. This capacity isakey to this gpproach. Multicast messages are sent to the queue
by the multicaster viaa QuePut() or QueSend() call. In this case, the sender specifies one
of the QUE_REPLACE_ XX codes as the cal's blocking option. This directs X+pPc to make
room for the message being sent, if necessary, by replacing existing message(s) from one
of the queue' s end-poaints. Typicdly the QUE_REPLACE_EA is specified indicating thet
the oldest (earliest arrived) message is deleted to make room.
Meanwhile, message recelvers receive their messages by maintaining a*“cursor” within
the queue denoting where they are up to. Thisis accomplished by specifying the
QUE_ M SEQEQ(Q d, SeqNo) message sdlect code as part of their QueReceive() cdl,
where SeqNo isincremented with each message received. This allows a dower receiver
to “catch up” to the multicast, without missing any messages. In this case, the queueisin
fact being used to maintain the most recent messages multicast.
It should by now be apparent why the capacity of the queue is Sgnificant: The larger the
gueue, the more depth of message history that can be kept for supporting dow receivers.
The advantage of this gpproach isthat:

It provides for dow clients who can catch missed messages within the limits defined

by the message depth of the queue.
The disadvantage of this gpproach is that:
" It requires more programming work on the receiver Sde for maintaining some form

of “cursor” within the history of multicast messages.

01/22/2004
Rev. No.: 4

5-28 X¢+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

5.6 Using Messages That Have No Text —i.e., Headers Only

Until this point, dl QueSys messaging operations that have been described had text- pool
data associated with each message. Thisis usudly the case, as messages typically have
text-pool data. There are however Stuations when it is ussful to move messages that have
no text-pool data associated with them.

X+pc QueSys supports the ability to move message headers that have no text- pool data
This ability is a performance fegture in thet its use alows an gpplication to move
messages through theQueSys subsystem without needing to access the subsystem’ s text-
pool with each messaging operation.

There are two gpplication Stuations where this feature is useful:

o Moving messages having smdl amounts (16 bytes or less) of data

o Moving messages that represent “events’

5.6.1 Small Data Messages

High- performance applications that move messages having 16 bytes or less of data
should do so0 using the user Dat a fidd within the MSGHDR data structure instead of using
the text-poal. Thisis accomplished asfollows:
Example:
/*
* Send “Hell o World” nessage header only nessage
*)
MBGHDR MsgHdr ;

MsgHdr . Text OF f set = 0;
MsgHdr . Si ze = 0;
strcpy(MsgHdr. Data, “Hello Wrld");

QuePut (&vsgHdr, ...);

The receiving program retrieves the message using QueGet(), asfollows:
Example

/*

* Receive and print “Hello Wrld’" nmessage header
* only message

*/

MSGHDR MsgHdr ;
QueCGet (&MsgHdr, ...);

printf(“%”, MgHdr. Data);

Notice that the above examples make no calls to QuewWrite() or QueRead(). That is
because they are moving header-only messages by means of message text that is inserted

directly into the message heeder (i.e, itsDat a fidd).

01/22/2004
Rev. No.: 4

Advanced Topics 5-29

5.6.2 “Event” Messages

A second class of gpplications that can benefit from this festure are those that use
messages as “ events’ where each message sent represents a discrete application event,
where the events are occurring repestedly, and where each occurrence is significant.
Using an event semaphore would not be useful in this case, Sinceit provides no “ depth”
to record the multiple times that it may have been set. Text-less messages on a queue,
however, provide a perfect solution.
Example

/ */ Send an “event” nessage.

MSGHDR MsgHdr ;
QuePut (&MsgHdr, ...);

The recelving program retrieves the message usng QueGet(), asfollows:
Example

/*
* Receive the next “event”
*/

MSGHDR MsgHdr ;
QueCGet (&MsgHdr, ...);

5.6.3 Programming Semantics

The semantics of QuePut() and QueGet() remain unchanged when working with
messages having no text-pool data. All other header-manipulation verbs operate as
expected.

