

Envoy Connect XIPC Connector
Version 3.4.0

QueSys/MemSys/SemSys
User Guide

Envoy Technologies Inc.
555 Route 1 South
Iselin, NJ 08830

http://www.envoytech.com

Copyright © 2004 Envoy Technologies Inc. All rights reserved

This document and the software supplied with this document are the property of Envoy Technologies Inc. and are furnished
under a licensing agreement. Neither the software nor this document may be copied or transferred by any means, electronic
or mechanical, except as provided in the licensing agreement. The information in this document is subject to change without
prior notice and does not represent a commitment by Envoy Technologies Inc. or it's representatives.

Printed in the United States of America.

Envoy XIPC, Envoy Connect XIPC are either trademarks or registered trademarks of Envoy Technologies Inc. Other
product and company names mentioned herein might be the trademarks of their respective owners.

Envoy Connect XIPC is represented throughout the documentation as X IPC.

01/22/2004

Rev. No.: 4

X © IPC VERSION 3.4.0

QUESYS/MEMSYS/SEMSYS

USER GUIDE

Table of Contents

1. INTRODUCTION..1-1

1.1 Purpose..1-1

1.1.1 XsIPC SUBSYSTEMS ..1-1

1.2 Scope ...1-2

1.3 Documentation Road Map...1-2

2. QUESYS: THE X© IPC MESSAGE QUEUE SYSTEM ...2-3

2.1 QueSys Concepts...2-3

2.1.1 MESSAGE QUEUES ..2-3

2.1.2 MESSAGE QUEUE CAPACITY..2-5

2.1.3 MESSAGE TEXT POOL ...2-6

2.1.4 MESSAGE MULTICASTING...2-7

2.1.5 QUEBURST() - ULTRA-HIGH THROUGHPUT MESSAGING..2-7

2.1.6 RPC-LIKE REQUEST-RESPONSE MESSAGING..2-7

2.1.7 QUEUE MULTIPLEXING...2-7

2.2 QueSys Configuration..2-10

2.2.1 QUESYS CONFIGURATION ..2-12

2.3 QueSys Functions ..2-15

2.3.1 QUECREATE() - CREATING A NEW QUEUE ..2-15

2.3.2 QUEACCESS() - ACCESSING AN EXISTING QUEUE ..2-16

XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

2.3.3 QUEWRITE() - WRITING MESSAGE TEXT TO THE TEXT POOL...2-16

2.3.4 QUEREAD() - READING MESSAGE TEXT FROM THE TEXT POOL ...2-18

2.3.5 QUELISTXXX() - QUEUE LIST MANIPULATION FUNCTIONS ..2-19

2.3.6 QUEPUT() - PUTTING A MESSAGE HEADER ONTO A QUEUE..2-25

2.3.7 QUEGET() - GETTING A MESSAGE HEADER FROM A QUEUE..2-26

2.3.8 QUEREMOVE() - REMOVE A MESSAGE HEADER FROM A QUEUE..2-30

2.3.9 QUESEND() - SENDING A MESSAGE ONTO A QUEUE..2-31

2.3.10 QUERECEIVE() - RECEIVING A MESSAGE FROM A QUEUE...2-32

2.3.11 QUESENDRECEIVE() - PERFORM GENERIC REQUEST/RESPONSE....................................2-33

2.3.12 QUECOPY() - COPYING ALL OR PART OF A MESSAGE'S TEXT FROM THE TEXT POOL ...2-35

2.3.13 QUEUNGET() - UNGETTING A MESSAGE HEADER ...2-36

2.3.14 QUEBROWSE() - BROWSING A MESSAGE QUEUE..2-38

2.3.15 QUEUE SPOOLING...2-41

2.3.16 QUEPURGE() - PURGING A QUEUE...2-44

2.3.17 QUEDELETE() - DELETING A QUEUE..2-45

2.3.18 QUEDESTROY() - DESTROYING A QUEUE..2-45

2.3.19 QUEINFOSYS() - INFORMATION ABOUT AN INSTANCE'S QUESYS2-46

2.3.20 QUEINFOUSER() - INFORMATION ABOUT A QUESYS USER..2-46

2.3.21 QUEINFOQUE() - INFORMATION ABOUT A QUESYS QUEUE ...2-47

2.4 The QueSys On-Line Monitor: QueView..2-48

2.4.1 STARTING QUEVIEW ...2-48

2.4.2 QUEVIEW LAYOUT..2-49

2.4.3 MONITORING MODES ..2-51

2.4.4 QUEVIEW ZOOM WINDOWS...2-51

2.4.5 ZOOMING IN ON A USER IN BURST MODE..2-55

2.4.6 BROWSING MESSAGES WITH QUEVIEW...2-56

2.4.7 BROWSE FACILITY COMMANDS...2-57

2.4.8 PANNING WITHIN QUEVIEW ...2-59

2.4.9 STOPPING QUEVIEW...2-59

01/22/2004

Rev. No.: 4

3. MEMSYS: THE XsIPC SHARED MEMORY SYSTEM ...3-1

3.1 MemSys Concepts..3-1

3.1.1 MEMSYS SEGMENTS..3-1

3.1.2 MEMSYS SECTION OVERLAYS ...3-1

3.1.3 SEGMENT DATA READ-WRITE ACCESSIBILITY ..3-3

3.1.4 SEGMENT DATA 'LOCKING' AND 'UNLOCKING'...3-9

3.1.5 ATOMIC READ AND WRITE OPERATIONS...3-10

3.1.6 OPERATION BLOCKING..3-10

3.1.7 MEMORY POOL ..3-10

3.2 MemSys Configuration...3-11

3.3 MemSys Functions ...3-13

3.3.1 MEMCREATE() - CREATING A NEW SEGMENT...3-13

3.3.2 MEMACCESS() - ACCESSING AN EXISTING SEGMENT...3-14

3.3.3 MEMWRITE() - WRITING DATA TO A MEMORY SEGMENT..3-14

3.3.4 MEMREAD() - READING DATA FROM A MEMORY SEGMENT...3-17

3.3.5 MEMSECTION(), MEMSECTIONBUILD() - INITIALIZING A SECTION VARIABLE3-18

3.3.6 MEMLISTXXX() – FUNCTIONS FOR MANIPULATING SECTION LISTS....................................3-19

3.3.7 MEMLOCK() - LOCKING MEMORY SECTIONS..3-22

3.3.8 MEMUNLOCK() - UNLOCKING MEMORY SECTIONS..3-25

3.3.9 MEMORY SECTION PRIMITIVE FUNCTIONS ...3-25

3.3.10 MEMDELETE() - DELETING A SEGMENT...3-31

3.3.11 MEMDESTROY() - DESTROYING A SEGMENT...3-31

3.3.12 MEMINFOSYS() - INFORMATION ABOUT AN INSTANCE'S MEMSYS3-32

3.3.13 MEMINFOUSER() - INFORMATION ABOUT A MEMSYS USER..3-32

3.3.14 MEMINFOMEM() - INFORMATION ABOUT A MEMSYS SEGMENT...3-33

3.3.15 MEMINFOSEC() - INFORMATION ABOUT AN INSTANCE'S SECTION......................................3-34

3.3.16 MEMPOINTER() - ACCESSING A POINTER TO A SEGMENT..3-34

3.3.17 MEMFREEZE() - FREEZING MEMSYS ...3-38

3.3.18 MEMUNFREEZE() - UNFREEZING MEMSYS ...3-38

XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

3.4 The MemSys On-Line Monitor: MemView..3-38

3.4.1 STARTING MEMVIEW ...3-39

3.4.2 MEMVIEW LAYOUT..3-39

3.4.3 MONITORING MODES ..3-42

3.4.4 MEMVIEW ZOOM WINDOWS...3-42

3.4.5 WATCHING MEMORY SEGMENT CONTENTS - THE WATCH WINDOW3-44

3.4.6 MONITORING A SEGMENT'S SECTIONS - THE SECTION WINDOW..3-46

3.4.7 BROWSING A SHARED MEMORY SEGMENT...3-49

3.4.8 BROWSE FACILITY COMMANDS...3-50

3.4.9 PANNING WITH MEMVIEW..3-51

3.4.10 STOPPING MEMVIEW...3-52

4. THE X♦IPC SEMAPHORE SYSTEM (SEMSYS) ...4-1

4.1 SemSys Concepts...4-1

4.1.1 EVENT SEMAPHORES ...4-1

4.1.2 RESOURCE SEMAPHORES..4-1

4.1.3 MULTIPLE SEMAPHORE OPERATIONS ..4-1

4.2 SemSys Configuration ...4-2

4.3 SemSys Functions..4-2

4.3.1 SEMCREATE() - CREATING A NEW SEMAPHORE..4-2

4.3.2 SEMACCESS() - ACCESSING AN EXISTING SEMAPHORE..4-3

4.3.3 SEMLISTXXX() – MANIPULATING SEMAPHORE LISTS...4-3

4.3.4 SEMACQUIRE() - ACQUIRING RESOURCE SEMAPHORES ..4-5

4.3.5 SEMRELEASE() - RELEASING RESOURCE SEMAPHORES ..4-7

4.3.6 SEMSET() - SETTING EVENT SEMAPHORES...4-8

4.3.7 SEMCLEAR() - CLEARING EVENT SEMAPHORES ...4-9

4.3.8 SEMWAIT() - WAITING ON EVENT SEMAPHORES..4-9

4.3.9 SEMCANCEL() - CANCEL BLOCKED SEMSYS OPERATIONS...4-12

4.3.10 SEMDELETE() - DELETING A SEMAPHORE ...4-13

01/22/2004

Rev. No.: 4

4.3.11 SEMDESTROY() - DESTROYING A SEMAPHORE ...4-13

4.3.12 SEMINFOSYS() - INFORMATION ABOUT AN INSTANCE'S SEMSYS..4-13

4.3.13 SEMINFOUSER() - INFORMATION ABOUT A SEMSYS USER ...4-14

4.3.14 SEMINFOSEM() - INFORMATION ABOUT A SEMSYS SEMAPHORE ..4-15

4.3.15 SEMFREEZE() - FREEZING SEMSYS...4-16

4.3.16 SEMUNFREEZE() - UNFREEZING SEMSYS..4-16

4.4 The SemSys On-Line Monitor: SemView..4-17

4.4.1 STARTING SEMVIEW..4-17

4.4.2 SEMVIEW LAYOUT..4-17

4.4.3 MONITORING MODES ..4-20

4.4.4 SEMVIEW ZOOM WINDOWS ..4-20

4.4.5 PANNING WITHIN SEMVIEW..4-22

4.4.6 STOPPING SEMVIEW ...4-22

5. ADVANCED TOPICS ...5-1

5.1 Asynchronous Operations...5-1

5.1.1 INTRODUCTION ..5-1

5.1.2 THE ASYNCRESULT CONTROL BLOCK (ACB) ...5-1

5.1.3 ACB RETURN VALUES ..5-6

5.1.4 THE CALLBACK OPTION ...5-6

5.1.5 THE POST OPTION..5-8

5.1.6 THE IGNORE OPTION ..5-10

5.1.7 ABORTING A PENDING ASYNCHRONOUS OPERATION ...5-11

5.1.8 MIXING ASYNCHRONOUS AND SYNCHRONOUS OPERATIONS..5-12

5.1.9 CONCLUSION ..5-12

5.2 X♦IPC Triggers..5-13

5.2.1 QUETRIGGER() - DEFINING A QUESYS TRIGGER ..5-13

5.2.2 QUEUNTRIGGER() - UNDEFINING A QUESYS TRIGGER ..5-14

5.2.3 MEMTRIGGER() - DEFINING A MEMSYS TRIGGER ..5-15

5.2.4 MEMUNTRIGGER() - UNDEFINING A MEMSYS TRIGGER ..5-16

XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

5.2.5 TRIGGER PERFORMANCE CONSIDERATIONS..5-16

5.3 Using Message Select Codes and Queue Select Codes5-18

5.3.1 DISPATCHING MESSAGES ONTO QUESYS QUEUES...5-18

5.3.2 RETRIEVING MESSAGES FROM QUESYS QUEUES..5-19

5.3.3 EXPRESSION SIMPLIFICATION ..5-21

5.3.4 PRIORITY SPECIFICATION DURING RETRIEVAL...5-21

5.3.5 CONCLUSION ..5-22

5.4 Understanding QueSys Message Sequence Numbers.............................5-23

5.4.1 THE QUESYS SEQUENCE NUMBER..5-23

5.4.2 THE QUEUE SEQUENCE NUMBER ..5-24

5.5 QueSys Message Multicasting ...5-26

5.5.1 THE “QUE_REPLICATE” APPROACH...5-26

5.5.2 THE “SLIDING QUEUE WINDOW” APPROACH..5-26

5.6 Using Messages That Have No Text – i.e., Headers Only........................5-28

5.6.1 SMALL DATA MESSAGES..5-28

5.6.2 “EVENT” MESSAGES...5-29

5.6.3 PROGRAMMING SEMANTICS...5-29

5.7 The Queue-Burst Facility for Very High Throughput Message Queuing5-30

5.7.1 THE SEND-BURST ..5-30

5.7.2 SEND-BURST FUNCTIONS...5-31

6. INDEX..6-1

Introduction 1-1

01/22/2004

Rev. No.: 4

1. INTRODUCTION

1.1 Purpose

This document presents User and Programming guidance for Version 3.0 of the QueSys,
MemSys and SemSys subsystems of XsIPC, the Extended Interprocess Communication
Facilities product from Momentum Software Corporation.
XsIPC is a tool kit for developing software systems employing Interprocess
Communication (IPC). XsIPC comprises the following subsystems:
o QueSys, the Message Queue System
o MemSys, the Shared Memory System
o SemSys, the Semaphore System
o MomSys, the Message Oriented Middleware System

The present document describes the concepts, configuration and programming
considerations relevant to the first three subsystems; there is a companion Reference
Guide for these three subsystems. MomSys is documented in its own User Guide and
Reference Manual.
In addition, there is separate documentation for the over-all XsIPC product, including an
XsIPC User Guide and an XsIPC Reference Manual; these two system-level documents
can be considered prerequisite to the subsystem documentation and should be read first,
in order to become familiar with general XsIPC concepts and for general programming
guidance.
XsIPC is a set of libraries and support utilities that greatly simplifies software
development efforts involving stand-alone and network IPC. Used together or
individually, XsIPC subsystems provide significant enhancements to the native IPC
facilities of the supported operating systems. XsIPC provides the systems developer with
a state-of-the-art IPC development environment, including: on-line interactive IPC
monitoring and debugging; extended basic and advanced functionality; immediate inter-
operating system IPC source-code portability; guaranteed message delivery; complete
network transparency; and dynamic configuration.

1.1.1 XsIPC Subsystems

XsIPC is comprised of four IPC subsystems, each of which includes a library of functions
and support utilities; the first three subsystems are addressed in the present document:
♦ QueSys, the Message Queue System
The XsIPC message queue system is known as QueSys. QueSys is a complete memory-
based, high-performance message queuing facility. Many advanced features are included
(e.g., individualized queue sizing, dynamic queue spooling, queue multiplexing, etc.) to
facilitate most necessary message queuing requirements.
♦ MemSys, the Shared Memory System
The XsIPC shared memory system is known as MemSys. MemSys is a complete shared-
memory management system. It includes memory allocation as well as access control,
synchronization, locking and protection at the byte level.

1-2 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

♦ SemSys, the Semaphore System
The XsIPC semaphore subsystem is known as SemSys. SemSys includes a
comprehensive implementation of event and resource semaphores. Its wide range of
operations and the various waiting and acquiring alternatives ensures that almost every
semaphore-related system requirement can be easily implemented.
♦ MomSys, the Message Oriented Middleware subsystem
The XsIPC message oriented middleware subsystem is known as MomSys. MomSys is a
highly scalable, dynamically configurable, guaranteed message delivery facility. Ideal
for mission-critical, enterprise-wide applications, MomSys ensures the constant
trackability of all messages.

1.2 Scope

This QueSys/MemSys/SemSys User Guide is for experienced software developers, who
are familiar with the basic concepts of IPC as well as with common software
development practices, and who need the enhancements provided by XsIPC for easing and
expediting their development of quality, portable, multi-tasking or distributed
applications.
For ease of use and to facilitate presentation, this volume repeats some material that
appears as well in the XsIPC User Guide; as noted above, the XsIPC User Guide should
be read before the present document.

1.3 Documentation Road Map

The following publications are available to support XsIPC Version 3.4.0:
♦ Getting Started with XsIPC is a brief introduction to the product which gives the user a

"fast track" to select the relevant documentation, install the software and rapidly
begin using XsIPC .

♦ XsIPC Platform Notes provide platform-specific information regarding product
installation, program compilation, program linking and, where appropriate,
configuration and administration guidance. The supported environments are
individually documented

XsIPC system level documentation:
♦ The XsIPC User Guide describes in detail how to employ XsIPC for distributed

application development. This document is generic in that it presents XsIPC without
regard to any particular hardware platform, operating system or network protocol.
The information is presented at an XsIPC -system-level, i.e., it is XsIPC -subsystem-
independent.

♦ The XsIPC Reference Manual provides XsIPC (system level) commands, functions
and macros, as well as function calling sequences and possible return codes. Included
are code segments and sample programs.

QueSys/MemSys/SemSys documentation:
♦ The QueSys/MemSys/SemSys User Guide–this document–describes in detail how to

use these three XsIPC subsystems for distributed application development. It includes
API descriptions as well as topical presentations on special subsystem features.

Introduction 2-3

01/22/2004

Rev. No.: 4

♦ The QueSys/MemSys/SemSys Reference Manual details subsystem-level parameters,
functions and macros, interactive commands and sample programs, as well function
calling sequences and possible return codes.

MomSys documentation
♦ The MomSys User Guide describes in detail how to use the MomSys subsystem for

distributed application development. It includes API descriptions as well as topical
presentations on special subsystem features.

♦ The MomSys Reference Manual details subsystem-level parameters, functions and
macros, interactive commands and sample programs, as well function calling
sequences and possible return codes.

2. QUESYS: THE X©IPC MESSAGE QUEUE SYSTEM

2.1 QueSys Concepts

To understand XsIPC QueSys, the user should be familiar with some basic QueSys
concepts. The following sections introduce these ideas.