01/22/2004
Rev. No.: 4

5-30 X+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

5.7 The Queue-Burst Facility for Very High Throughput Message Queuing

Computer gpplications with high- performance and high throughput requirements are in
ever increasing demand as the appetite for computer-generated data increases. Genera
purpose software tools for developing distributed computer applications (i.e.,
middleware) are often not equipped with the functiondity needed for building such high-
performance gpplications. As aresult, their development cannot benefit from the
advantages offered by middleware technology including: API portability, API
interoperability, network-transparency and many others.

The X+4pc Queue Burst mechanism is an addition to the generd X«pc AP that enables X«iPc
users to build high-throughput gpplications while till benefiting from the high-leve
programming abstraction provided by X«pc . The queue-burst mechanism defines a set of
function callsthat can be used for establishing and sustaining message queuing channds
("bursts") between application processes and X+IPC message queues.

Aswith X«pc generdly, the X«pc Queue-Burst functions are portable and interoperable on
and between al Xepc -supported environments. Working with the API, the Queue-Burst
facility requires virtualy no additiond network-programming skills.

5.7.1 The Send-Burst

An X«pc "send-buret” is a mechanism used for supporting application processes that must
send messages onto one or more remote X«PC message queues a avery high rate, asin the
following diagram:

An X«pC user process may start a send-burst between itsdf and queuesin aremote
ingtance for carrying out the desired message communication and subsequent enqueuing.
Viewed from amore technica perspective, an X«pc send-burst isimplemented asa
relationship between a user process and an X«IPc ingtance, during which time the method
of communication between the two is optimized using a pecidized high- performance
protocoal.

01/22/2004
Rev. No.: 4

Advanced Topics 5-31

A send-burst has awedll-defined beginning and end. Burst communiceation is possible only
while the send-burst is active. A function for establishing synchronization points during a
send-burst is provided as well.

It isingtructive to examine message queuing using the QueSend() verb in order to
appreciate the advantages of employing a send-burst. QueSend() semantics define an
acknowledgment return code that describes the results (success or error) of the enqueuing
operation. A return code is returned synchronously to the application - one for each
QueSend() operation. While this synchronous ACK provides acertain levd of reiability,
it has the effect of limiting network utilization to one message "in flight" a atime, where
the message is followed by an opposite-direction ACK.

A send-burgt provides the basic enqueuing capabilities of QueSend() without the above
performance drawback. Multiple messages are sent in flight over the network,
asynchronous to enqueue operation return codes.

An asynchronous mechanism for reporting, for enqueue acknowledgments and for error
notificationsis provided for tracking message transfer progress.

5.7.1.1 Stand-Alone Functionality

The Queue-Burst AP is primarily directed at solving a networking problem.
Nonetheless, the definition of the API is portable to stand-aone environments as well.
Specificdly, it is possible to write and test programs that employ the Queue-Burst
functiondity within a sand-aone setting by usng X«pc ‘s Stand-Alone or Combined API
libraries. The definition of the API does not depend on the presence of a network.

It isworth noting, though, that the notion of latency as described at various points within
the APl definition, isnot a practical consderation within a stand-aone setting.

5.7.2 Send-Burst Functions

5.7.2.1 QueBurstSendStart() - Starting A Send-Burst

The parameters to QueBurstSendStart() pre-position message enqueuing parameters at
the instance for usage during the subsequent burst enqueuing operations.
QueBurgtSendStart()'s Sx arguments are:

O A QueSdectCode to be used for enqueuing messages during the send-burst.

01/22/2004
Rev. No.: 4

5-32 X¢+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

O A QidLigt to be used for enqueuing message during the send-burst.
O The size of the largest message to be sent in the upcoming burst.

O The dze of an internd network read-ahead buffer to be used in the upcoming
burst.

O An Xapc blocking option to be used when enqueuing messages during the
upcoming burst.

O An Xapc asynchronous cdlback option for handling error reporting during the
burst.

A send-burgt is started by an Xeipc user is using a QueBurstSendStart() function cdl. A
user that haslogged into multiple instances, or that has multiple loginsto asingle
ingance, should first connect to the login that will support the burst.
Example

/*

* Start a send-burst that will enqueue nessages onto Q dA.

* Messages will not exceed 64 bytes.
*/

QueBurst SendStart (QUE_Q _ANY,
QueList(QdA QUE _EQ),
64,

QUE_BURST_DEFAULT_READAHEADSI ZE,

QUE_WAIT,

QUE_CALLBACK(ErrorFunction, &ErrorAch)
)

In the above example, the calling user is defining al enqueuing operations of the

upcoming send-burst to use QUE_Q_ANY asthe QueSelectCode, QueList(QidA,
QUE_EQL) asthe QidLigt, and QUE_WAI T asthe blocking option. These parameters are
pre-positioned a the instance for use in al QueBurstSend() operationsin the burt.

The cdlback option identifies the user function (i.e,, Error Function) that isto be cdled in
the event of an error during any of the burst’'s enqueuing operations. The accompanying
ACB (i.e, ErrorAcb) passes details of the error to the error function.

5.7.2.2 QueBurstSend() - Send A Burst Message To A Queue

Once a send-burst has been garted it is possible to enqueue messages using the burst. The
parameters to QueBurstSend() are:

O A possible dternate target Qid.
O A pointer to the message buffer being sent.

O The length, in bytes, of the message being sent.

O The priority to be assigned the message, once enqueued.
QueBurgtSend() is astreamlined version of QueSend(). Asindicated by its parameter ligt,
only the most basic information regarding the message is required. Details regarding the
actua enqueuing operation are not pecified. They were prepostioned at the instance via
the call to QueBurgtSendStart().
Example

01/22/2004
Rev. No.: 4

Advanced Topics 5-33

* Send a message for enqueuing. Priority is 1000.

* Target Qd is selected based on QueSel ect Code and
* QdList specified in QueBurstSendStart() call.

*/

QueBurst Send(QUE_ NULL_ Q D, "Hello Wrld" , 12, 1000);

Had the above cal to QueBurstSend() followed the earlier call to QueBurstSendStart(),
the sent message would be enqueued on message queue QidA, based on the parameters
gpecified in the call to QueBurstSendStart(). It is possible to override the burst's queue
selection criteria by specifying avaid Qid as the first parameter to QueBurstSend(). It is
thus possible to individually target each sent message, when necessary, asin the
following example.
Example

/* Send a nessage for enqueuing. Priority is 1000.

* Target Qd, "QdB" overrides the QueSel ect Code and

* QdList criteria specified in QueBurstSendStart() call.
*/

QueBurstSend(QdB, "Hello Wrld" , 12, 1000);

QueBurstSend() returns a sequence number (starting with 1), uniquely identifying the

sent message, within the current send- burst. The sequence number is used for notifying
the user about enqueuing errors. In the event of an enqueuing error, the sequence number
of the message involved is asynchronoudy sent to the user, viathe error handling ACB.
The number is additiondly used for synchronizing a send-burst via QueBurstSendSync().
Thisis demondrated in the next section.

5.7.2.3 QueBurstSendSync() - Synchronize a Send-Burst

Enqueuing messages using QueBurstSend() does not provide a per message return code
indicating whether sent messages were successfully enqueued. Error reporting, being
asynchronous, can suffer from some latency. A Stuation can arise when an gpplication
needs to confirm, in a synchronous manner, that all messages sent during the current
send- burst have been successfully enqueued. The QueBurstSendSync() operation
provides such a synchronization point.

QueBurstSendSync() returns the sequence number of the last send-burst message that
was sent and successfully enqueued.

QueBurgSendSync() takes asits single argument either the QUE_WAI T or the

QUE_ CALLBACK blocking option. See the detailed description of QueBurstSendSync()
in the QueSysMemSys/'SemSys Reference Manud for more information.