2.1.1 Message Queues

The most important abstraction within QueSys is that of a QueSys message queue.
QueSys queues are memory-based, high-performance mechanisms for supporting
network transparent message-based distributed applications.
2.1.1.1 Time and Priority Ordering

A QueSys message queue is a set of messages that are ordered both by "arrival time" and
"message priority." The two orderings are referred to as the time and priority "strands" of
the queue.
In a sense, a message queue has two personalities. Traversing the queue chronologically
one encounters its messages in the order in which they were placed on the queue.
Traversing the queue by priority presents the messages in order of decreasing priority.
Of course, each message actually exists only once on the queue.

2.1.1.2 Message Headers

Beyond the issue of queue strands, there is the question of what exactly is a QueSys
message? In fact, the objects actually on a queue are not messages at all but rather data
structures called "message headers."
A QueSys message is composed of two components:

o A message header structure that moves about on QueSys queues

o The actual message text that resides in a message text pool area
A message header is a structure that completely describes a QueSys message. It contains
all relevant information about a message, including:

o The message's user assigned priority

o The message's time of arrival on the queue

2-2 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

o The length of the message text

o A pointer to the message text
Breaking up messages into separate "header" and "text" components is efficient for a
number of reasons. For one, the management of a message's text space is independent of
which queue the message is currently on.
More important, messages can be manipulated and moved among queues without any
need to copy the message's text as part of each move. The only portion that needs to be
moved from queue to queue is the message header. The message text can remain in one
place throughout the message's existence.

Message 'A' can be transferred from queue 0 to queue 1 by moving the header alone and
not touching its text.

XsIPC lets the developer manipulate messages at two levels:
o At a lower level: headers and texts separately.
 The programmer views message headers and their texts as separate items under
his control. A message is dispatched to a queue in two steps using this approach:

QueSys 2-3

01/22/2004

Rev. No.: 4

- First, the text is written into the QueSys message text pool. This produces a
message header that references the written text.
- Then, the message header is placed onto the appropriate message queue.
 For message retrieval, the process is reversed:
- First, the appropriate message header is removed from a queue.
- Then, its corresponding text is read.
 In fact, a message header can be moved on and off numerous queues before its
text is actually read (i.e., purged) from the text pool. This can be an important
consideration for an application that employs complex message routing schemes, before
messages actually get "consumed." This is especially important if large-sized messages
are involved.
o At a higher level: headers and texts as single units.
 Message dispatch and retrieval operations are accomplished as single operations
with the details of message headers and text pool reads and writes hidden from the
programmer.
 The message dispatch operation writes the user's text to the message text pool and
then immediately places the header onto the appropriate queue.
 The message retrieval operation accesses the desired header and then immediately
reads its text out of the text pool.
The choice of approach depends on the level of flexibility needed at a particular point in a
program. It will sometimes make sense to mix the two methods, using, for instance, high
level operations at the terminals of a message's journey and low level header operations
for intermediate inter-queue moves.
2.1.1.3 Message Text

A message header contains two fields that relate to a message's text: a message length
field and a pointer to the actual text. These two fields provide the necessary information
for working with a message's text.
Obviously, using the text pointer to modify a message's text while it is still resident in the
message text pool is fraught with danger. If the message's header is still on a queue, then
there is no guarantee that it will remain there. And, if the header has been removed from
a queue, “invading” the instance's message text pool is an indication of poor design, at
best.
An even greater danger arises when working within a network instance. In that case, there
is no certainty that the text pointer contained in the message header references a text pool
on the local machine. It may in fact refer to a text pool residing on a different network
node.
For these reasons, it is recommended that a program generally avoid attempting to
directly modify a message's text once it has been written to the message text pool.
However, examining all or part of a message's text via its message header can be
accomplished using the QuePointer() and QueCopy() functions. This can be very useful
for determining the importance of a message to a program without removing the entire
text from the text pool.

2-4 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

2.1.1.4 Multiple Text References

One of the more interesting features of XsIPC 's QueSys is that it allows a single message-
text block (i.e., a single allocated text-pool block) to be referenced by more than one
QueSys message header.
This can be useful when there is a need to move a large message through two separate
queues (e.g., replication to separate server programs). Using QueSys, it is possible to set
up a single text-pool block with the data and to have multiple headers reference the block,
as in the following diagram:

QueSys automatically manages the reference counts to the text-pool blocks and frees it
when the last reference is removed.
An example of this mechanism's use is when QueSend() or QuePut() are employed with
the QUE_REPLICATE option for multicasting message copies to multiple recipients via
a single QueSys function call. QueSys verbs that can cause such multiple referencing to
occur are: QueSend(), QuePut() and QueMsgHdrDup(). Refer to each of the respective
descriptions in this Guide and in the accompanying Reference Manual.

2.1.1.5 Message Priority

A priority is assigned to a message when the message is placed onto a queue. The priority
value is specified by the user as part of the message dispatch operation.
As stated earlier, a queue's messages are kept in priority order via the queue's priority
strand. Every QueSys message has a priority value associated with it. QueSys priorities
are long positive integers.
Priorities are most useful for selective message retrieval operations. A wide range of
priority specification capabilities is available for retrieving a message from a queue.
These include:

o Specific priority (e.g., priority == 100).

o Priority range specification (e.g., priority between 200 and 300).

o Basic boolean operations (e.g., priority != 25, priority < 100).

o Extreme values (e.g., maximum or minimum priority on a queue).

Queue (1)

Queue (2)

Text A

Message Text Pool

A

A

QueSys 2-5

01/22/2004

Rev. No.: 4

In addition, a number of QueView monitor capabilities refer to message priority. For
example, browsing a queue's messages can proceed in priority order; watching front and
rear messages of a queue can be done from a priority perspective, etc. These capabilities
are described later in this chapter.

2.1.1.6 Message Time/Sequence Stamp

Messages on a queue are also kept in chronological order via the queue's time strand.
Each message is automatically stamped with an internal sequence number when it is
placed onto a queue. This relative "time stamp" value is used for keeping messages on
queues ordered by arrival. Each message queue has its own sequencing of messages. The
sequence number of the first message on a queue is "one." Every subsequent message on
that queue receives the next sequential number.
Sequence numbers can be used as a key for selecting messages from a queue. We will
see later that QueSys provides the means for selecting a particular message from a queue,
based on its sequence number. This is discussed in detail in the Advanced Topics
chapter.
Here, too, QueView refers to message chronology in a number of ways. Browsing a
queue's messages can proceed chronologically; viewing front and rear messages of a
queue can be done from a message arrival perspective, etc.
One QueSys operation that makes particular use of a message's "time stamp" is the
QueUnget() function. QueUnget() returns a message to a queue, placing it
chronologically precisely where it was taken from. This is accomplished using the
message's "time stamp."

2.1.2 Message Queue Capacity

An important aspect of XsIPC QueSys is its approach to queue sizing. A number of
innovations are introduced in this area.
2.1.2.1 Individual Queue Capacity Specifications

QueSys queues are created with individualized capacity limits. The capacity of each
queue is specified as part of the queue create operation.
A queue's capacity can be specified in one of four way:
o Maximum messages, maximum bytes.
o Maximum messages, unlimited bytes.
o Unlimited messages, maximum bytes.
o Unlimited messages, unlimited bytes.

Using this capability, it is possible to throttle message traffic within an application.
Runaway message-roducing programs can be controlled by setting a limit on the amount
of traffic their outbound queues can hold–in terms of messages, bytes or both. This also
allows the programmer to protect an instance's message text pool from being
monopolized by the same over-producing programs.
Specific queue capacity limits provide the flexibility and control needed within queue-
intensive applications.
2.1.2.2 Dynamic Queue Overflow Spooling

Complementing the specific sizing capability is the ability to start overflow message
spooling on a queue-by-queue basis.

2-6 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

When spooling for a queue is "on," the queue can absorb messages beyond its normal
capacity limitations. This elasticity is made possible via an overflow message spooling
mechanism. Messages attempting to enter the full queue are temporarily spooled out to
disk until space on the queue becomes available, at which time the messages are
automatically absorbed into the queue.
Using this option, a system can impose a memory usage cap on a message queue (via
queue capacity limits) even if its producing programs cannot be blocked from producing
messages. A network feed such as a stock ticker is one such example. Heavy bursts of
messages are not lost. Instead, they are temporarily kept on their destination queue's
overflow spool.
Overflow spooling can be started and stopped dynamically by program control, in
response to changing traffic loads.
Details of the spooling mechanism are described later in this chapter.
2.1.3 Message Text Pool

The actual text of every QueSys message spends its entire existence in the instance's
message text pool. Configuring an instance's message text pool properly can make the
difference between a good system and one that performs poorly.
There are two aspects to message text pool configuration:

o The size of the pool.

o The allocation unit used by the pool.
2.1.3.1 Sizing

The message text pool size defines the total amount of memory allocated to the instance
for holding QueSys messages (i.e., their text). It is important that the given value be
reasonably close to the actual memory requirement.
Too large a value will result in wasted memory; too small a value will result in poorly
performing programs. Programs requiring allocations of pool space that are not available
will usually wait until the required memory blocks become free. It may be convenient to
depend on such a contingency, but this should not be allowed to occur regularly.
The formulae for calculating an efficient message text pool size are presented later in this
chapter.

2.1.3.2 Fragmentation

The second component of message text pool configuration is the size of the allocation
unit. This value specifies the multiple by which all text pool allocations are made. It
directly impacts the level of fragmentation that occurs within the pool.
An instance working with large messages will benefit from an equally large value for its
allocation unit size. Wasteful fragmentation will thus be limited. An instance supporting
the manipulation of small sized messages will similarly benefit from a small allocation
unit size.
The ability to customize an instance's QueSys according to the specific needs of its client
programs is one of the important benefits of using XsIPC.
Formulae for determining a proper allocation unit size are presented later in this chapter.

QueSys 2-7

01/22/2004

Rev. No.: 4

2.1.4 Message Multicasting

QueSys supports a variety of means for building scalable, high-performance message
multicasting applications. These methods are described in the Advanced Topics chapter
later in this Guide.
Typical applications built using the QueSys multicasting feature include: "publish and
subscribe" and "message replication" applications. Numerous such applications of these
kinds have been successfully deployed since this capability was introduced within XsIPC.

2.1.5 QueBurst() - Ultra-High Throughput Messaging

QueSys provides a specialized set of functions for building distributed applications that
require extremely high message throughput performance. These are called the QueSys
QueBurst() functions. They are described later in this Guide's Advanced Topics section,
"The Queue-Burst Facility for Very High Throughput Message Queuing."
With proper utilization, QueBurst() message throughput over a network can exceed 70%
of the protocol's physical bandwidth. Real-time message transfer applications are ideal
candidates for QueBurst().
2.1.6 RPC-like Request-Response Inquiry

QueSys includes a specialized function for optimizing the network performance of
request-response classes of applications.
The QueSendReceive() function provides this capability and is described later in this
Guide.
2.1.7 Queue Multiplexing

XsIPC QueSys provides the developer with a great deal of flexibility in dispatching and
retrieving QueSys messages. Of particular note is the ability to operate on multiple
message queues atomically. For example, one can retrieve the highest priority message
from a group of three queues. Multiplexing distinguishes XsIPC QueSys from most other
message queuing facilities.
Operations that move messages to and from queues are generalized to work with lists of
queues. Queue lists are used in a way that is very similar to the usage of semaphore lists
in SemSys. Here, too, an operation involving only one queue uses a single-element list.
Ultimately, QueSys message transfer functions move exactly one message to or from
exactly one queue. The determination of which queue from the list is selected as the
operative queue, and which message is returned, is based at run-time on user-specified
arguments to the various function calls.

There are two classes of specification codes:

o Queue Select Codes.

o Message Select Codes.
2.1.7.1 Queue Select Codes

Queue Select Codes (QSC) are codes that select one queue from a list of queues based on
certain criteria. A QSC is provided as an argument to QueSys message transfer operations
involving queue lists.
As an example, consider a programmer wishing to send a message onto the shortest queue of the group of
queues: a, b, and c (perhaps to guarantee balanced queue loads). The programmer would first define the

2-8 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

queue list {a, b, c}, and then specify the "Shortest Queue" Queue Select Code (i.e., QUE_Q_SHQ) as an
argument to the dispatch operation. This selection can be summarized as:

QUE_Q_SHQ {a, b, c}

Similarly, sending a message onto the longest queue from the list would use the "Longest Queue" QSC
(i.e., QUE_Q_LNQ), and would be summarized as:

QUE_Q_LNQ {a, b, c}

The list of possible Queue Select Codes is extensive. The QSC values that can be used within message
"dispatch" operations are:
QUE_Q_SHQ Select the shortest queue.
QUE_Q_LNQ Select the longest queue.
QUE_Q_HPQ Select the queue having the highest priority message.
QUE_Q_LPQ Select the queue having the lowest priority message.
QUE_Q_EAQ Select the queue having the earliest arrived (oldest)
message.
QUE_Q_LAQ Select the queue with the latest arrived (most recent)
message.
QUE_Q_ANY Select the first queue in the list that has room (not full).

Queue Select Codes have a slightly different function when used within message
"retrieval" operations. They work together with the second class of codes, Message Select
Codes (MSC), to identify the message to be retrieved.
2.1.7.2 Message Select Codes

Retrieving messages within QueSys can be viewed as occurring in two steps.
First, a list of message queues is defined by the program. As part of this definition, a
particular message is designated as the candidate message from each of the listed queues.
This designation is done using a Message Select Code (MSC).
For example, the list:

{ QUE_M_HP(a), QUE_M_EA(b), QUE_M_LA(c) }

defines a list of three queues a, b, and c with Message Select Codes that designate:

o The highest priority message on queue a: QUE_M_HP(a).

o The earliest arrived message on queue b: QUE_M_EA(b).

o The latest arrived message on queue c: QUE_M_LA(c)
as their respective candidate messages.
One of the competing candidate messages is then selected from the group based on a
Queue Select Code. The chosen message is retrieved and returned to the user.

The QueSelectCodes that are valid within message retrieval functions (QueGet() and QueReceive()) can be
based on Message Attributes or Queue Attributes.

Based on Message Attributes, they are:
QUE_Q_EA The earliest arrived (oldest) candidate message.
QUE_Q_LA The latest arrived (most recent) candidate message.
QUE_Q_HP The highest priority candidate message.
QUE_Q_LP The lowest priority candidate message.

QueSys 2-9

01/22/2004

Rev. No.: 4

Based on Queue Attributes, they are:
QUE_Q_LNQ The candidate message from the longest queue in the

list.
QUE_Q_SHQ The candidate message from the shortest queue in the

list.
QUE_Q_HPQ The candidate message from the queue having the

highest priority message.
QUE_Q_LPQ The candidate message from the queue having the

lowest priority message.
QUE_Q_EAQ The candidate message from the queue having the

earliest arrived message.
QUE_Q_LAQ The candidate message from the queue having the latest

arrived message.
QUE_Q_ANY The first candidate message.

Thus, for example, the retrieval expression:

QUE_Q_HP { QUE_M_EA(a), QUE_M_EA(b) }

can be used to summarize the following retrieval operation: "Compare the oldest (Earliest
Arrived) message on queue a with the oldest message on queue b and return the one with
the highest priority."
Similarly:

QUE_Q_EA { QUE_M_HP(x), QUE_M_HP(y), QUE_M_HP(z) }

returns the oldest of the highest priority messages resident on queues x, y and z.
Finally, consider a retrieval example having a slightly different slant:

QUE_Q_LNQ { QUE_M_HP(a), QUE_M_HP(b), QUE_M_HP(c) }

First, the highest priority message from each of the three respective queues a, b and c are
designated as competing candidate messages. The returned message is then selected to be
the one residing on the longest of the three queues.
Possible "Message Select Codes" and their interpretations are:
QUE_M_EA(Q The earliest arrived (oldest) message on the queue Q.
QUE_M_LA(Q The latest arrived (most recent) message on the queue Q.
QUE_M_HP(Q) The highest priority message on the queue Q.
QUE_M_LP(Q The lowest priority message on the queue Q.
QUE_M_PREQ(Q, n The first message on queue Q having a priority of n.
QUE_M_PRNE(Q, n The first message on queue Q not having a priority of n.
QUE_M_PRGT(Q, n) The first message on queue Q with a priority greater than n.
QUE_M_PRGE(Q, n) The first message on queue Q with a priority greater than or

equal to n.
QUE_M_PRLT(Q, n) The first message on queue Q having a priority less than n.
QUE_M_PRLE(Q, n) The first message on queue Q with a priority less than or

equal to n.
QUE_M_PRRNG(Q, n,
m)

The first message on queue Q with a priority in [n, m] range.

2-10 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

QUE_M_SEQEQ(Q,
seqn)

The first message on queue Q with a value equal to sequence
number seqn.

QUE_M_SEQGE (Q,
seqn)

The first message on queue Q with a value greater than or equal
to sequence number seqn.

QUE_M_SEQLE(Q,
seqn)

The first message on queue Q with a value less than or equal to
sequence number seqn.

QUE_M_SEQGT(Q,
seqn)

The first message on queue Q with a value greater than
sequence number seqn.

QUE_M_SEQLT(Q,
seqn)

The first message on queue Q with a value less than sequence
number seqn.

The use of "Queue Select Codes" and "Message Select Codes" to define message transfer
operations offers the flexibility and functionality needed by most queue intensive
applications.
A presentation on the optimum usage of MSC and QSC codes for message dispatch and
retrieval operations is included in the Advanced Topics chapter of this guide.

2.2 QueSys Configuration

The QueSys section of an XsIPC instance configuration file describes the composition and
capacity of the instance's QueSys.
Seven parameters must be set within the QueSys section of the instance configuration.
Parameter tables with default values are provided at the beginning of the companion
Reference Manual. Additional operating system specific parameters (if required) are
described in the relevant Platform Notes.
The configuration parameters are:

o MAX_QUEUES, The maximum number of concurrent queues. Should be set
based on the requirements of the programs using the instance.

o MAX_USERS, The maximum number of concurrent users. Should be set based
on the requirements of the programs using the instance. Note that
asynchronously blocked QueSys operations are treated as QueSys users. The
expected level of QueSys asynchronous activity should therefore be factored
into this parameter.

o MAX_NODES, The maximum number of nodes. QueSys nodes are used
internally for tracking users that block on QueSys operations. As with SemSys,
there is no firm rule for calculating a value for MAX_NODES. It depends largely
on the nature of the programs that will use the instance. A conservative estimate
to start with can be calculated from the following formula:

 MAX_NODES = MAX_QUEUES+(MAX_USERS*3)+(MAX_USERS*
MAX_QUEUES)

o MAX_HEADERS, The maximum number of concurrent message headers (i.e.,
messages) that can be circulating within an instance at any one time. A
conservative starting formula for MAX_HEADERS is:

 MAX_HEADERS = MAX_QUEUES + (MAX_QUEUES *
AverageQueueLength)

 where:
 AverageQueueLength is the expected average queue length (in terms of

messages) within the instance.