Example

01/22/2004
Rev. No.: 4

5-34 X+IPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

/*

* Send 10, 000 burst nessages. Then confirmthat they have
* all been successfully enqueued.

*/

CHAR *Message = "Sanpl e nessage”;
XI NT SeqNo;

for (i=0; i<10000; i++)
{

}

QueBur st Send(QUE_NULL_Q D, Message, strlen(Message), 2000);

SeqNo = QueBur st SendSync(QUE_WAI T) ;
if (SeqgNo != 10000)
{

/*

* Messages not enqueued are nunbers (SeqNo + 1) to 10, 000.
* One possible remedy is to restart the burst from nessage
* SeqNo + 1.

*/

}

Once synchronized, the send-burst can be restarted by sending additiona burst messages.
5.7.2.4 QueBurstSendStop() - Stop A Send Burst

QueBurstSendStop() marks the end of a send-burst. As such, it bresks the rdationship
between the user process and the instance that supported the burgt. It is therefore
incorrect to issue any QueBurstSend() cals following the call to QueBurstSendStop()
until anew send-burst is started.
Like QueBurstSendSync(), QueBurstSendStop() aso returns the sequence number of the
last send-burst message that was sent and successfully enqueued. The differenceis that
the latter additionaly terminates the burst.
QueBurstSendStop() takes no arguments.
Example
/ *
* Send 20, 000 nessages.
*/

CHAR *Message = "Anot her sanpl e nessage";
XI'NT SegNo;
for (i=0; i<20000; i++)

QueBur st Send(QUE_NULL_Q D, Message, strlen(Message), 3000);
}

SeqNo = QueBur st SendSt op() ;

01/22/2004
Rev. No.: 4

6. INDEX

ACB, 51
Return values, 5-5
User datafield, 5-7
Asynchronous Activity, 2-10, 2- 12
Asynchronous blocking, 2-25
Asynchronous operations, 5-1
Asynchronous Result Control Block. See
ACB
Browsing, 2-53
Memory segment, 3-46
Burst
Zoom window, 2-52
CALLBACK,5-1,55
Configuration parameters
MemSys, 3-10
QueSys, 2-10
SemSys, 4-2
Documentation Roadmap, 1-2
Event messages, 5-27
Event semaphores, 4-1, 4-7, 4-8, 4-12, 4-
19
Fragmentation. See Message text pool
Header. See Message header
HLig, 3-31,4- 13,4- 14
| GNORE, 5-1,5-9
MAX_HEADERS, 2- 10, 2- 12
MAX_NODES, 2- 10,2-12,3-10,4-2
MAX_QUEUES, 2-10,2-12
MAX_SECTI ONS, 3- 10
MAX_SEGMENTS, 3- 10
MAX_SEMS, 4- 2
MAX_USERS, 2-10,2-12,3-10,4- 2
MEM ALL, 3-22
MEM_ANY, 3- 22
MEM _ATOM C, 3- 22
MEM FI LL, 3- 14
MEM PRI VATE, 3- 13
MEM WAI T, 3- 14
MemAbortAsync(), 5-9
MemAccess(), 3-13
MemCreate(), 3-12

Index 6-1

MemDelete(), 3-30
MemDestroy(), 3-30
MemFreeze(), 3-36
MEM NFOVEM 3- 32
MEM NFOSEC, 3- 33
MeminfoSec(), 3-33
MEM NFQOSYS, 3- 31
MeminfoSys(), 3-31
MEM NFOUSER, 3- 31
MeminfoUser(), 3-31
MemList(), 3-18, 3- 22
MemLigBuild(), 3-18
MemLock(), 3-2, 3-8, 3-19, 3-21, 3-24,
3-26, 3-27, 3-30, 3-31, 3-36
Memory section
Primitive functions, 3-24
Section window, 3-43
Memory ssgment, 3-1, 3-13, 3- 40
Browsing, 3-46
Watch window, 3-41
Memory text pool
Zooming, 3-41
MemPointer(), 3-33
MemRead(), 3-8, 3- 16, 3-30, 3-33
MemSecDef(), 3-1, 3-24
MemSecOwn(), 3-24, 3-26, 3-30, 3-31
MemSecPriv(), 3-27
MemSecRel(), 3-29
MemSection(), 3-17
MemSectionBuild(), 3-17
MemSecUndef(), 3-29
MemSys, 1-1, 3-1
Blocking, 3-9
Configuration, 3-10
Memory poal, 3-9
Monitoring, 3-36
MemTrigger(), 5-13
MemUnfreeze(), 3-36
MemUnlock(), 3-2, 3-8, 3-19, 3- 23, 3-
36
MemUntrigger(), 5-14
MemView, 3-30, 3-36

01/22/2004
Rev. No.: 4

6-2 X+PC Version 3.4.0: QueSys/MemSys/SemSys User Guide

MemWrite(), 3-13, 3-30, 3-33

Message header, 2-1

Small data messages, 5-26

Without text, 5-26

Message multicagting. See Multicasting

Message queue, 2-1
Priority ordering, 2-1
Priority strand, 2-4
Time ordering, 2-1
Time drand, 2-4

Message select code, 2-8, 2-20, 2-22, 2-

24, 2-28, 5-16
Messagetext, 2-3
Message text pool, 2-2, 2-6

Blocking, 2-17

Fragmentation, 2-6

Zoom window, 2-52
M DLI ST, 3- 18, 3- 22
MOM_NOREMOVE, 2- 29
MomAbortAsync(), 5-9
MomSys, 1-1
Monitor

MemView, 3-36

QueView, 2-46

SemView, 4-16
MSGHDR, 2- 16
Multicagting, 2-6, 5- 24
Multiplexing, 2-7
Panning, 2-56, 4-21

MemView, 3-48

Pattern searching, 2-55, 3-47

POST,5-1,57

Priority sequence, 2-54

QidList, 2-18, 2-24, 2-28
Message digpatch, 2-19
Message retrieval, 2-20

Priority specification, 2-23

Smplification, 2-21
QLig, 3-31,4- 13

QUE_NOREMOVE, 2- 26, 2-29, 2-37

QUE_NOWAI T, 2- 17

QUE_PRI VATE, 2- 15, 2-33
QUE_REPLACE_XX, 5- 25

QUE_TRUNCATE, 2- 18

QUE_WAI T, 2-29

QueAbortAsync(), 5-9

QueAccess(), 2-15, 2-16

QueBrowsy(), 2-26, 2- 29, 2-37

QueBurst(), 2-6

QueBurstSend(), 5-30

QueBurgtSendStart(), 5-29

QueBurgtSendStop(), 5-31

QueBurstSendSync(), 5-31

QueCopy(), 2-3, 2-34

QueCopy()., 2-25

QueCreate(), 2-14

QueDdete(), 2-43

QueDestroy(), 2-43

QueGet(), 2-17, 2-20, 2-25, 2-29, 2-31,
2-32, 2-37, 2-43, 2-44, 2- 45, 2-48, 5-
26

QUEI NFOQUE, 2- 45

QuelnfoQue(), 2-45

QUEI NFOSYS, 2- 44

QuelnfoSys(), 2-44

QUEI NFOUSER, 2- 45

QuelnfoUser(), 2-44

QuelList(), 2-18

QueLigtAdd(), 2-19, 3-20

QueLigBuild(), 2-18, 2-21

QueMsgHdrDup(), 2-4

QuePointer(), 2-3, 2-25, 2-34

QuePurge(), 2-42

QuePut(), 2-4, 2-16, 2-19, 2-24, 2-26, 2-
29, 2-30, 2-31, 2-35, 2-41, 2-43, 2-44,
2-45,2-48,5- 24