QueSys 2-11

01/22/2004

Rev. No.: 4

o SIZE_MSGPOOL, The size of the message text pool (K-Bytes). QueSys
provides optional blocking when accessing the message pool. Consequently, a
less conservative approach can be applied when configuring the message text
pool. A starting formula for SIZE_MSGPOOL is:

 SIZE_MSGPOOL=(MAX_QUEUES*AverageQueueLength)*(AverageMessa
geSize+16)

 where:
 AverageQueueLength is as defined above.
 AverageMessageSize is the expected average message size occurring

within the instance.

 SIZE_MSGPOOL is expressed in terms of K-Bytes. As such the calculated value
should be rounded up to the next K-Byte multiple. (For example, if the
calculation comes to 1948 bytes, then 2 K-Bytes should be specified).

o SIZE_MSGTICK, message text pool allocation size unit. This value specifies
the multiple by which all text pool allocations are made. A proper value can
have a noticeable effect in reducing fragmentation in the message pool.
SIZE_MSGTICK should be rounded up to a multiple of 4. A formula for a good
starting value for SIZE_MSGTICK is:

 SIZE_MSGTICK = 25PercentileMessageSize
 where:
 25PercentileMessageSize is defined as the size value for which it is

expected that 75% of the instance's messages will be larger in size and 25% will
be smaller.

o SIZE_SPLTICK, The spool tick file size limit (K-Bytes). Defines the file size
limit used in the course of queue overflow spooling. The QueSys spooling
mechanism uses one or more files to handle each queue's message spooling.
SIZE_SPLTICK sets the maximum size of these files(in K-Bytes). Too large a
value could result in wasted file system space, holding a queue's old spooled
data. On the other hand, too small a value will generally cause a greater number
of spool files to be created for each queue. The selection of a value depends on
which of the competing concerns is more important. If the value for
SIZE_SPLTICK is being chosen to meet a system-wide file size limit, then a
smaller value (less than the system file size limit) should be chosen. If the
concern is to limit spool file proliferation, then a large value will be appropriate.
In either case, at a minimum, SIZE_SPLTICK must be 32 bytes larger than the
largest message to be spooled by any queue in the instance.

Example:
Consider the QueSys configuration below for an XsIPC instance that will support a
high performance transaction processing application.

Assumptions:
1. There will be between 5 and 10 users and/or asynchronous QueSys operations at any

one point in time.

2. There will be between 10 and 15 queues active at any one time.

3. The average queue length is expected to range between 25 and 30 messages.

2-12 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

4. The expected average message size is 32 bytes.

5. It is estimated that 25% of the messages will be less than 21 bytes in size, and that 75%
of the messages will exceed 21 bytes in length. Thus 21 bytes is the estimated
25PercentileMessageSize.

6. Spool files must not exceed 128 K-Bytes. The largest message to be spooled will not
exceed 1024 bytes.

Then:

MAX_USERS can be safely set at 10. Little space is required for configuring extra users, so
it pays to play it safe.

MAX_QUEUES can be set at 15. The MAX_USERS reasoning is valid here as well.

MAX_NODES follows then as: 15 + (10 * 3) + (10 * 15) = 195.

MAX_HEADERS would be calculated as: 15 + (15 * 30) = 465.

SIZE_MSGPOOL would be calculated as: (15 * 30) * (32 + 16) = 21,600. The number 22
can be used since 21,600 < 22 K-Bytes

SIZE_MSGTICK would be set to 24 bytes since it is the next multiple of 4, after 21.

SIZE_SPLTICK can be set at 128 K-Bytes.
#===

File: /projects/local/tpsys.cfg
Created: May 31, 2001

#---

This XIPC instance supports a high-performance
transaction processing application.
Note: The instance is defined so that it only
supports XIPC QueSys queues. The SemSys, MemSys
and MomSys subsystems are defined as NULL.

#---

[QUESYS]
MAX_USERS 10
MAX_QUEUES 15
MAX_NODES 195
MAX_HEADERS 465
SIZE_MSGPOOL 22
SIZE_MSGTICK 24
SIZE_SPLTICK 128

#===

A further note about QueSys configuration: the above formulae and rules
generally produce acceptable parameter values. The values should, however, be
adjusted as necessary based on empirical observations using the QueSys monitor.

2.2.1 QueSys Configuration

The QueSys section of an XsIPC instance configuration file describes the composition and
capacity of the instance's QueSys.
Seven parameters must be set within the QueSys section of the instance configuration.
Parameter tables with default values are provided at the beginning of the companion
Reference Manual. Additional operating system specific parameters (if required) are
described in the relevant Platform Notes.

QueSys 2-13

01/22/2004

Rev. No.: 4

The configuration parameters are:

o MAX_QUEUES, The maximum number of concurrent queues. Should be set
based on the requirements of the programs using the instance.

o MAX_USERS, The maximum number of concurrent users. Should be set based
on the requirements of the programs using the instance. Note that
asynchronously blocked QueSys operations are treated as QueSys users. The
expected level of QueSys asynchronous activity should therefore be factored
into this parameter.

o MAX_NODES, The maximum number of nodes. QueSys nodes are used
internally for tracking users that block on QueSys operations. As with SemSys,
there is no firm rule for calculating a value for MAX_NODES. It depends largely
on the nature of the programs that will use the instance. A conservative estimate
to start with can be calculated from the following formula:

 MAX_NODES = MAX_QUEUES+(MAX_USERS*3)+(MAX_USERS*
MAX_QUEUES)

o MAX_HEADERS, The maximum number of concurrent message headers (i.e.,
messages) that can be circulating within an instance at any one time. A
conservative starting formula for MAX_HEADERS is:

 MAX_HEADERS = MAX_QUEUES + (MAX_QUEUES *
AverageQueueLength)

 where:
 AverageQueueLength is the expected average queue length (in terms of

messages) within the instance.
o SIZE_MSGPOOL, The size of the message text pool (K-Bytes). QueSys

provides optional blocking when accessing the message pool. Consequently, a
less conservative approach can be applied when configuring the message text
pool. A starting formula for SIZE_MSGPOOL is:

 SIZE_MSGPOOL=(MAX_QUEUES*AverageQueueLength)*(AverageMessa
geSize+16)

 where:
 AverageQueueLength is as defined above.
 AverageMessageSize is the expected average message size occurring

within the instance.

 SIZE_MSGPOOL is expressed in terms of K-Bytes. As such the calculated value
should be rounded up to the next K-Byte multiple. (For example, if the
calculation comes to 1948 bytes, then 2 K-Bytes should be specified).

o SIZE_MSGTICK, message text pool allocation size unit. This value specifies
the multiple by which all text pool allocations are made. A proper value can
have a noticeable effect in reducing fragmentation in the message pool.
SIZE_MSGTICK should be rounded up to a multiple of 4. A formula for a good
starting value for SIZE_MSGTICK is:

 SIZE_MSGTICK = 25PercentileMessageSize
 where:

2-14 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

 25PercentileMessageSize is defined as the size value for which it is
expected that 75% of the instance's messages will be larger in size and 25% will
be smaller.

o SIZE_SPLTICK, The spool tick file size limit (K-Bytes). Defines the file size
limit used in the course of queue overflow spooling. The QueSys spooling
mechanism uses one or more files to handle each queue's message spooling.
SIZE_SPLTICK sets the maximum size of these files(in K-Bytes). Too large a
value could result in wasted file system space, holding a queue's old spooled
data. On the other hand, too small a value will generally cause a greater number
of spool files to be created for each queue. The selection of a value depends on
which of the competing concerns is more important. If the value for
SIZE_SPLTICK is being chosen to meet a system-wide file size limit, then a
smaller value (less than the system file size limit) should be chosen. If the
concern is to limit spool file proliferation, then a large value will be appropriate.
In either case, at a minimum, SIZE_SPLTICK must be 32 bytes larger than the
largest message to be spooled by any queue in the instance.

Example:
Consider the QueSys configuration below for an XsIPC instance that will support a
high performance transaction processing application.

Assumptions:
1. There will be between 5 and 10 users and/or asynchronous QueSys operations at any

one point in time.

2. There will be between 10 and 15 queues active at any one time.

3. The average queue length is expected to range between 25 and 30 messages.

4. The expected average message size is 32 bytes.

5. It is estimated that 25% of the messages will be less than 21 bytes in size, and that 75%
of the messages will exceed 21 bytes in length. Thus 21 bytes is the estimated
25PercentileMessageSize.

6. Spool files must not exceed 128 K-Bytes. The largest message to be spooled will not
exceed 1024 bytes.

Then:

MAX_USERS can be safely set at 10. Little space is required for configuring extra users, so
it pays to play it safe.

MAX_QUEUES can be set at 15. The MAX_USERS reasoning is valid here as well.

MAX_NODES follows then as: 15 + (10 * 3) + (10 * 15) = 195.

MAX_HEADERS would be calculated as: 15 + (15 * 30) = 465.

SIZE_MSGPOOL would be calculated as: (15 * 30) * (32 + 16) = 21,600. The number 22
can be used since 21,600 < 22 K-Bytes

SIZE_MSGTICK would be set to 24 bytes since it is the next multiple of 4, after 21.

SIZE_SPLTICK can be set at 128 K-Bytes.
#===

File: /projects/local/tpsys.cfg
Created: May 31, 2001

QueSys 2-15

01/22/2004

Rev. No.: 4

#---

This XIPC instance supports a high-performance
transaction processing application.
Note: The instance is defined so that it only
supports XIPC QueSys queues. The SemSys, MemSys
and MomSys subsystems are defined as NULL.

#---

[QUESYS]
MAX_USERS 10
MAX_QUEUES 15
MAX_NODES 195
MAX_HEADERS 465
SIZE_MSGPOOL 22
SIZE_MSGTICK 24
SIZE_SPLTICK 128

#===

A further note about QueSys configuration: the above formulae and rules
generally produce acceptable parameter values. The values should, however, be
adjusted as necessary based on empirical observations using the QueSys monitor.

2.3 QueSys Functions

2.3.1 QueCreate() - Creating a New Queue

The first step toward using a QueSys message queue within an instance is to create the
queue.
QueCreate() takes three arguments:

o The name of the new queue.

o A value specifying the message capacity of the queue (if any).

o A value specifying the byte capacity of the queue (if any).
QueCreate() returns the "queue id" (Qid) of the newly created queue. This value is used
as the queue's "handle" in all subsequent QueSys function calls that refer to the queue.
Example:

Qid = QueCreate("InputQueue", 50, 1024L);

In the above example, the calling user attempts to create a new message queue with the
name "InputQueue." The new queue will have a capacity limit of 50 messages and 1024
bytes. The queue is considered full when one or the other of these limits is reached.
Example:

Qid = QueCreate("LimitedBytes", QUE_NOLIMIT, 32768L);

In this example, the calling process is creating a message queue with the name
"LimitedBytes." a byte capacity limit of 32,768 (32 K-Bytes) and an unlimited message
capacity.
Having an unlimited message capacity means that the queue can hold as many messages
as necessary, provided the byte capacity (32 K-Bytes) is not violated. This is very useful
for limiting queues whose message sizes are unknown. In this example, any combination

2-16 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

of messages (large, small or a mixture) that fills the queue with 32 K-Bytes will render
the queue full.

Example:

Qid = QueCreate("LimitedMsgs", 100, QUE_NOLIMIT);

Here, the calling user creates a message queue with the name "LimitedMsgs." The queue
is created with a capacity limit of 100 messages and an unlimited byte capacity.
This type of queue would be useful for implementing a priority queue that had to accept a
limited number of messages (in this case 100) regardless of their sizes.
Example:

Qid = QueCreate("Very_Big_Queue", QUE_NOLIMIT, QUE_NOLIMIT);

In this example, a queue is created having unlimited message and byte capacities. Such a
queue might be used for collecting incoming messages from a producer that could not be
blocked and for which spooling was not appropriate.
Such a queue would continue to accept messages until some QueSys configuration limit
was reached. This may be a lack of free space in the message text pool, or a shortage of
available message headers.
Creating a queue with unlimited capacity values should be restricted to special situations.
Such uncontrolled queues can wreak havoc if used inappropriately.
A further note regarding queue creation: duplicate queue names are not allowed within an
instance.
Specifying QUE_PRIVATE as the name of the new queue creates a queue that is
inaccessible via QueAccess(), effectively making its 'Qid' private to the creating
program. Of course, the creating program can pass the 'Qid' to others if it so wishes. The
advantage of using QUE_PRIVATE as a name is that it is guaranteed not to conflict with
any queue name currently in the instance.
2.3.2 QueAccess() - Accessing an Existing Queue

Once a queue has been created, other users can access it (i.e., its Qid) using QueAccess().
QueAccess() takes one argument:

o The name of an existing message queue.
QueAccess() returns the "queue id" (Qid) of the desired queue. This value is used as the
message queue's "handle" in all subsequent QueSys function calls that refer to the queue.
Examples:

Qid = QueAccess("InputQueue");
Qid = QueAccess("LimitedBytes");
Qid = QueAccess("LimitedMsgs");

The above examples access three of the queues created in the previous section.

2.3.3 QueWrite() - Writing Message Text to the Text Pool

To send a message onto a queue using the header/text approach outlined earlier, you must
first write the message's text to the QueSys message text pool via QueWrite(). This will
usually be followed by a call to QuePut() to place the corresponding message header onto
the desired queue.

QueSys 2-17

01/22/2004

Rev. No.: 4

Both of these steps can be avoided by using the QueSend() function. It performs the text
write and the header placement in one operation. QueSend() is described later. In addition
to writing text to the message text pool, QueWrite() also creates a message header
corresponding to the written text. This header is what actually moves about on QueSys
queues throughout the duration of the message's existence. QueWrite() sets the created
message text pool block's reference count to one (1) when it creates a new text block.

QueWrite() takes four arguments:

o A pointer to an empty message header.

o A pointer to the text to be written.

o The size of the message text (in bytes).

o A blocking option code in case the operation needs to block.
The empty message header passed (indirectly) to QueWrite() is returned with appropriate
values. It can be subsequently placed onto a queue using QuePut().
Note that MSGHDR is a datatype provided by XsIPC QueSys for working with message
headers.
Example:

/*
 * Write a "hello world" message text to the message text pool.
 * In the process create a MSGHDR variable corresponding to the
 * written text - ready for placement onto a queue.
 */

MSGHDR MessageHeader;

RetCode = QueWrite(&MessageHeader, "hello world", 11L, QUE_WAIT);

if (RetCode >= 0)
 RetCode = QuePut(&MessageHeader, ...);

This example demonstrates an important QueSys capability: being able to block when the
text pool is full until the required text space becomes available. Specifying QUE_WAIT
directs QueWrite() to block indefinitely if the required text space is not currently
available. The user unblocks after the write finally succeeds.
Blocking at the text pool level is not possible with most other queuing facilities.

2-18 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

Example:

/*
 * Write "hello world" message text to the text pool.
 * Block for 30 seconds if the message text pool is full.
 */

MSGHDR MessageHeader;

RetCode = QueWrite(&MessageHeader,
 "hello world",
 11L,
 QUE_TIMEOUT(30));

if (RetCode >= 0)
 /* Write succeeded */

else
if (RetCode == QUE_ER_TIMEOUT)
 /* Handle timeout */

In this example, the QueWrite() function is instructed to block no more than 30 seconds
while waiting for text space.
Specifying QUE_NOWAIT as the blocking option would cause QueWrite() to return
immediately with an error code (RetCode == QUE_ER_NOWAIT) if the required text
space was not immediately available.
The above examples demonstrate QueWrite() using synchronous blocking options.
Asynchronous blocking is also possible by specifying one of the three asynchronous
blocking options. Refer to the Advanced Topics chapter for a detailed description of the
asynchronous blocking options.
2.3.4 QueRead() - Reading Message Text from the Text Pool

QueRead() reads message text out of the message text pool and copies it to a user-
specified location. QueRead() uses a message header argument for identifying the
message text to be read. This message header will, in most cases, have just been attained
from a QueSys queue via a QueGet() operation. QueRead() accesses the message's text
using its header. QueRead() decrements the text pool block's reference count by one (1);
if the count equals zero, then it will release the text block.

QueRead() takes three arguments:

o A message header (via a pointer).

o A pointer to a buffer to receive the message text.

o A long integer specifying the maximum size text to copy into the buffer (usually
the size of the buffer).

QueRead(), when successful, returns the number of bytes read from the text pool.
If the stipulated buffer size limit is greater than or equal to the actual message text size,
then the QueRead() operation will succeed and the entire message text will be copied.
If, however, the buffer size limit is less than the message text size, then truncation is
possible. Truncation will occur if and only if specified by the user via the
QUE_TRUNCATE macro as demonstrated below. Otherwise, an error code (RetCode
== QUE_ER_TOOBIG) is returned and the QueRead() operation will fail.

QueSys 2-19

01/22/2004

Rev. No.: 4

Example:

/*
 * Retrieve a message header from a message queue.
 * Then, read the message's text into 'Buff'.
 * In this example, the QueRead will fail if the
 * message text exceeds 100 bytes in length.
 */

MSGHDR MessageHeader;
CHAR Buff[100];
XINT MsgLen;

RetCode = QueGet(&MessageHeader, ...);

MsgLen = QueRead(&MessageHeader, Buff, 100L);

if (MsgLen == (XINT)QUE_ER_TOOBIG)
 /* Message text exceeds 100 bytes. */

Example:

/*
 * Same example as above ...
 * In this version, the QueRead will truncate the message text
 * if its length exceeds 100 bytes. The first 100
 * bytes will be copied, the remaining text bytes are lost.
 */

MSGHDR MessageHeader;
CHAR Buff[100];
XINT MsgLen;

RetCode = QueGet(&MessageHeader, ...);

MsgLen = QueRead(&MessageHeader, Buff, QUE_TRUNCATE(100L));

You can avoid using two separate functions, QueGet() and QueRead(), to retrieve a
message by using the QueReceive() function. QueReceive() performs the QueGet() and
QueRead() as a single operation (described later in this Guide).
2.3.5 QueListXxx() - Queue List Manipulation Functions

QueSys operations use lists of Qids to dispatch and retrieve messages. Message transfer
involving only one queue is accomplished using a single-element list.
A list of Qids is referred to as a QidList. A QIDLIST data type is defined for creating
and working with QidLists. Functions expecting a QidList as one of their arguments take
a QIDLIST data type for this purpose.
There are two functions for building QidLists: QueList() and QueListBuild(). The
difference between the two is that QueList() builds its QidList in its internal static area,
thus making the returned QidList safe for only one usage. QueListBuild(), on the other
hand, takes a QIDLIST variable as its first argument. QueListBuild() builds its QidList
in this user-provided space. This QidList can safely be reused by the programmer. Apart
from this, the two functions are otherwise identical. Both functions require QUE_EOL as
their last argument.

2-20 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

Two additonal functions, QueListAdd() and QueListRemove(), allow for updating
QidLists dynamically, and another function, QueListCount(), allows determination of the
number of elements in a QidList..
QueListAdd() is provided to allow the programmer to add QidList elements to an existing
QidList (i.e., one that has been created by QueListBuild()). This is a common
requirement in situations where the needed QidList must be built dynamically, based on
certain run-time conditions.
QueListRemove() is provided to allow the programmer to remove QidList elements from
an existing QidList when necessary.
The calling sequence for QueListAdd() and QueListRemove() is identical to that of
QueListBuild(). These too expect a user-provided QidList as their first argument. The
listed QidList elements are added to or removed from that QidList.

Example:

/*
 * The following code constructs two identical QidLists.
 * QidList1 is constructed using a single function call.
 * QidList2 is built incrementally, one Qid at a time.
 */

QIDLIST QidList1, QidList2;

QueListBuild(QidList1, QidA, QidB, QidC, QUE_EOL);

QueListBuild(QidList2, QUE_EOL);
QueListAdd(QidList2, QidA, QUE_EOL);
QueListAdd(QidList2, QidB, QUE_EOL);
QueListAdd(QidList2, QidC, QUE_EOL);

Example:

/*
 * The following code waits to receive a message from any of the
 * queues in QidList, handling the possibility that any number of
 * those queues might be destroyed while waiting.
 */

do {
 RetCode = QueReceive(QUE_Q_EA, QidList, Buf, Len, NULL, &RetQid,
QUE_WAIT);
 if (RetCode == QUE_ER_DESTROYED)
 {
 QueListRemove(QidList, RetQid, QUE_EOL);
 if (QueListCount(QidList)==0)
 break;
 else
 continue;
 }
} while(RetCode == QUE_ER_DESTROYED);

2.3.5.1 Message Dispatch QidLists

When preparing a QidList for a QuePut() or a QueSend() operation, the elements in the
list are the Qids of the queues to be considered as the target of the QuePut() or the
QueSend() call. The actual target selection is based on the Queue Select Code argument
of the function call. This process was described earlier.

QueSys 2-21

01/22/2004

Rev. No.: 4

Example:

/*
 * Construct a QidList and then use it to send a message to the
 * shortest of the listed target queues.
 */

QIDLIST QidList;

QueListBuild(QidList, QidA, QidB, QidC, QUE_EOL);

RetCode = QueSend(QUE_Q_SHQ, QidList, ...);

The above QueSend() call would send its message onto the shortest of the three queues
represented by QidA, QidB and QidC. In fact, the very same QidList could be reused to
send a message to the longest queue of the list by simply specifying the QUE_Q_LNQ
Queue Select Code.
Example:

/*
 * Use the previously constructed QidList to send a message
 * onto the longest queue of the list: QidA, QidB, QidC.
 */

RetCode = QueSend(QUE_Q_LNQ, QidList, ...);

QueList() returns a pointer to the QidList that it constructs internally. The call to
QueList() is therefore normally embedded directly as the argument for the dispatch
function being invoked.
Example:

/*
 * This QueSend call is equivalent to the one shown in the
 * previous example.
 */

RetCode = QueSend(QUE_Q_LNQ,
 QueList(QidA, QidB, QidC, QUE_EOL),
 ...);

The usage of QueList() and QueListBuild() within the context of QuePut() operations is
identical to the QueSend() examples shown above.
2.3.5.2 Message Retrieval QidLists

Building a QidList for a QueGet() or a QueReceive() operation is slightly more involved than
preparing one for dispatch. In this case the QidList serves two purposes:
o It presents a list of source Qids from which to consider retrieving a message.
o It identifies a "candidate message" for each of the listed source Qids.

Each element of a message retrieval QidList is usually a Message Select Code (MSC)
applied to a Qid. Each MSC defines the criteria to be used for choosing its queue's
candidate message. The following examples clarify this point.

2-22 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

Example:

/*
 * Build a QidList that will designate the highest priority
 * message from each of the queues QidA, QidB and QidC as
 * the three queues' respective candidate messages. Then,
 * retrieve the oldest (earliest arrived) of these messages.
 */

QIDLIST QidList;
XINT MsgLen;

QueListBuild(QidList,
 QUE_M_HP(QidA), QUE_M_HP(QidB), QUE_M_HP(QidC),
 QUE_EOL);

MsgLen = QueReceive(QUE_Q_EA, QidList, ...);

The net effect is the retrieval of the oldest of the high priority messages from the three
queues: QidA, QidB and QidC. (Note that specification of the lowest priority messages
would have resulted in the retrieval of the newest of those messages.)
Note how the QUE_M_HP Message Select Code macro is applied to each of the queues in
the list to identify each queue's candidate message.
Here, too, QidLists created using QueListBuild() can be reused for other purposes. For
example, you can use the same QidList with the QUE_Q_LNQ (longest queue) Queue
Select Code to retrieve the highest priority message from the longest of the three queues:
QidA, QidB and QidC. More precisely, it selects the candidate message from the longest
of the three queues.
Example:

/*
 * Reuse the QidList built earlier. This time retrieve the
 * message residing on the longest of the three queues.
 */

MsgLen = QueReceive(QUE_Q_LNQ, QidList, ...);

The possibilities are virtually endless. Refer to the section in the Advanced Topics
chapter on "Using Message Select Codes and Queue Select Codes" for a more complete
description of this facility and its options.
QidLists must not exceed QUE_MAX_QIDLIST elements. This is usually not a great
concern since QUE_MAX_QIDLIST is currently defined as 32.

QidList Simplification
QidList simplification during message retrieval operations is possible in certain cases. A
simplified QidList produces the same retrieval operation outcome as would have resulted
using the original QidList. The following example demonstrates this concept.

QueSys 2-23

01/22/2004

Rev. No.: 4

Example:

/*
 * Two QueReceive operations that are equivalent.
 */

QueReceive(QUE_Q_HP,
 QueList(QUE_M_HP(x), QUE_M_EA(y), QUE_M_HP(z),
 QUE_EOL),
 ...);

QueReceive(QUE_Q_HP,
 QueList(x, QUE_M_EA(y), z, QUE_EOL),
 ...);

Both QueReceive() calls consider three candidate messages:

o The highest priority message on queue x.
o The earliest arrived message on queue y.
o The highest priority message on queue z.

Both QueReceive() calls retrieve the candidate message having the highest priority.
The following simplification has occurred: The first and third Qids of the simplified
QidList in the second example above lack Message Select Codes. As a result they
"inherit" the criteria of the operation's Queue Select Code ("high priority").

The simplification rule can be formulated as:
 "Whenever a message retrieval QidList has a Qid entry for which no Message Select Code is

provided, the retrieval operation's Queue Select Code criteria is employed as the Message Select
Code for that queue."

QidList simplification is often quite useful, as shown in the following examples:
Example:

/*
 * Two more QueReceive operations that are equivalent.
 */

QueReceive(QUE_Q_HP,
 QueList(QUE_M_HP(q),
 QUE_M_HP(r),
 QUE_M_HP(s),
 QUE_EOL),
 ...);

QueReceive(QUE_Q_HP, QueList(q, r, s, QUE_EOL), ...);

Both retrieval operations return the overall highest priority message from the three
queues: q, r and s.
Both operations first designate a candidate message from each of the three queues: q, r
and s. They are the highest priority message of each of the queues.
The three candidate messages are then compared and the highest priority message of the
three candidates is chosen for retrieval.
QidList simplification makes complex retrieval operations easier to express and
understand. In fact, if a retrieval QidList is completely simplified so that it no longer
contains any Message Select Codes, then that QidList can be used in message dispatch
operations as well.
Example:

2-24 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

/*
 * Create a QidList that can be used for both
 * dispatch and retrieval operations.
 */

QIDLIST QidList;
XINT MsgLen; QueListBuild(QidList, qa, qb, qc, QUE_EOL);

/*
 * Send a message onto the queue having the
 * earliest arrived(oldest) message.
 */

RetCode = QueSend(QUE_Q_EAQ,
 QidList, ...);

/*
 * Now use the same QidList to receive the lowest priority
 * message of the same three queues.
 */

MsgLen = QueReceive(QUE_Q_LP, QidList, ...);

Priority Specification During Message Retrieval
Message retrieval based on message priorities is accomplished using the priority-related
Message Select Codes. A number of the Message Select Codes deal with priorities.
Priority values, conditions or ranges can be specified.
Example:

QIDLIST QidList;
XINT MsgLen;

QueListBuild(QidList, QUE_M_PREQ(a, 100), QUE_M_PRLT(b, 50),
 QUE_EOL);

MsgLen = QueReceive(QUE_Q_EA, QidList, ...);

In the above example, a QidList is built designating the first message on queue a having a
priority of 100 as the candidate message of queue a, and the first message on queue b
having a priority less than 50 as the candidate message of queue b.
The QueReceive() call then returns the earliest arrived (oldest) of these two candidate
messages.
Similarly:

QIDLIST QidList;
XINT MsgLen;

QueListBuild(QidList,
 QUE_M_PRRNG(a, 100, 200),
 QUE_M_PRRNG(b, 100, 200),
 QUE_EOL);

MsgLen = QueReceive(QUE_Q_LNQ, QidList, ...);

In this example, the QueReceive() operation accesses the first message on queue a having
a priority in the range [100,200], and does the same for queue b. It then returns the
candidate message from the longer of the two queues.

QueSys 2-25

01/22/2004

Rev. No.: 4

Similar Message Select Codes are provided for selecting message via their sequence
number. A complete list of Queue and MessageSelect Codes is found in the Advanced
Topics chapter of this book.
2.3.6 QuePut() - Putting a Message Header onto a Queue

The QuePut() function is used to place a message header onto a queue. The message
header involved may have just been created via QueWrite(), or it may have been recently
removed from one queue for re-routing onto another queue.

QuePut() takes six arguments:

o A pointer to the message header being dispatched.
o A Queue Select Code for choosing a target queue.
o A QidList holding a list of possible target Qids.
o A priority value to be assigned to the message.
o A pointer to a Qid variable that gets assigned the actual target Qid chosen by

QuePut(). (This pointer can be NULL if no return value is desired.)
o A blocking option code in case the operation needs to block.

Example:

/*
 * Create a message and place it onto the "OutQueue" queue.
 * Assign the dispatched message a priority of 99.
 * Warning: No error checking is done in this example.
 */

XINT Qid;
XINT RetQid;
MSGHDR MsgHdr;

Qid = QueAccess("OutQueue");

QueWrite(&MsgHdr, "hello world", 11L, QUE_WAIT);

QuePut(&MsgHdr, QUE_Q_ANY, QueList(Qid, QUE_EOL), 99L,
 &RetQid, QUE_WAIT);

This is an example of a QidList with a single Qid element. The QUE_Q_ANY Queue
Select Code finds the first queue in the QidList that has space for the message and places
the message there. In this case, the first queue is the only queue. Remember that
QuePut() does not touch a message's text. It simply places a given message header onto
the queue whose identity is determined by the Queue Select Code, the QidList arguments
and the traffic capacity of the listed queues. We will see that the above example could
have been coded more concisely using the QueSend() function call.
Any of the XsIPC blocking options can be specified for QuePut(). QuePut() will block if all
of the listed queues are full, making them unable to accept the message being dispatched.
The blocked operation will then succeed when any of the full queues is no longer at
capacity, usually when one or more messages have been removed.
QuePut() will not block if any of the listed queues is actively spooling (i.e., has its
spooling on). In the event that all listed queues are full, then the message will be spooled
out to the selected queue's spool. A detailed description of queue overflow spooling is
presented later in this chapter.

2-26 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

QuePut() returns the identity of the queue used, by assigning its Qid to "RetQid."
"RetQid" is also used to identify an invalid Qid, if one is encountered.
Example:

/*
 * Send a message (header) onto the queue having the oldest
 * (i.e. earliest arrived) message. Wait up to 45 seconds for
 * QuePut to succeed. Then report which queue was used. The
 * dispatched message is assigned a priority of 2500.
 */

QIDLIST QidList;
XINT QidSent;

QueListBuild(QidList, QidA, QidB, QidC, QUE_EOL);

if (QuePut(&MsgHdr, QUE_Q_EA, QidList, 2500L, &QidSent,
 QUE_TIMEOUT(45)) >= 0)
 printf("Message was placed onto Qid = %d\n", QidSent);

The above examples demonstrate QuePut() using synchronous blocking options.
Asynchronous blocking is also possible by specifying one of the three asynchronous
blocking options. Refer to the Advanced Topics chapter for a detailed description of the
asynchronous blocking options.
The QUE_REPLICATE option provides a method for putting replicated message copies
for zero or more users waiting on a message queue for that particular kind of message.
(Note that no special coding is required by the consumer processes.) In this case, the
messages are never actually placed on the queue. Messages are sent to only those
processes that are waiting at the time of the QuePut() operation. All users waiting for the
message are given a copy of the message header. When QuePut() replicates a header,
copying to n users, the text-block reference count is incremented by n-1. In contrast,
when QuePut() moves a header onto a queue, the count is left unchanged.
It is also possible for a message header copy what was retrieved from a queue using
QueGet’s QUE_NOREMOVE option to be placed onto a message queue using QuePut().
Example:

/*
 * Same as prior example, but this time have message copies sent
 * to *** ALL *** users currently waiting for such a message.
 */

. . .
. . .
QuePut (&MsgHdr, QUE_Q_ANY, QueList(Qid, QUE_EOL), 99L,
 &RetQid, QUE_REPLICATE);

Note that QUE_REPLICATE is specified in place of any other XsIPC blocking option. The
QuePut() call will never block. Message (header) copies are sent to all (zero or more)
users waiting for the message regardless as to the current number of messages on the
specified queue.
For additional details, see the Advanced Topics section, "QueSys Message Multicasing."
2.3.7 QueGet() - Getting a Message Header From a Queue

You can retrieve a message header from a queue by using the QueGet() function call.

QueSys 2-27

01/22/2004

Rev. No.: 4

A retrieved message header can then be used in a variety of ways, including:

o To examine the message's text via QuePointer() or QueCopy().

o To browse the queue's messages, relative to the retrieved header.

o To read the message's text via QueRead(), from the text pool into user memory
space.

o The message header can also be placed onto another queue via QuePut().
QueGet() takes six arguments:

o A pointer to an empty message header that gets set with the retrieved message's
header data.

o A Queue Select Code for choosing one of the candidate messages.

o A QidList identifying candidates messages for each of the listed queues.

o A pointer to a variable that is assigned the retrieved message's priority.

o A pointer to a Qid variable that is set (on return) to the Qid of the retrieved
message's queue by QueGet(). (This pointer can be NULL if no return value is
desired.)

o An optional QUE_NOREMOVE option flag ORed with a blocking option code,
specifying the action to be taken in case the operation needs to block.

Keep in mind that QueGet() does not touch a message's text. It simply gets a message
header from the queue, whose identity is determined by the Queue Select Code, the
QidList and the messages currently on the listed queues.
The retrieved message header is copied into the user-provided message header variable.
In the default case (i.e., QUE_NOREMOVE is not specified), QueGet() removes the
retrieved message header from the queue that it was on. Alternatively, by specifying the
QUE_NOREMOVE option flag, you can direct QueGet() to leave the accessed message
header on the queue and to return a copy of it to the calling program, a copy that is itself
a fully functional message header. In such a case, the returned header copy can be placed
on another queue and used as a reference point for a subsequent QueBrowse() call. Or, it
can be used to later remove the actual header from the queue via QueRemove().
In either case, QueGet() leaves the message's text untouched in the message text pool.
Here again, "RetQid" identifies the Qid retrieved. "RetQid" is also used to identify an
invalid Qid, if one is encountered.
Reacting to the retrieved message may depend on the queue from which it was retrieved.
The next example demonstrates this point. In some cases, it might be appropriate to read
in the message's text for processing; in other cases, re-routing it onto another queue may
be called for.
Note that a message's priority is set at QuePut() time and can therefore be changed (as in
the next example) between legs of a multi-queue journey.

2-28 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

Example:

/*
 * Retrieve the highest priority message in the range
 * [200,400] from across the three queues identified by
 * QidA, QidB and QidC. React to message based on its
 * source Qid.
 */

QIDLIST QidList;
MSGHDR MsgHdr;
XINT Priority;
XINT RetQid;
XINT NextQid;
CHAR Buff[100];
XINT Length;

QueListBuild(QidList,
 QUE_M_PRRNG(QidA, 200L, 400L),
 QUE_M_PRRNG(QidB, 200L, 400L),
 QUE_M_PRRNG(QidC, 200L, 400L),
 QUE_EOL);
RetCode = QueGet(&MsgHdr, QUE_Q_HP, QidList, &Priority,
 &RetQid, QUE_WAIT);

if (RetCode >= 0)
{
 /*
 * QueGet succeeded, 'RetQid' was set with Qid of the
 * source queue, and 'Priority' was set with the gotten
 * message's priority.
 */

 if (RetQid == QidA || RetQid == QidB)
 {
 /*
 * QidA and QidB are treated identically. Read the
 * message text out of the message text pool into
 * user space, and process it.
 */

 Length = QueRead(&MsgHdr, Buff, 100L);
 ...
 }

 else
 {
 /*
 * Re-route QidC message onto another queue.
 * Give it a higher priority.
 */

 RetCode = QuePut(&MsgHdr, QUE_Q_ANY, QueList(NextQid, QUE_EOL),
 Priority + 100L, &RetQid, QUE_WAIT);
 ...
 }
}

QueSys 2-29

01/22/2004

Rev. No.: 4

A QidList can include multiple MSCs for a single queue. This is extremely useful if it is
necessary to access messages from non-contiguous sections of a priority range.
We will see shortly that basic message retrieval operations can be coded more concisely
using the QueReceive() function call. QueGet(), however, provides maximum flexibility
for dealing with message headers.
Any of the XsIPC blocking options can be specified for QueGet(). QueGet() will block if all
of the listed queues are empty or if they do not currently hold a desired message (as
specified by the Message Select Codes).
The blocked operation will succeed when one of the queues receives a message sought by
the blocked QueGet() operation.
Example:

/*
 * Access the oldest message within the ranges [1,10] and
 * [90,100]. Note: Only one queue is involved.
 */

QIDLIST QidList;
MSGHDR MsgHdr;
XINT qa;
XINT Priority;
XINT RetQid;
XINT RetCode;

QueListBuild(QidList,
 QUE_M_PRRNG(qa, 1L, 10L),
 QUE_M_PRRNG(qa, 90L, 100L),
 QUE_EOL);

RetCode = QueGet(&MsgHdr, QUE_Q_EA, QidList, &Priority,
 &RetQid, QUE_WAIT);

if (RetCode >= 0) /* QueGet succeeded. */
{
 if (Priority >=1L && Priority <=10L)
 {
 ...
 }
 else /* Priority >=90L && Priority <= 100L */
 {
 ...
 }
}

As was stated above, QueGet() can be used with the QUE_NOREMOVE option to access a
copy of a message header, without removing the actual header from the queue.