QueRead(), 2-17, 2-26, 2-31, 2-32, 2-34

QueReceive(), 2-20, 2-23, 2-28, 2-31, 2-
32,2-43, 2-44, 2- 45, 5- 25

QueRemove(), 2-29

QueSend(), 2-4, 2-16, 2-19, 2-24, 2-30,
2-31, 2-32, 2-41, 2-43, 2-44, 2- 45,
5-24
Send burst, 5-28

QueSendReceive(), 2-7, 2-32

QueSpool(), 2-40

QUE_REPLI| CATE, 2- 4,2-25,2-30,5- QueSys, 1-1, 2-1

24
QUE_RETSEQ 5- 23

Configuration, 2-10, 2- 12
Queue burg facility, 5-28

01/22/2004
Rev. No.: 4

Select codes, 5-16
Sequence numbers, 5-21

QueTrigger(), 5-11

Queue. See Message queue
Capacity, 2-5
Spooling, 2-5

Queue burst, 5-28

Queue select code, 2-7, 2-19, 2-22, 2-26,
5-16

Queue spooling. See Spooling

QueUnget(), 2-29, 2-35

QueUntrigger(), 5-12

QueView, 2-4, 2-43, 2- 46

Quewritg(), 2-16, 2-24, 2-30, 2-31, 2-
44,2- 45, 2-48, 2-52

Reguest-response inquiry, 2-7, 2-32

Resource semaphores, 4-1, 4-5, 4- 7, 4-
12, 4-18

RPC, 2-7, 2-32

Section. See Section overlay
Access, 3-2

SECTI ON, 3- 17

Section overlay, 3-1

Section window, 3-43

Segment. See Memory segment
Access, 3-3

Segment data
Atomic operations], 3-9
Locking/Unlocking, 3-8

SEM ALL, 4-6,4-9

SEM _ANY, 4- 6, 4-9

SEM ATOM C, 4- 6, 4-9

SEM PRI VATE, 4- 3

SemAbortAsync(), 5-9

SemAceess(), 4-3

SemAcquire(), 4-1, 4-4, 4-5, 4-11, 4-13

SemCancel(), 4-11

SemClear(), 4-8

SemCresate(), 4-2

SemDelete(), 4-12

SemDestroy(), 4-12

SemFreeze(), 4-15

SEM NFOSEM 4- 14

SeminfoSem(), 4-14

SEM NFOSYS, 4- 13

SeminfoSys(), 4-13

Index 6-3

SEM NFOUSER, 4- 13
SeminfoUser(), 4-13
SemLigt(), 4-3
SemLigtAdd(), 4-4
SemLigBuild(), 4-3
SemLigRemove(), 4-4
SemRdeasx(), 4-3, 4-4, 4-5,4- 7
SemSet(), 4-7, 4-8
SemSys, 1-1, 4-1
Configuration, 4-1
SemUnfreeze(), 4-16
SemView, 4-16
SemWait(), 4-1, 4-8, 4-11, 4-13
SIDLI ST,4-3
SI ZE_MEMPOOL, 3- 10
SI ZE_MEMII CK, 3-11
SI ZE_MSGPOOL, 2- 10, 2- 13
SI ZE_MSGTI CK, 2-10,2-13
SI ZE_SPLTI CK, 2-11,2-13
SLig, 3-32
Spooling, 2-40. See Queue
Mechanism, 2-41
Zoom window, 2-51
Synchronous blocking, 2-32
Text pool. See Message text pool
Time sequence, 2-54
Triggers, 5-11
Ultra- high message throughput. See
QueBurst()
User zoom window, 2-49
Watch window, 3-41
WLigt, 2-44, 2- 45, 3-31, 3-32,4- 13,
4-14
Xi pc, 3- 37, 4-16
Zooming, 2-49, 3- 40, 4-19
Burst mode, 2-52
Memory segment, 3-40
Memory text pool, 3-41
Semaphore, 4-20
Spooal, 2-51

01/22/2004
Rev. No.: 4