2-30 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

Example:

/*
 * Access an image of the highest priority message
 * header on queue Qid.
 */

RetCode = QueGet(&MsgHdr,
 QUE_Q_HP,
 QueList(Qid, QUE_EOL),
 &Priority,
 &RetQid,
 QUE_NOREMOVE | QUE_WAIT);

Note that the QUE_NOREMOVE option flag, when specified, must precede whatever
blocking option is designated; this is because QUE_WAIT expands to several arguments,
the first of which can be ORed with MOM_NOREMOVE. The returned message header is a
copy of the actual message header that is left on the queue.
Such a header can be used for a subsequent QueBrowse() operation. QueBrowse() will
only succeed if the message header it is passed references a header still on a queue.
By contrast, a message header copy cannot be used within a QueUnget() operation. This
function will only succeed when passed a message header that has actually been
dequeued.
The above examples demonstrate QueGet() using synchronous blocking options.
Asynchronous blocking is also possible by specifying one of the three asynchronous
blocking options. Refer to the Advanced Topics chapter for a detailed description of the
asynchronous blocking options.
2.3.8 QueRemove() - Remove a Message Header from a Queue

QueRemove() dequeues the message header identified by the message header copy it is
passed. The message header parameter must be a copy of a message header that still
resides on a queue.

QueRemove() takes one argument:

o The message header that has not been dequeued.
The message header copy may have been accessed through a QueGet() operation where
QUE_NOREMOVE was specified, or via a QueBrowse() operation.

Example:

/*
 * Remove the message header referenced by
 * the message header retrieved in the
 * previous example.
 */

RetCode = QueRemove (&MsgHdr);

A message can be accessed in two steps, using QueGet() with the QUE_NOREMOVE
option specified followed by a call to QueRemove(). This is equivalent to using
QueGet() without the QUE_NOREMOVE option. The removed header may be placed onto
another queue via QuePut() or its text can be read via a call to QueRead().

QueSys 2-31

01/22/2004

Rev. No.: 4

2.3.9 QueSend() - Sending a Message onto a Queue

As was indicated earlier, it is often not necessary to use QueWrite() followed by
QuePut() to dispatch a message. A single function, QueSend(), can be used instead when
the two steps of control available using QueWrite() and QuePut() are not required.
"QueWrite() + QuePut() = QueSend()" summarizes the functionality of the QueSend()
function.
Advantages of using QueSend() include:
• No need to manage message headers.
• No need to interact directly with the message text pool.
• Generally slightly better performance than "QueWrite() + QuePut()".
Disadvantages include:
• An inability to manipulate message headers independent of their associated text

segments; inter-queue routing using QueSend() is therefore inefficient.
• An inability to specify different blocking options for the "text write" and "message

put" components of the QueSend() operation.

QueSend() takes seven arguments:

o A Queue Select Code for choosing a target queue.
o A QidList holding a list of possible target Qids.
o A pointer to the text to be written.
o The size of the message text (in bytes).
o A priority value to be assigned to the message.
o A pointer to a Qid variable that gets set by QueSend() to the actual target Qid

chosen. (This pointer can be NULL if no return value is desired.)
o A blocking option code in case the operation needs to block.

Example:

/*
 * Send a "hello world" message onto the queue represented by
 * Qid "qA". Message is assigned a priority of 2000.
 */

RetCode =
 QueSend(QUE_Q_ANY, /* QSC for single Qid list */
 QueList(qA,
 QUE_EOL), /* target Qid */
 "hello world", /* message text */
 11L, /* length of message text */
 2000L, /* message priority */
 &RetQid, /* for QueSend return data */
 QUE_WAIT); /* willing to block */

The above operation performs both the text writing and the header placement portions of
the message dispatch operation.
As with QuePut(), the QUE_REPLICATE option, when specified with QueSend(),
provides a method for sending replicated message copies to zero or more users waiting on
a message queue for that particular kind of message. (Note that no special coding is
required by the consumer processes.) In this case, the messages are never actually placed

2-32 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

on the queue. Messages are sent only to those processes which are waiting at the time of
the QueSend() operation.
Example:

/*
 * Send a copy of the same message to ALL users
 * waiting for such a message.
 */

RetCode =
 QueSend(QUE_Q_ANY, /* QSC for single Qid list */
 QueList(qA,
 QUE_EOL), /* target Qid */
 "hello world", /* message text */
 11L, /* length of message text */
 2000L, /* message priority */
 &RetQid, /* for QueSend return data */
 QUE_REPLICATE); /* send multicast message */

QueSend() is usually used at the beginning of message's existence. Subsequent operations
on the message might include a series of QueGet() and QuePut() operations to affect
inter-queue routing. The last operation will finally remove the header and its text, using
either a QueGet() with a QueRead() or QueReceive() alone.
Example:

QueSend(), [QueGet(), QuePut(), ... QuePut(),] QueReceive()

or
QueSend(), [QueGet(), QuePut(), ... QuePut(),] QueGet(), QueRead()

The rules and use of arguments described above by QueWrite() and QuePut() apply
equally to QueSend() where relevant.
The above example demonstrates QueSend() using synchronous blocking. Asynchronous
blocking is also possible by specifying one of the three asynchronous blocking options.
Refer to the Advanced Topics chapter for a detailed description of the asynchronous
blocking options.
2.3.10 QueReceive() - Receiving a Message from a Queue

In a similar vein, it is sometimes not necessary to use QueGet() followed by QueRead()
to retrieve a message. A single function, QueReceive(), can be used when the two stages
of control provided by QueGet() and QueWrite() are not needed.
"QueGet() + QueRead() = QueReceive()" summarizes the functionality of the
QueReceive() function.
Not surprisingly, the pros and cons for using QueReceive() are comparable to those given
regarding QueSend().
Advantages of using QueReceive() include:

• No need to manage message headers.
• No need to interact directly with the message text pool.
• Generally slightly better performance than "QueGet() + QueRead()".
Disadvantages include:

• An inability to manipulate message headers independent of their associated texts
segments; inter-queue routing using QueReceive() is therefore inefficient.

QueSys 2-33

01/22/2004

Rev. No.: 4

QueReceive() takes seven arguments:

o A Queue Select Code for choosing one of the candidate messages.

o A QidList identifying candidate messages for each of the listed queues.

o A pointer to a buffer to receive the message text.

o A long integer specifying the maximum size text to copy into the buffer (usually
the size of the buffer).

o A pointer to a variable that is assigned the retrieved message's priority.

o A pointer to a Qid variable that gets set by QueReceive() to the actual target Qid
chosen. (This poitner can be NULL if no return value is desired.)

o A blocking option code in case the operation needs to block.
Example:

/*
 * Receive the "hello world" message sent onto queue "qA"
 * in the section describing QueSend. Note: QidList
 * simplification is employed in this example. Since no MSC
 * is applied to 'qA' in the QidList, the HP criteria
 * specified as the QSC is applied implicitly to queue 'qA'
 * as its message select code.
 */

MsgLen =
 QueReceive(QUE_Q_HP, /* QSC for single Qid list */

 QueList(qA, QUE_EOL), /* source Qid */

 MsgBuf, /* message buffer */
 sizeof(MsgBuf), /* buffer size */
 &Priority /* set to message priority */
 &RetQid, /* returned by QueReceive */
 QUE_WAIT); /* willing to block */

The above operation performs both the header access and the text reading portions of the
message retrieve operation.
As was shown in the section describing QueSend(), QueReceive() is most often used at
the end of a message's existence. Using QueReceive() with QueSend() to implement
queue switching is inefficient due to the wasteful message pool read and write that would
occur.
Once again, the rules and use of arguments described by QueGet() and QueRead() apply
to QueReceive() where relevant.
The above example demonstrates QueReceive() using synchronous blocking.
Asynchronous blocking is also possible by specifying one of the three asynchronous
blocking options. Refer to the Advanced Topics chapter for a detailed description of the
asynchronous blocking options.

2.3.11 QueSendReceive() - Perform Generic Request/Response

The QueSendReceive() function performs similarly to the RPC request/response
paradigm. However, unlike traditional RPC mechanisms, the QueSendReceive() form of
inquiry-response functionality provides explicit message queuing elasticity for handling

2-34 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

high-volume traffic scenarios. This is critical when preparing a system that must scale
well through a range of deployment settings.
QueSendReceive() takes the arguments of QueSend() and QueReceive(), each of which is
described above.
The usage of queues within QueSendReceive() is highly flexible, supporting Queue
Select Codes for the QueSend() and the QueReceive() operations independently. For
example, a client "inquiry" message may be sent to a server via one queue and a
"response" message drawn from a second queue. Similarly, by specifying the receive
operation to execute asynchronously, one can cause the inquiry-response interaction to
complete in the background (e.g., with callback functions invoked at the client whenever
a "response" message arrives).
The following is an example of how the QueSendReceive() function may be used for
developing the client side of a client/server application. Consider the following diagram:

There are three clients communicating with a server program. The clients send their
requests to the server via the “ServerQ” message queue. Upon sending their request
message, the clients await their response on their individual client queue. (The individual
client queues may actually be queues that are unnamed, i.e., having the QUE_PRIVATE
name.)
The following code segment demonstrates a client’s utilization of the QueSendReceive()
call for interacting with the server.

/*
 * Client-side code for interacting with server.
 * (Error-handling is not included).
 */

QUE_SEND_ARGS SendArgs;
QUE_RECV_ARGS RecvArgs;
XINT ServerQid, ClientQid;
XINT RetSendQid, RetRecvQid;
XINT RetRecvPrio;
struct { . . . } RequestMsgBuffer;
struct { . . . } ResponseMsgBuffer;

ServerQ

Client1Q

Server

Client-1

Client-2

Client-3

Client2Q

Client3Q

QueSys 2-35

01/22/2004

Rev. No.: 4

/*
 * Get the Qids to be used for the exchange of
 * messages with the server.
 */

ServerQid = QueAccess(“ServerQ”);
ClientQid = QueCreate(QUE_PRIVATE, 10, 100);

/*
 * Prepare the arguments for the Send portion of
 * the QueSendReceive() operation.
 */

SendArgs.QueSelectCode = QUE_Q_ANY;
QueListBuild(SendArgs.QidList, ServerQid, QUE_EOL);
SendArgs.MsgBuf = &RequestMsgBuffer;
SendArgs.MsgLength = sizeof(RequestMsgBuffer);
SendArgs.Priority = 100;
SendArgs.QidPtr = &RetSendQid;

/*
 * Prepare the arguments for the Receive portion of
 * the QueSendReceive() operation.
 */

RecvArgs.QueSelectCode = QUE_Q_EA;
QueListBuild(RecvArgs.QidList, ClientQid, QUE_EOL);
RecvArgs.MsgBuf = &ResponseMsgBuffer;
RecvArgs.MsgLength = sizeof(ResponseMsgBuffer);
RecvArgs.Priority = &RetRecvPrio;
RecvArgs.QidPtr = &RetRecvQid;

/*
 * Issue QueSendReceive() call to send request msg onto
 * the ServerQ, and wait for response on the client's queue.
 */

QueSendReceive(&SendArgs, QUE_WAIT, &RecvArgs, QUE_WAIT);

Refer to the companion Reference Manual for further detail.
2.3.12 QueCopy() - Copying All or Part of a Message's Text from the Text Pool

QueCopy() copies all or part of a message's text from the message text pool into a user-
specified buffer. QueCopy() accesses the message's text using its message header, either
the message header on the queue or the copy that was removed via QueGet() with the
QUE_NOREMOVE option. Unlike QueRead(), QueCopy() does not remove the text from
the text pool and, therefore, does not decrement the reference count of the associated text
block.

QueCopy() takes four arguments:

o A message header pointer.

o The offset into the message's text where the QueCopy() should commence.

o The number of bytes to copy.

o A pointer to a buffer that is to receive the copied text.

2-36 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

QueCopy() can be used in conjunction with QuePointer() for examining the contents of a
message in a manner that is not sensitive to the instance's location.
QueCopy() will fail if the specified offset and length arguments target an area that is
beyond the message's actual text space.

Example:

/*
 * Get a message header off a queue, then examine the contents of
 * the message. If it is not relevant it can be ungotten using
 * QueUnget. This example allows for the possibility that the
 * instance is NOT local.
 */

MSGHDR MsgHdr;
XINT RetCode;
CHAR *p, Buf[512];

RetCode = QueGet (&MsgHdr, ...);

if (RetCode == 0)
{
 /*
 * Get a pointer to the message's text.
 */

 RetCode = QuePointer (&MsgHdr, &p);

 if (RetCode == QUE_ER_NOTLOCAL)
 {
 QueCopy (&MsgHdr, 0L, MsgHdr.Size, Buf);
 p = Buf;
 }

 /*
 * Examine the text using pointer 'p'.
 */

 ...
}

2.3.13 QueUnget() - Ungetting a Message Header

In some situations a programmer may wish to return a retrieved message (header) back to
the queue from which it was taken, inserting it into its original position relative to other
messages on the queue. Using such a capability a program could "reject" a gotten
message after looking at it and return it to its queue as if it had never been taken.
Using QuePut() for this purpose does not do the job. That is because QuePut() appends its
message to the end of the selected target queue's time strand of messages. In most cases,
this is not the message's original chronological position.
QueUnget(), however, is designed for this purpose. It returns a retrieved message header
to the queue that it was taken from, placing it by time and priority in the same relative
position as it was before it was retrieved.

QueSys 2-37

01/22/2004

Rev. No.: 4

QueUnget() takes one argument:

o A pointer to a message header that was previously gotten off a queue. (Note that
a message header copy retrieved by a QueGet() call with the QUE_NOREMOVE
option will not accomplish the QueUnget() unless the original message header
was subsequently removed from the queue.)

Example:

/*
 * Get the longest waiting ("earliest arrived") highest priority
 * message from queues represented by QidA, QidB and QidC.
 * If the message text starts with "NOT FOR ME", unget it.
 */

QIDLIST QidList;
MSGHDR MsgHdr;
XINT RetCode, RetQid;
XINT Priority;
CHAR *p, Buf[10];

QidList = QueListBuild(
 QUE_M_HP(QidA),
 QUE_M_HP(QidB),
 QUE_M_HP(QidC),
 QUE_EOL);

RetCode = QueGet(&MsgHdr,
 QUE_Q_EA,
 QidList,
 &Priority,
 &RetQid,
 QUE_WAIT);
if (RetCode == 0)
{
 RetCode = QuePointer (&MsgHdr, &p);

 if (RetCode == QUE_ER_NOTLOCAL)
 {
 QueCopy (&MsgHdr, 0L, 10L, Buf);
 p = Buf;
 }

 if (strncmp(p, "NOT FOR ME", 10) == 0)
 QueUnget(&MsgHdr);
}

QueUnget() will succeed in returning the message header even if the queue involved is
currently full. In such a case, the queue will briefly hold more message data than
originally configured for. This exception is necessary to guarantee the success of
QueUnget(). Otherwise, a retrieved message may never fit back on its queue, particularly
when a busy queue is involved.

2-38 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

Example:

 [msg-A] [msg------B] [msg--C]

 Message 'msg-B' is removed from the queue
 via QueGet().

[msg-----B] [msg-A] [msg--C]

 Message 'msg-D' is placed on the queue.
 There is no longer room for message 'msg-B'.

[msg-----B] [msg-A] [msg--C] [msg---------D]

 Message 'msg-B' is ungotten. Queue is
briefly
 forced beyond capacity in order to
accommodate
 the QueUnget().

 --- -
- -
 [msg-A] [msg-----B] [msg--C]
[msg---------D]
 --- -
- -

2.3.14 QueBrowse() - Browsing a Message Queue

As was shown earlier, it is possible to use QueGet() to access a copy of a message header
without actually removing the header from the queue. A possible application of this
feature could be to use the accessed message header copy as a reference point for a
subsequent QueBrowse() operation.

QueBrowse() takes two arguments:

o The copy of a message header that has not been dequeued.

o The direction of the browse operation.
QueBrowse() returns with a fully functional message header copy, one position in the
specified direction, relative to the message header identified by the message header copy
parameter. Because all headers are fully functional, and thus own a copy of the header’s

QueSys 2-39

01/22/2004

Rev. No.: 4

text, the calling application must free the header’s text via a call to QueRead() at the end
of the browsing activity.
The message header copy parameter may have been accessed through a QueGet()
operation where QUE_NOREMOVE was specified, or via an earlier QueBrowse()
operation.
Example:

/*
 * Browse the priority strand of messages on queue Qid.
 * The header of the second highest prio message is removed.
 * Release message text when completed.
 */

/*
 * Stop everything.
 */

QueFreeze();

/*
 * Get copy of highest prio header.
 */

QueGet(&MsgHdr,
 QUE_Q_HP,
 QueList(Qid, QUE_EOL),
 &Priority,
 &RetQid,
 QUE_NOREMOVE | QUE_NOWAIT);

/*
 * Move to next message on priority strand.
 */

QueBrowse(&MsgHdr, QUE_PRIO_NEXT);

/*
 * Dequeue this header.
 */

QueRemove(&MsgHdr);

/*
 * Release message text. (Note: Optimized using QUE_TRUNCATE.)
 */

QueRead(&MsgHdr, Buffer, QUE_TRUNCATE(1));

/*
 * Restart everything.
 */

QueUnfreeze();

Possible values for the direction parameter are:

2-40 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

QUE_PRIO_NEXT Access the next header on the priority strand (decreasing
priority).
QUE_PRIO_PREV Access the previous header on the priority strand
(increasing priority).
QUE_TIME_NEXT Access the next header on the time strand (more recent).
QUE_TIME_PREV Access the previous header on the time strand (less recent).

QueBrowse() will fail, returning QUE_ER_ENDOFQUEUE, if no additional messages
exist in the specified direction.
Example:

/*
 * Print the messages on queue Qid, in the order
 * that they arrived.
 */

/*
 * Stop everything.
 */

QueFreeze();

/*
 * Get image of oldest message header.
 */

QueGet (&MsgHdr,
 QUE_Q_EA,
 QueList(Qid, QUE_EOL),
 &Priority,
 &RetQid,
 QUE_NOREMOVE | QUE_NOWAIT);

do
{
 /* * Print message's text.
 */

 QueCopy (&MsgHdr, 0L, MsgHdr->Size, Buf);
 printf("Message text = %s\n", Buf);

 /*
 * Move to next message on time strand.
 */

 RC = QueBrowse (&MsgHdr, QUE_TIME_NEXT);

} while (RC != QUE_ER_ENDOFQUEUE);

/*
 * Release message text. (Note: Optimized using QUE_TRUNCATE.)
 */

QueSys 2-41

01/22/2004

Rev. No.: 4

QueRead(&MsgHdr, Buffer, QUE_TRUNCATE(1));

/*
 * Restart everything.
 */

QueUnfreeze();

2.3.15 Queue Spooling

Queues are typically created with sufficient capacity for handling expected traffic surges.
Unfortunately, actual traffic patterns are not always predictable. A queue may
periodically be strained beyond its capacity by brief bursts of heavy message traffic.

2.3.15.1 What is Queue Spooling?

The handling of queue overflow messages is one of the more difficult aspects of a
system's design. XsIPC provides a dynamic spooling mechanism for its queues. Spooling
for a queue can be activated or deactivated via program control whenever necessary.
Messages attempting to enter a queue that is full and currently spooling are temporarily
placed on the queue's overflow spool. The queue is, in effect, given a virtual capacity
extension beyond its original size limits. This elasticity guarantees that no messages are
lost during peak operating periods.
Programs executing QuePut() operations on a queue that is spooling are guaranteed not to
block. If the message queue is full, then dispatched messages are redirected to the queue's
spool.
Spooled messages are automatically absorbed into the actual queue as space on the queue
becomes available. The whole process is completely transparent to the programs
dispatching and retrieving the messages to and from the queue.

2.3.15.2 QueSpool() - Starting Spooling for a Queue

Spooling is controlled on a queue-by-queue basis. QueSys queues are created with their
spooling initially 'off.' The QueSpool() function is used for activating and deactivating a
queue's spooling.
QueSys spooling is implemented using a series of files. We will see shortly how this
actually works. For now it is convenient to associate a single spool file name with a
queue's spool, and to assume for the sake of simplicity that all spooling occurring on
behalf of a queue occurs in its designated spool file.

QueSpool() takes two arguments:

o The Qid for which spooling is to be activated or deactivated.

o A spool file name when activating; or the QUE_SPOOL_OFF code for
deactivating.

2-42 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

Example:

/*
 * Create a transaction queue with a capacity for 100 messages
 * and 32 K-Bytes. Activate its spooling so that overflow messages
 * during heavy traffic surges are not lost.
 */

Qid = QueCreate("TransQueue", 100, 32768L);

RetCode = QueSpool(Qid, "/tmp/tqspool");

Spooling does not change a queue's internal capacity. The "TransQueue" created above
continues to have room for 100 messages and 32 K-Bytes.
Spooling takes place in the file system. As such, starting spooling for a very busy queue
will not cause a sudden rush on QueSys resources, such as message text spool space or
available message headers. Other programs using other queues in the same QueSys
instance are not affected.
When spooling occurs within a network instance it uses the file system of the machine
upon which the instance was started. The spool file name argument must therefore
conform to the file naming conventions of that platform.
Overflow "TransQueue" messages are automatically placed on the queue's spool file. The
spool file can be located anywhere within an accessible file system. The only critical
requirement is that the location (i.e., its directory) be read/write enabled for all processes
using the queue.

2.3.15.3 QueSpool() - Stopping Spooling for a Queue

Once activated, a queue's spool can grow freely, being bound only by the underlying file
system, the operating system or hardware limitations. Consuming messages from a queue
will cause spooled messages to be absorbed onto the queue proper from which they too
are eventually consumed.
A queue's spooling activity can be deactivated when spooling of overflow messages is no
longer desired. Messages already on the spool are unaffected by the deactivation. They
continue to be absorbed as space becomes available on the queue. Deactivation of
spooling does, however, block any further messages from being written to the queue's
spool. QuePut() and QueSend() operations will now block (if so specified) when
attempting to dispatch messages to the full queue.
Example:

/*
 * Deactivate spooling for the "TransQueue"
 * used in the previous example.
 */

RetCode = QueSpool(Qid, QUE_SPOOL_OFF);

Here, the macro QUE_SPOOL_OFF is given as the function's second argument, instead
of as a file name. This instructs QueSpool() to discontinue spooling for the given queue.
Queue spooling can be started and stopped by an application as often as necessary.

QueSys 2-43

01/22/2004

Rev. No.: 4

2.3.15.4 The Spooling Mechanism

Knowledge of how QueSys spooling is implemented is not a prerequisite for using it; it
is, however, useful to understand in general terms what is happening.
A QueSys spool is maintained using a series of files. The names of these files are based
on the spool file name argument given to QueSpool() when spooling for a queue is
started. The base name is appended with ".nnn" suffixes, where nnn is an integer between
000 and 999.

Example:

/*
 * The following QueSpool call activates spooling for queue 'Qid'.
 * Spooling will be implemented using files:
 * /tmp/spool.000
 * /tmp/spool.001
 * /tmp/spool.002
 * ...
 * /tmp/spool.999
 */

RetCode = QueSpool(Qid, "/tmp/spool");

The specified file name is used as a base name for up to one thousand "spool tick files"
that will actually hold the spooled messages.
The maximum size of "spool tick files" within an instance is specified within the
instance's configuration file using the SIZE_SPLTICK parameter. As we saw earlier,
SIZE_SPLTICK is specified in units of K-Bytes. No spool tick file will grow beyond
SIZE_SPLTICK bytes in size within an instance.
Spool tick files are maintained as long as they contain live messages. Once all of their
messages have been absorbed by the queue, the files are deleted.
Example:

Consider the following situation. A queue has spooled some of its messages. The front of the live
messages is in spool tick file 002. They extend into spool tick file 005.

2-44 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

A number of points can be made:

o The size of each tick file does not exceed the SIZE_SPLTICK parameter
setting in the configuration file.

o Messages are placed on the queue at the REAR spool tick file. If the REAR file
has hit SIZE_SPLTICK bytes in size, the next tick file in the sequence (i.e.,
006) is created and it starts accepting spooled messages.

o Message absorption into the queue is done from the FRONT spool tick file.
When the current file (i.e., 002) is exhausted of live messages, it is deleted and
the next file in the sequence (i.e., 003) becomes FRONT.

o Too large a value for SIZE_SPLTICK will result in wasted file space, holding
a queue's old spooled data. For example, the messages at the beginning of file
002 are dead.

o Too small a value for SIZE_SPLTICK will generally cause more spool tick
files to be created for each queue.

Spooled messages are never split across two adjacent spool tick files. As a result,
SIZE_SPLTICK must at least as large as the largest message to be spooled. In fact, it
should exceed the largest message by at least 32 bytes.
For obvious reasons, spool tick files should not be removed while spooling is in progress.
It is also a hazardous practice to have different queues share the same spool file name.
Spooling, when used properly, can add significant flexibility and robustness to message-
intensive systems.
2.3.16 QuePurge() - Purging a Queue

Occasionally it is necessary to purge a queue of all its messages. This is accomplished
using the QuePurge() function.
QuePurge() deletes all messages held on a specified queue. It also destroys any spooled
messages associated with the queue.
In purging the queue, two steps take place:

o All messages on the queue (internal and spooled) are purged.

o All blocked QueGet(), QuePut(), QueSend() and QueReceive() operations
involving the purged queue are cancelled and returned with RetCode =
QUE_ER_PURGED. "RetQid" is set with the Qid of the purged queue.

The best way to understand QuePurge() is to view it from its aftermath. The resulting
queue is left in a state very similar to that of a newly created queue. The only differences
is that QuePurge() does not turn spooling off (if it is on), and that the queue's traffic
history statistics are left intact. In every other way the resulting queue is like a brand new
queue.

QuePurge() takes one argument:

o The Qid of the queue to be purged.

QueSys 2-45

01/22/2004

Rev. No.: 4

Example:

/*
 * Access the "DeadLetterQue" queue, and purge its messages.
 */

XINT Qid;
XINT RetCode;

Qid = QueAccess("DeadLetterQue");
RetCode = QuePurge(Qid);

Purging a queue does not destroy the queue; it simply cleans it of messages. Statistics and
spooling status are not changed. This can be useful for restarting a system that uses a
queue having a "perpetual" existence. These statistics can be used by the new invocation
of the system to prepare for expected queue utilization based on previous traffic statistics.
It goes without saying that purging a queue haphazardly, while a system is actively using
it, is not the optimal usage of QuePurge(). Purged messages cannot be recovered.
2.3.17 QueDelete() - Deleting a Queue

A queue should be deleted from its instance when it is no longer needed. This recycles
internal QueSys resources and makes the QueView monitor less cluttered.
QueDelete() takes one argument:

o The Qid of the queue to be deleted.
Example:

RetCode = QueDelete(Qid);

QueDelete() will only succeed if the subject queue is currently inactive. If a queue
contains messages or if it is blocked (e.g., other users are waiting for a specific priority
message to arrive), it cannot be removed using QueDelete().
If an active queue must be removed regardless of its current disposition, then
QueDestroy() should be employed.
2.3.18 QueDestroy() - Destroying a Queue

A queue that must be removed from its instance can be destroyed using QueDestroy().
QueDestroy() removes the subject queue regardless of the queue's current status.
QueDestroy() takes one argument:

o The Qid of the queue to be destroyed.

Example:

RetCode = QueDestroy(Qid);

In destroying the queue, two steps take place:

o All messages on the queue (internal and spooled) are purged, reducing the text
block count to zero.

o All blocked QueGet(), QuePut(), QueSend() and QueReceive() operations
involving the destroyed queue are cancelled and returned with RetCode =
QUE_ER_DESTROYED. "RetQid" is set with the Qid of the destroyed queue.

2-46 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

For obvious reasons, QueDestroy() should be used sparingly. Its most likely application
would be within the execution of a system's "cleanup" program at which time the above
side-effects are normally of no concern.
2.3.19 QueInfoSys() - Information About an Instance's QueSys

XsIPC provides a set of QueSys functions that can be used to access status information
about various aspects of an instance's QueSys.
The returned data can be used to make run-time decisions about on-going application
processing.

QueInfoSys() returns with information about the QueSys of the instance currently logged into.
QueInfoSys() takes one argument:

o A pointer to a QUEINFOSYS structure, that is returned filled with QueSys status
information.

Besides statistical data, the QUEINFOSYS structure returns with "list" data. The
subsystem has a WList associated with it. The WList contains a list of Uids currently
blocked on QueWrite() operations to the subsystem's message text pool.

o Each list element identifies the nature of a blocked QueWrite() operation.
The WList within QUEINFOSYS is an array that can accommodate up to
QUE_LEN_INFOLIST elements. The actual list may, at times, be greater than
QUE_LEN_INFOLIST elements in length. A call to the QueInfoSys() function must
therefore be preceded by the setting of the WlistOffset structure member, specifying
what portion of the WList is desired.
Setting the offset to zero directs the function to return with WList data from the start of
the list.
Example:

QUEINFOSYS SysData;

SysData.WListOffset = 0;

RetCode = QueInfoSys(&SysData);

A complete description of how to use the Info functions is presented in the Advanced
Topics chapter of the XsIPC User Guide, in the section entitled, "Info Function List
Manipulation."
The definition of the QUEINFOSYS datatype is included in the User Data Structures
chapter of the QueSys/MemSys/SemSys Reference Manual.

2.3.20 QueInfoUser() - Information about a QueSys User

QueInfoUser() returns with information about a specified user. QueInfoUser() takes two
arguments:

o The Uid whose status is desired.

o A pointer to a QUEINFOUSER structure, that is returned filled with the user's
status information.

QueSys 2-47

01/22/2004

Rev. No.: 4

Besides statistical data, the QUEINFOUSER structure returns with "list" data related to
the specified user. Each user has a WList associated with it. The WList contains
information about the QueSys operation (if any) that the user is currently blocked on.
A user can be blocked on one of three QueSys operations: QuePut(), QueGet() or
QueWrite(). The elements comprising the WList depend on the operation involved.

o During a blocked QuePut() operation, the WList identifies the list of Qids
targeted by the blocked QuePut() (or QueSend()) call.

o During a blocked QueGet() operation, the WList identifies the list of Qids, and
their respective Message Select Criteria, targeted by the blocked QueGet() (or
QueReceive()) call.

o During a blocked QueWrite() operation, the WList is a single element list. The
list element identifies the nature of the blocked QueWrite() (or QueSend())
operation.

The WList within QUEINFOUSER is an array that can accommodate up to
QUE_LEN_INFOLIST elements. The actual list may, at times, be greater than
QUE_LEN_INFOLIST elements in length. A call to the QueInfoUser() function must
therefore be preceded by the setting of the WListOffset structure member, specifying
what portion of the WList is desired.
Setting the offset to zero directs the function to return with WList data from the start of
the list.
Example:

QUEINFOUSER UserData;

UserData.WListOffset = 0;

RetCode = QueInfoUser(Uid, &UserData);

A complete description of how to use the Info functions is presented in the Advanced
Topics chapter of the XsIPC User Guide, in the section entitled, "Info Function List
Manipulation."
The definition of the QUEINFOUSER datatype is included in the User Data Structures
chapter of the QueSys/MemSys/SemSys Reference Manual.
2.3.21 QueInfoQue() - Information about a QueSys Queue

QueInfoQue() returns with information about a specified queue. QueInfoQue() takes two
arguments:

o The Qid whose status is desired.

o A pointer to a QUEINFOQUE structure, that is returned filled with the queue's
status information.

Besides statistical data, the QUEINFOQUE structure returns with "list" data related to the
specified queue. Each queue has a WList associated with it.
The WList contains information about the QueSys operations (if any) that users are
currently blocked on involving the specified queue. Users can be blocked on one of four
QueSys operations regarding a queue: QuePut(), QueSend(), QueGet() or QueReceive().

2-48 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

The elements comprising a queue's WList depend on the mix of blocked operations occurring at the time of
the QueInfoQue() call:

o A WList element exists for every blocked QuePut() or QueSend() operation
targeting the subject queue. The list element identifies the nature of the blocked
QuePut() or QueSend() operation.

o A WList element exists for every blocked QueGet() or QueReceive() operation
involving the subject queue. The list element identifies the details of the blocked
QueGet() or QueReceive() operation.

The WList within QUEINFOQUE is an array that can accommodate up to
QUE_LEN_INFOLIST elements. The actual list may, at times, be greater than
QUE_LEN_INFOLIST elements in length.
A call to the QueInfoQue() function must therefore be preceded by the setting of the
WListOffset structure member, specifying what portion of the WList is desired.
Setting the offset to zero directs the function to return with WList data from the start of
the list.

Example:

QUEINFOQUE QueData;

QueData.WListOffset = 0;

RetCode = QueInfoQue(Qid, &QueData);

A complete description of how to use the Info functions is presented in the Advanced
Topics chapter of the XsIPC User Guide, in the section entitled, "Info Function List
Manipulation."
The definition of the QUEINFOQUE datatype is included in the User Data Structures
chapter of the QueSys/MemSys/SemSys Reference Manual.

2.4 The QueSys On-Line Monitor: QueView

QueView is the on-line monitor for XsIPC QueSys instances.

2.4.1 Starting QueView

QueView is started from the command line using the "QueView" command.
QueView takes two arguments:

o The first argument is the initial "interval" snapshot setting. It defines in
milliseconds the initial update frequency of the monitor. The interval argument
is mandatory.

o The second argument is the instance file name of the instance to be monitored.
This argument is optional. If it is omitted, QueView uses the value of the xipc
environment variable for the Instance File Name of the instance to start
monitoring.

Example:

queview 250 /usr/demo

QueSys 2-49

01/22/2004

Rev. No.: 4

The above command starts the QueView monitor for the QueSys subsystem of the
"/usr/demo" instance. The initial update interval is set to 250 milliseconds.

2.4.2 QueView Layout

QueView's main display is matrix-like in appearance. Users logged into the instance and
existing QueSys queues form the axes of the matrix. Interaction between instance users
and queues is displayed within the body of the "interaction matrix."
QueSys operations that block asynchronously are treated as pseudo-users of QueSys.
These Asynchronous Users are displayed in the same manner as ordinary users, thus
providing a consistent visual display of all pending QueSys asynchronous operations.

 The QueView display has the following layout:

Status
Interval

Queues...

Users
...
...

User - Queue
Interaction

Matrix

Command Statistics Capacity

Monitor status and interval setting is shown at the top left portion of the screen. QueSys
capacity data is displayed at the lower right portion of the screen. The command entry
window is at the lower left of the screen.
2.4.2.1 Sample QueView Screen

2.4.2.2 User Entries

Users logged into the instance are listed on the left side of the interaction matrix, one line
per user.

2-50 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

Each user entry includes:

o The user's QueSys user ID.
o The user's login name.
o The user's blocking status (if any).
o The blocking timeout value (if any).

An example (not associated with the screen presented above) follows.

 02 StartUp
 03 DownLoad PUT ...
 06 NetProg WRT 17
 41 A041-006 GET ...

In this example, four QueSys users are identified, three normal users and one asynchronous operation.

o QueSys user 2 has the login name "StartUp." The user is not blocked on any
QueSys operation.

o QueSys user 3 has logged in as "DownLoad." It is blocked on a QuePut()
operation and is blocked indefinitely, thus having no timeout value.

o QueSys user 6, logged in as "NetProg," is blocked on a QueWrite() operation
and has a timeout pending. Seventeen seconds remain until the operation times
out.

o QueSys user 41 is an asynchronous QueGet() operation that was started by user
6.

2.4.2.3 Queue Entries

The instance's queues are identified across the top of the interaction matrix.

Each queue entry includes:

o The Qid of the queue.

o The user-assigned ASCII name of the queue.

o The queue's message capacity data.

o The queue's byte capacity data.

An example (not associated with the screen presented above) follows.
0 1 4 5

InQueue Tpdata ImageQue NetData
21/25 34/100 78/0 192/100

925/8192 39.2/0.0 4006/4096 21.2/16.0 …

In this example:

o Queue "InQueue" is shown to have a Qid of 0. It is a queue having a message
capacity of 25 messages, and a byte capacity of 8 K-Bytes = 8192. A total of 21
messages, amounting to 925 bytes, reside on the queue.

QueSys 2-51

01/22/2004

Rev. No.: 4

o Queue "TPdata" has Qid 1. It has a message capacity of 100 and an unlimited
byte capacity (represented as 0.0). Currently, 34 messages or 39.2 K-Bytes of
data reside on the queue.

o Queue "ImageQue" has Qid 4. It has an unlimited message capacity, and a byte
capacity of 4 K = 4096. At present the queue is holding 78 messages totaling
4006 bytes.

o Queue "NetData" has Qid 5. It is being used to read messages off a network. The
queue is configured to hold 100 message internally totaling a maximum of 16 K-
Bytes. Currently, there is a total of 192 messages on the queue, including its
spool; this indicates that the queue's overflow spool has absorbed the extra
messages. Similarly, 21.2 K-Bytes are currently on the queue and its spool.

Note that message and byte counts include messages that have been spooled (if any). To
get a breakdown of the number of messages internally on the queue and the number of
messages spooled, one must use the various queue zoom windows described below.

2.4.2.4 Interaction Matrix Cells

Each cell on the QueView interaction matrix describes the current relationship between a
user and a queue.

Possible cell values include:

... Indicating that the user is not blocked in any manner on the intersecting queue.

MSG Indicating that the user is blocked on a message dispatch operation involving the
intersecting queue. The queue is at message capacity and its spooling is currently
disabled. Accordingly, the queue cannot accept the message being dispatched.

SPL Indicating that the user is blocked on a message dispatch operation involving the
intersecting queue. The queue currently has its spooling disabled. There are also
messages spooled from when spooling was active. The queue can not accept any
messages. In most but not all cases, this will also be an indication of the queue being
at its internal capacity.

nnn Where nnn is an integer value. The user is blocked on a message dispatch operation
where the message involved has 'nnn' bytes. The intersecting queue is at its byte
capacity and its queue's spooling is currently disabled. Accordingly, the queue cannot
accept the nnn byte message.

ANY Indicating that the user is blocked on a message retrieval operation. The intersecting
queue is either currently empty or does not have the desired message.

2.4.3 Monitoring Modes

The topic of monitoring modes--the available options and when they should be used--is
described in detail in the XsIPC 3.0 User Guide.

2.4.4 QueView Zoom Windows

QueView provide the developer with six zoom window capabilities.

2-52 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

2.4.4.1 Zooming in on a User

The QueView user zoom window creates a detailed display of the status of a particular
QueSys user. The command string for user zooming is "zuN" where N is the Uid to be
zoomed in on.

Example:

The command for opening a zoom window on the user having a Uid of 4 is:

Command> zu4

 Status: [NOT BLOCKED]

 Put: 278 Get: 1028
 Wait List :

 Uid: 2
 Name: NetDaemon
 Pid: 709
 Login: Jan 12 17:23

User "NetDaemon" is currently not blocked on any QueSys operation. The user wait list
is accordingly empty. He has dispatched 278 messages and retrieved 1028 messages
since logging into the instance.

 Status: [BLOCKED: PUT]

 Put: 278 Get: 1028
 Wait List : 5 6

 Uid: 2
 Name: NetDaemon
 Pid: 709
 Login: Jan 12 17:23

User "NetDaemon" has now blocked on a message dispatch operation involving Qids 5
and 6. The blockage is indefinite (i.e., it has no timeout). The listed queues cannot
currently accept "NetDaemon"s message due to capacity limitations. The interaction
matrix details the type of capacity limitations encountered for each of the listed queues.
Similar information is displayed in the user zoom window when a user becomes blocked
on any of the other blockable QueSys operations.
2.4.4.2 Zooming in on a Queue

The queue zoom windowprovides a complete report of a queue's current status. The
command string for zooming on a queue is "zqN" where N is the Qid to be zoomed in on.

Example:

The command for opening a zoom window on message queue 6 is:

Command> zq6

Example:

Msgs : 15/25 (60%)
[***********....]
 Bytes: 779/1024 (76%)
[*************..]
 In: 445 Out: 430 Spool: OFF 0
Msgs
 Wait List :

 Qid: 6
 Name: InQueue
 CreateUid: 2
 Created: Jan 4 9:30

QueSys 2-53

01/22/2004

Rev. No.: 4

Qid 6 is shown to be at 60% message capacity and at 76% byte capacity. It has taken 445
messages and has given 430 messages since its creation. Spooling for the queue is
currently off, and there are currently no messages spooled. The empty wait list indicates
that no users are blocked on the queue.

2.4.4.3 Zooming in on a Queue's Messages

The message zoom window provides a glimpse at the message traffic of a given queue.
The provided display is usually sufficient for monitoring general message movements
occurring on the queue.
The command string for message zooming is "zmN" where N is the Qid to be zoomed in
on. An optional 't' or 'p', appended to the command, determines whether the time or
priority strands of the queue's messages are used for the display. If neither is specified
then the time strand is used.

Example:

The command for opening a message zoom window on the messages of Qid 3, displaying them
using the queue's time strand, is:

Command> zm3

or

Command> zm3t

The command for opening a zoom message window on the same queue, using the priority strand, is:

Command> zm3p

The message zoom window provides a glimpse at the first and last three messages on a
specific queue strand. The zoom window is actually divided into two sub-windows: left
and right.
The left sub-window displays the strand's first three messages; the right sub-window
displays the strand's last three message. The bottom line provides general statistics about
the subject queue.

Only minimal data is displayed per message:

o The message's internal time stamp.

o The message's priority.

o The message's length.

o The first 18 characters of the message's text.

 75 4000 24 IBM 107 1/2
 77 3800 118 DEC * 98 3/8
 81 4100 103 X 46 7/8 +1

 104 2500 72 DIS * 45 -2
 117 2300 18 PN 12 +2
1/2
 123 1800 52 Reuters:
Janu

 Qid: 3 TIME In: 16 Out: 7 Msgs: 9/200 Bytes:
574/4096

2-54 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

In the above example, a message zoom window has been opened for Qid 3. The 'time'
strand is being viewed.
The first message on the queue's time strand has an internal time stamp of 75, a priority
of 4000 and a length of 24 bytes; the start of the message reads "IBM 107 1/2 ". The
second and third messages on the 'time' strand are presented similarly in the next two
lines of the left sub-window. The right sub-window displays the last three messages on
the time strand, following the same format. The queue's most recently added message has
a priority of 1800, has 52 bytes and starts with "Reuters: Janu."
Had the priority strand been specified (via "zm3p"), then the left and right sub-windows
would display the first and last three messages on the queue's priority strand. A developer
could monitor the highest and lowest priority messages on the queue in this manner.
Zooming in on a queue's messages is an extremely useful device since it can be left open
while a queue is being manipulated. A developer can set the monitor to one of the various
trace modes and then watch in slow motion as messages enter and exit a particular
message queue.
2.4.4.4 Zooming in on a Queue's Spooling

The spool zoom window provides a complete report of a queue's spooling status. The
command string for spool zooming is "zsN" where N is the Qid whose spool is to be
zoomed in on.

Example:

The command for opening a spool zoom window on message queue 6 is:

Command> zs6

 Spool: ON Msgs: 161 Bytes:
17410
 File : "/tmp/spool/InQueue"
 Front: Number.....004
Offset...17442
 Rear : Number.....009
Offset...21004

 Qid: 6
 Name: InQueue
 Msgs : 186/25
(744%)
 Bytes: 16./2.
(800%)

In the above example, the spooling status of Qid 6 is displayed. Qid 6 has its spooling
on. There are currently 161 messages on the queue's spool, amounting to 17,410 bytes of
overflow data. The spool file base name being used is "/tmp/spool/InQueue". The front
spool tick file is 004 and the rear tick file is number 009. The current offsets within each
of the files are also listed. General capacity information regarding the queue is given on
the right portion of the spool window. There are a total of 186 messages on the queue
(including the spooled messages). There are a total of 16 K-Bytes of messages on the
queue (once again, including the spooled messages).
Keep in mind that the status of a queue's spooling mechanism--specifically, whether it is
currently on or off--has no relationship to the number of messages on the queue's spool.
In the above example, the spooling could have been off and the remaining data would
still be the same. Spooling being on or off is only an indication of whether the queue is
currently accepting 'new' overflow messages.

QueSys 2-55

01/22/2004

Rev. No.: 4

2.4.4.5 Zooming in on Message Text Pool Status

One of the most critical components of a QueSys instance is its message text pool.
Monitoring its changing status provides important data about the overall efficiency of the
QueSys instance. Subsequent configuration parameter adjustments can produce
noticeable performance improvements.
A zoom window for monitoring message text pool status can be opened using the "zp"
command string.

Example:
Command> zp

 Capcty: 32.1/60.0 (54%)
[********......]
 Frgmnt: 171/213 (79%)
[***********...]
 Largst Blk: 1980
 Wait List : 4

 Pool Size: 60K
 Tick Size: 32

Zooming on the message text pool status provides important information. In the above
example, the message text pool is 54% full. More significant is that the pool's
fragmentation index is approaching 80%. This value measures how severely fragmented
the message text pool has become. The largest available free text block is 1980 bytes in
size. User 4 is currently blocked on a QueWrite() operation.
Severe fragmentation can be remedied in a number of ways:

o Changing the mix of messages being used in the instance.
o Increasing the size of the message text pool.
o Adjusting the message tick size.

By monitoring the text pool after making adjustments, improvements in text pool
utilization can be confirmed.
2.4.5 Zooming in on a User in Burst Mode

The user zoom window may be used to track the progress and status of a user in burst
mode.

Example:

The command for opening a zoom window on the user having Uid of 4 is (who is in burst mode):

Command> zu4

 Status: [NOT BLOCKED]
 Burst: Send SeqNo = 174 RA =
32768
 Put: 278 Get: 1028
 Wait List :

 Uid: 4
 Name: FireHose
 Pid: 709
 Login: Jan 12 17:23

Note the new fields within the window (highlighted in the above example) that have been
added for monitoring a user’s burst activity. User 4 is in send burst mode, has sent 174
messages so far, and is using a read-ahead (“RA”) buffer size of 32,768 bytes.

2-56 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

2.4.6 Browsing Messages with QueView

Queue and message browsing is an important feature of XsIPC QueSys. Using this
capability, a programmer can verify a message's format or search for specific Hex or
ASCII message patterns.
Unlike the zoom windows just described, when the browse facility is used it temporarily
freezes the subject QueSys instance.
Browsing is initiated using the command string "bN," where N is the Qid to be browsed.
An optional 't' or 'p' may be appended to the command to specify whether the time or
priority strands of the queue should be used. If neither is specified, then the time strand is
defaulted to.
Example:

The command to initiate browsing of Qid 5's time strand is:

Command> b5
or
Command> b5t

To initiate browsing of the queue's priority strand one would use:

Command> b5p

The browse facility uses a full-screen window for displaying message data. A sample
screen follows.

The highlighted (grey) line identifies the queue being browsed. The next line identifies
the message within the queue currently being viewed. In the above example, the first
message on the time strand is being shown. TIME #1 refers to the oldest message on the
queue. This message has priority #123; in constrast, PRIO #1 would refer to the highest
priority message on the queue.
The body of the screen presents the message text in hex and ASCII formats. Offsets into
the message are posted along the left margin.

QueSys 2-57

01/22/2004

Rev. No.: 4

2.4.7 Browse Facility Commands

Navigating in and about queues and individual messages is accomplished using the
browse facility commands.
2.4.7.1 Chronological vs. Priority Sequence

As previously noted, it is possible to browse messages from either the time (i.e.,
chronology) or the priority perspective. That is to say that a queue's messages can be
viewed in chronological or priority order. Switching from one perspective to the other is
done using the appropriate command.

Switching to the priority strand is accomplished using:
Command: p

Switching to the time strand is accomplished using:
Command: t

2.4.7.2 Moving Around On A Queue

Moving from message to message on a given queue can be done in a variety of ways:
Command Effect
⇒ (right arrow) Moves to the next message on the strand.
⇐ (left arrow)Moves to the previous message on the strand.
n Moves to the nth message on the strand.
+n Moves forward n messages.
-n Moves backward n messages.
f Moves to the first message on the strand.
l Moves to the last message on the strand.

Move commands work only where they make sense. Otherwise the command is ignored.
We will see shortly that searching for patterns within a queue effectively moves the
browse window to the message where the pattern is found.

2.4.7.3 Moving Around Within A Message

Moving about within a message is accomplished using the following commands:

Command Effect
⇑ (up arrow) Scrolls the current message up one line.
⇓ (down arrow) Scrolls the current message down one line.
PAGE-UP Scrolls the current message one page up.
PAGE-DOWN Scrolls the current message one page down.
HOME Scrolls to the top of the current message
END Scrolls to the bottom of the current message
Scrolling only works where it makes sense. Otherwise the command is ignored.
We will see shortly that searching for a pattern within a message will cause the message
to scroll to the offset where the pattern is found.

2-58 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

2.4.7.4 ASCII Pattern Searching

Forward ASCII pattern searching is executed by specifying a pattern between two ' / '
characters and hitting return. Backward searches are specified using two ' \ ' characters.
Pattern searches can be kept confined within a single message (local), or they can cover
all the messages in the current queue (global). Global search commands use a 'g' prefix.
Local searches require no prefix.
The second bracket character is not always necessary, as will be demonstrated in the following examples.
Repeat patterns are remembered. The following examples demonstrate these points:

Command Effect
/IBM/ Search forward in the current message for the string "IBM".
// Repeat the search.
/ Same.
\IBM\ Search backward in the current message for the string "IBM".
\\ Repeat the search.
\ Same.
g/IBM/ Search forward through all messages to the end of the queue.
g// Repeat the search.
g/ Same.
g\IBM\ Search backward through all messages to the start of the queue.
g\\ Repeat the search.
g\ Same.

2.4.7.5 Hexadecimal Pattern Searching

Searching for Hexadecimal patterns is very similar to ASCII pattern searching. The only differences are
that the pattern specified is a Hex string, and that an 'x' is appended to the end of the search command.

Command Effect
/4f37/x Search forward for hex value "4f37" within current message.
g/4f37/x Same search, but forward across all messages on the queue.
g//x Same.
\4f37\x Search backward for hex value "4f37" within current message.
g\4f37\x Same search, but backward across all messages on the queue.
g\\x Same.

2.4.7.6 Switching to Another Queue

Switching to browse another message queue is accomplished using the "bN" command as
described above.
This allows navigation between queues without having to exit the browse facility. This is
important, since the entire QueSys instance remains frozen. Exiting the browse facility on
the other hand, even for a brief period, unfreezes the instance.

2.4.7.7 Exiting the Browse Facility

The browse facility is exited using the "q" command. Once browsing is terminated, the
QueSys instance is unfrozen.

QueSys 2-59

01/22/2004

Rev. No.: 4

Example:

Command: q

2.4.8 Panning within QueView

Panning within QueView lets the developer observe different sections of the interaction
matrix. This is especially useful when a zoom window is open and parts of the matrix are
not visible.
All "panning" commands start with 'p'.
Vertical panning (up and down) to observe other users is done by specifying a 'u' (for
user) and a Uid to pan to.

Example:

Command> pu8

The above command scrolls the interaction matrix so that Uid 8 is at the top of the
display.
Horizontal panning (right and left) to monitor other queues is accomplished specifying a
'q' (for queue) and a Qid to pan to.
Example:

Command> pq4

The above command scrolls the interaction matrix so that Qid 4 is the first displayed
(left-most).

Example:

Command> po

The command "po" returns the display to the origin of the activity matrix.
2.4.9 Stopping QueView

QueView monitoring is terminated via the 'q' command.
Example:

Command> q

Bringing down QueView has no effect on the underlying activities of the QueSys
instance. It continues to function unaffected. Any overhead incurred by monitoring is
eliminated.

MemSys 3-1

01/22/2004

Rev. No.: 4

3. MEMSYS: THE XsIPC SHARED MEMORY SYSTEM

3.1 MemSys Concepts

XsIPC MemSys introduces a number of important concepts which are presented in the
following sections.
3.1.1 MemSys Segments

XsIPC shared memory activity revolves around MemSys memory segments. In this way,
XsIPC MemSys is similar to native shared memory facilities. User programs read and write
to and from MemSys memory segments as they see fit.
The mechanism used for governing read and write access to a segment is what sets
MemSys apart from existing native facilities. XsIPC MemSys introduces the concept of
dynamic section overlays for controlling read-write access to a MemSys segment down to
the byte level.

3.1.2 MemSys Section Overlays

The model used by MemSys for controlling read-write access to its segments is really
quite simple.
A MemSys segment is a repository of contiguous data. Reading and writing to areas of a
MemSys segment require that the user program involved have the appropriate access to
the entire area targeted by its read or write operation. Accessibility to areas of a MemSys
segment is controlled via Section Overlays.
A section overlay--called "section" for short--can be viewed as lying on top of all or part
of a MemSys segment. A section controls read-write access to that part of the segment
that it overlays.
Each section that is defined over a MemSys segment has its own read-write privilege
settings. These privilege settings control read-write access to the overlaid part of the
underlying MemSys segment. Possible privilege settings are read-write, read-only, write-
only or not-accessible.
Using sections, a segment may have different read-write characteristics governing access
to different parts of it.
A section is dynamic in nature. It is defined at run time. Its location, size and access
privileges are controlled at run time. A section may exist only briefly or it may persist for
a longer period of time. Privilege settings controlling access to the underlying segment
data can be modified as often as necessary. Finally, a section can be removed from the
segment when it is no longer needed.
Using sections, it is possible for a program to take control over all or part(s) of a given
MemSys segment for as long or as short a period of time as necessary. It may, for
instance, exclusively lock one area from other user access, while imposing a read-only
limitation on others.
A program can lock portions of an in-memory database, individual records, or even
specific fields for updating, as necessary. Tables or portions of tables can be made read-
only or completely inaccessible for as long as required.

3-2 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

Different parts of a MemSys segment can have different accessibility rules governing
them at different points in time. This can be changed as often as necessary.

Section Definition
A section is defined in terms of its location, access privileges and ownership. A section
exists once it is defined to MemSys. The function call for defining a new section,
MemSecDef(), will be described below. A section remains in existence until it is
undefined or until its underlying MemSys segment is removed.
3.1.2.1 Segment Data Accessibility Control

Using sections, it is possible to assign different levels of accessibility to different portions
of a segment's data. In this sense, sections can be viewed as providing dynamic "windows
of accessibility" to a MemSys segment's data.
In fact, new sections can be defined to overlap existing sections. In this manner it is
possible, for example, to have an entire table that is read-write accessible by all users; a
single table entry that is read-only accessible by all and read-write accessible by one
specific user; and one field of this one record that is inaccessible by all while still being
read-write accessible by a single user who might do an update. Such an example will be
demonstrated below.
Of course, this capability is not limited to internal tables or databases. It can be applied
with equal flexibility to array manipulation, image processing, etc. Any situation
involving memory that needs to be accessed and manipulated by multiple users
concurrently, in a controlled and synchronized manner, can benefit from MemSys's
section functionality.
3.1.2.2 Section Location

A section covers a specific contiguous portion of a MemSys segment. A section's
location has three components:

o The underlying MemSys segment identifier.

o An offset into the segment where the section starts.

o The section's size. A section cannot overlap across two MemSys segments.
3.1.2.3 Section Access Privileges

Each section divides the universe of MemSys users into two groups: the section's current
owner (at most one user) and other users. Section access privilege settings are kept for
these two groups.
Possible privilege settings are:

MEM_RW Read-write
MEM_RO Read-only
MEM_WO Write-only
MEM_NA Not accessible

Using these privilege settings it is possible for a section's owner to control accessibility to
a section's underlying segment data.
For example, by setting a section's owner privileges to MEM_RW and other privileges to
MEM_NA, a section's owner can effectively lock the section (i.e., its underlying segment
data) for himself. His read and write operations to target areas within the section would

MemSys 3-3

01/22/2004

Rev. No.: 4

succeed. Other users attempting to read or write the same areas would either fail or block
if so specified.
If the other users chose to block, their operations would not unblock and complete until
the section's other privilege setting was changed to permit other access to the underlying
segment data.
As we will see shortly, in most situations this form of locking can be effected using a pair
of MemSys function calls: MemLock() and MemUnlock(). The actual work of defining
sections, becoming owner and setting privileges appropriately is done automatically by
these functions.
When a section is first defined, it is created with access privilege settings of read-write
for owner and other.
3.1.2.4 Section Ownership

A section can have at most one owner at any point in time. Ownership of a section is a
prerequisite for modifying the section's access privilege settings.
Section ownership is controlled in the following manner: A user that does not currently
have read-write access to a section's complete underlying area cannot become the
section's owner. Put another way: ownership of a section can only be acquired by a user
having read-write access to a section's entire area. The precise definition of "a user
having read-write access to a section's entire area" is given below.
When a section is first defined it is created having no owner.
3.1.3 Segment Data Read-Write Accessibility

Many MemSys operations require that an area of a MemSys segment be "readable" or
"writeable" (or both) by the user in order for the operation to succeed.
The best way to understand the concept of a segment's read-write accessibility is to
contrast it with the concept of section access privileges described earlier.
As we have seen, a section's access privilege settings describe the type of read-write
access available through that particular section. It does not, however, indicate the actual
read-write accessibility of the underlying segment data for any particular user. Other
sections having different privilege settings may overlay all or part of the same segment
area, causing the underlying data accessibility to be different from the original section's
privilege settings indicated. The key here is that access privileges relate to sections,
not the underlying data.

3-4 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

A segment's read-write accessibility is a subjective measure. It answers the question as to
whether a particular user has read or write access to a particular area of a MemSys
segment. This determination is made based on the sections currently overlaying the area
in question, their current ownership and their current privilege settings. A segment's read-
write accessibility may vary from user to user, and from byte tobyte. The key here is
that read-write accessibility is subjective and relates to the actual segment data.

Example:
A MemSys segment has been created. Its Mid (MemSys segment id) is 3. A section has
been defined over part of the segment.
The section is currently owned by user 14, has privilege settings of read-write for the
owner (i.e., user 14) and read-only for other users.
Since no other sections are involved, the read-write accessibility of the section's data is
exactly as indicated by the section's privilege settings: read-write by user 14 and read-
only by all others. The remaining areas of the memory segment are currently not
accessible by any users in the instance, because no sections are defined over them.
As owner of Section A, user 14 can change the other privilege to, e.g., "no-access", at
which point the data covered by the section would not even be readable by other users.

MemSys 3-5

01/22/2004

Rev. No.: 4

Now consider the next situation:

A second section, Section B, has been defined over a different portion of the memory
segment. Its owner is user 3, its owner privileges are "read-write" and its other privileges
are "no-access".

At this point:

o User 14 can read or write any of the bytes covered by section A, but cannot
access any of the other bytes in the segment.

o User 3 can read or write any of the bytes covered by section B, and can read
from the data in section A.

Next, consider the situation where a third section is defined over the memory segment in such a way that it
overlaps part of each of the existing sections as follows:

A third section, Section C, has now been defined over the segment. Notice that Section C
overlays parts of the memory segment that already have sections defined on them.
Individual user access to segment areas having more than one section over them is

3-6 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

governed by the privileges of all the section involved. More specifically, a user
attempting to access a byte of segment data that has multiple sections defined over it,
must have the appropriate access privilege through all of the sections overlaying that
byte.
The memory segment currently has six distinct areas of accessibility, based on the way
the three sections overlay the segment and overlap each other. The following matrix
summarizes the current read-write accessibility status of the instance's users vis-à-vis the
six marked areas of segment data:

 [1] [2] [3] [4] [5] [6]
User 3 RO RO RO RW RO NA
User 5 RO RO NA NA RW NA
User 14 RW RO NA NA RO NA
Others RO RO NA NA RO NA

As an example, examine user 5's access to the area of segment data identified as [3].
Since area [3] of the segment has two sections defined over it (sections B and C), user 5's
access is determined by the privilege settings of both these sections. User 5 is the owner
of Section C, thus his access to the underlying segment data through Section C is RW.
His access through Section B is as an other, and is thus NA. Because area [3] is the
overlap of sections B and C, user 5's read-write accessibility to the area must satisfy both
of these sections' current privilege settings; this is accomplished by satisfying the more
stringent of the two. User 5's read-write accessibility to the [3] area is thus NA.
This example was contrived to demonstrate a large range of functional possibilities in a
single situation. In fact, many of the access control and synchronization concepts
demonstrated can be applied to common application situations.
Example:
Consider a Customer Table that is to be maintained in an XsIPC shared memory segment.
Let us assume that the appropriately sized MemSys memory segment (Segment 1) has
been created by an initialization program. MemSys user 4 is now ready to initialize it
with the most recent Customer Table data, perhaps saved on disk from the end of the
previous day's business.
User 4 first defines a section over the entire Customer Table segment and sets its
privileges RW for him (as owner) and NA to others. This gives user 4 the ability to
initialize the table while preventing other users from accessing it in the middle of the
initialization process. We will shortly see that this form of section "locking" can be
effected with a single MemSys operation.

MemSys 3-7

01/22/2004

Rev. No.: 4

Once the initialization of the Customer Table is complete, user 4 sets the other privileges
of the section to RW. This makes the table read-write accessible to other users so that
they can make updates as the day progresses. User 4, the initialization program, can now
relinquish ownership of the original section.

3-8 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

Now, assume the following update scenario. User 2 wants to examine customer records 100 through 200 as
a single unit, while protecting them temp orarily from other user write access. To do this, user 2 defines a
new section over records 100 through 200, and becomes the section's owner. He then sets the section owner
privileges to RW and other privileges to RO. User 2 can now examine records 100 through 200 with the
assurance that they will not change before his eyes. Other users can continue to read the focused records
and read-write the remaining records in the table.

MemSys 3-9

01/22/2004

Rev. No.: 4

Now suppose that user 2, as a result of his examination, decides to update record number 187. He would
lock the record by defining another section over that record alone, and setting its privileges appropriately.

At this point user 2 has exclusive access to record 187. Other users continue to have read-
only access to the range of records (100-200) being examined by user 2, and read-write
access to the remainder of the Customer Table.
MemSys operations that are prevented from succeeding because of impeding section
privileges on the segment can opt to block and wait until section privileges exist that
permit their operation to succeed.
Thus, had MemSys user 15 initiated a MemRead() operation that was to read Customer
record 187, it would block until that area of the Customer Table segment became
readable by him. This would occur in one of two ways: User 2 removes the sections he
had defined over the Customer Table as described. With only the original section
remaining, user 15 would then be permitted to complete his MemRead() operation since
its target data (record 187) would be deemed once again as read-accessible by him.
Alternatively, user 2 can otherwise modify the privileges settings of his sections, to make
them readable by others. This too would unblock user 15.

3.1.4 Segment Data 'Locking' and 'Unlocking'

The most typical form of segment access control activity is for the purpose of gaining
exclusive access to a portion of a segment's data for a brief period of time, perhaps to
work with that part of the segment in an atomic manner. This type of activity is referred
to as "locking."
A pair of functions, MemLock() and MemUnlock(), are provided by MemSys to support
the locking and unlocking of segment areas. These two functions are actually
implemented using sections, ownership and access privileges as described above. As such
they add nothing fundamentally new to the basic MemSys functionality. MemLock() and
MemUnlock() are just convenient shorthand function calls that actually call the basic
MemSys functions needed to achieve the locking effect.
A segment area becomes "locked" by a user in three steps:

o A section is defined over the targeted area (if one does not exist yet).

3-10 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

o The user becomes owner of the section.

o The section's access privileges are changed to MEM_RW for owner and MEM_NA
for other.

This is precisely what MemLock() does when "locking" segment data. First, it defines a
section over the targeted area (if no such section exists). Then it attains ownership of the
section, blocking if necessary. Finally, it sets the section's privileges to RW for the
calling user and NA for all others. The net effect is that the specified part of the segment's
data is now locked for the caller’s exclusive use.
MemUnlock() accomplishes its work by undoing the steps taken by MemLock().
3.1.5 Atomic Read and Write Operations

MemSys read and write operations are guaranteed to be atomic in nature. User programs
having read or write access to a targeted area of a segment are guaranteed that their
read/write operations will execute atomically, regardless of the amount of data involved.
XsIPC MemSys enforces all serialization of segment access when necessary.

3.1.6 Operation Blocking

Complementing the synchronization mechanisms described above, MemSys provides
optional blocking for individual read, write or lock operations. A caller program that is
currently unable to complete one of these operations due to an access barrier imposed by
one or more sections can opt to block until conditions permit the operation to complete.
In this way, programs can be automatically synchronized when competing to read, write
or lock overlapping areas of a MemSys segment. Synchronization is enforced entirely by
MemSys.
3.1.7 Memory Pool

MemSys segments, when created, are allocated from the instance's memory pool , and are
returned to the memory pool when deleted.
Two observations follow. First, no MemSys segment can be created larger than the
configured size of the memory pool. And second, the aggregate of all MemSys segments
used simultaneously by an instance cannot exceed the size of the pool.
The size of an instance's memory pool is specified within the instance's configuration file.
There are two aspects to memory pool configuration:

o The size of the pool.

o The allocation unit used by the pool.
3.1.7.1 Sizing

The memory pool size defines the total amount of memory allocated to the instance for
creating MemSys segments. The given value should be reasonably close to the actual
shared memory requirements of the instance.
A simple rule for estimating an efficient memory pool size value is given in the
discussion on MemSys configuration below.

MemSys 3-11

01/22/2004

Rev. No.: 4

3.1.7.2 Allocation Unit Size

The second component of memory pool configuration is the size of the pool's allocation
unit (i.e., its tick size). This value specifies the multiple by which all memory allocations
to created segments are made.
An instance working exclusively with small MemSys segments should configure this
parameter to a similarly small value. An instance working with large segments can
configure this parameter to a large value, although a small value will usually work as
well. An instance working with a wide range of segment sizes should opt for a parameter
value close to the small end of the range.
A simple formula for choosing a MemSys allocation unit size is provided below.

3.2 MemSys Configuration

The MemSys section of an XsIPC instance configuration file describes the composition and
capacity of the instance's MemSys.
Six parameters must be set within the MemSys section of the instance configuration file.
Additional operating system specific parameters (if required) are described in the relevant
Platform Notes.

The configuration parameters are:

o MAX_USERS, The maximum number of concurrent users. Should be set based
on the requirements of the programs using the instance. Note that
asynchronously blocked MemSys operations are treated as MemSys users. The
expected level of MemSys asynchronous activity should therefore be factored
into this parameter.

o MAX_SEGMENTS, The maximum number of concurrent segments. Should be
set based on the requirements of the programs using the instance.

o MAX_NODES, The number of nodes. MemSys nodes are used internally for
tracking users that block on MemSys operations. As with SemSys and QueSys,
there is no firm rule for calculating a value for MAX_NODES; it depends largely
on the nature of the programs that will use the instance. A conservative estimate
to start with is:

MAX_NODES = (MAX_SEGMENTS * MAX_USERS *

AverageSegmentSections) + (MAX_USERS*4)
+ MAX_SEGMENTS

 where:

 AverageSegmentSections is the expected average number of sections that
will exist concurrently on a segment.

o MAX_SECTIONS, The maximum expected number of sections that will exist
concurrently in the instance. A starting formula for MAX_SECTIONS is:

 MAX_SECTIONS = (MAX_SEGMENTS *
AverageSegmentSections)

3-12 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

 where:

 AverageSegmentSections is as defined above.
o SIZE_MEMPOOL,The size of the memory pool (K-Bytes). SIZE_MEMPOOL

must exceed the size of the largest segment that will be created in the instance. It
must also exceed the largest aggregate of concurrent segments. A starting
formula for SIZE_MEMPOOL is:

 SIZE_MEMPOOL = (MAX_SEGMENTS * AverageSegmentSize)
 where:

 AverageSegmentSize is the expected average segment size occurring
within the instance.

 SIZE_MEMPOOL is expressed in terms of K-Bytes. As such the calculated value
should be rounded up to the next K-Byte multiple. (E.g., if the calculation comes
to 1948 bytes, then 2 K-Bytes should be specified).

o SIZE_MEMTICK, The memory allocation unit (bytes). This value specifies the
multiple by which memory pool allocations are made. SIZE_MEMTICK should
be rounded up to a multiple of 4. A good starting value for SIZE_MEMTICK is:

 SIZE_MEMTICK = 25PercentileSegmentSize

 where:

 25PercentileSegmentSize is the size value for which it is expected that
75% of the instance's segments will be larger in size and 25% will be smaller.

Example:
Consider the configuration for an instance's MemSys that will support an image
processing server application.

Assumptions:
1. There will be between 5 and 10 users and/or MemSys asynchronous operations within the

instance at any one time.

2. There will be no more than 8 segments active at any one time.

3. The average number of sections per segment is 25.

4. The expected average segment size is 50,000 bytes.

5. It is estimated that most segments will range in size between 12,800 and 102,400 bytes, with
25% of them being less than 20,000 bytes in size. A safe 25PercentileSegmentSize
value is then 20,000.

Then:

MAX_USERS can be safely set at 10. Little space is required for configuring extra users, so it pays to
play it safe.

MAX_SEGMENTS can be set at 8. The MAX_USER reasoning is valid here too.

MAX_NODES follows then as: (8 * 10 * 25) + (10 * 4) + 8 = 2,048.

MAX_SECTIONS calculates as: (8 * 25) = 200.

SIZE_MEMPOOL would be calculated as: (8 * 50,000) = 400,000. This should be rendered as 400K
bytes.

MemSys 3-13

01/22/2004

Rev. No.: 4

SIZE_MEMTICK would be set to 20,000 bytes.

#===

File: /projects/local/image.cfg
Created: May 31, 2001

#---

This XIPC instance supports a high-performance
transaction processing application.
Note: The instance is defined so that it only
supports XIPC shared memory. SemSys and QueSys
(and MomSys) are defined as NULL, by virtue of
not being included.

#---

[MEMSYS]
MAX_USERS 10
MAX_SEGMENTS 8
MAX_NODES 2048
MAX_SECTIONS 200
SIZE_MEMPOOL 400 */ in kb */
SIZE_MEMTICK 20000
#==

A further note about MemSys configuration: the above formulae and rules generally
produce acceptable parameter values. The values should however be adjusted as
necessary based on empirical observations using the MemSys monitor.

3.3 MemSys Functions

3.3.1 MemCreate() - Creating a New Segment

The first step in using a MemSys segment within an instance is to create the segment.
MemCreate() takes two arguments:

o The name of the new segment.

o A value specifying the size (in bytes) of the segment.
MemCreate() returns the "MemSys segment id" (Mid) of the newly created segment. This
value is used as the segment's "handle" in all subsequent MemSys function calls that refer
to this segment.
Example:

Mid = MemCreate("CustomerTable", 1024L);

In the above example, the calling user attempts to create a new segment having the name
"CustomerTable". The new segment will be 1024 bytes in size.
A more likely scenario: There is a typedef that defines a customer record type (e.g.,
CUSTOMER_RECORD) and a customer table is being allocated to support a certain
number of customers (e.g., 100).

3-14 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

Example:

/*
 * Create a MemSys shared memory segment that will serve
 * as a Customer Table having capacity for 100 customers.
 */

typedef struct
{
 ...
 ...
} CUSTOMER_RECORD;

XINT RecSize = sizeof(CUSTOMER_RECORD);
XINT NumRecs = 100L;

CustTableMid = MemCreate("CustomerTable", NumRecs * RecSize);

A note regarding segment creation: duplicate segment names are not allowed within an
instance.
Specifying MEM_PRIVATE as the name of the new segment creates a segment
inaccessible via MemAccess(), effectively making its Mid private to the creating
program. Of course, the creating program can pass the 'Mid' to others if it so wishes. The
advantage of using MEM_PRIVATE as a name is that it is guaranteed not to conflict with
any segment name currently in the instance.

3.3.2 MemAccess() - Accessing an Existing Segment

Once a segment has been created, other users can access it (i.e., its Mid) using
MemAccess().

MemAccess() takes one argument:

o The name of an existing message segment.
MemAccess() returns the "MemSys segment id" (Mid) of the desired segment. This value
is used as the segment's "handle" in all subsequent MemSys function calls that refer to
this segment.

Example:

CustTableMid = MemAccess("CustomerTable");

The above example accesses the Customer Table segment created in the previous
section.

3.3.3 MemWrite() - Writing Data to a Memory Segment

Writing data to a MemSys memory segment is accomplished via the MemWrite()
function call. MemWrite() copies the specified data directly into the targeted memory
segment area. The write operation is guaranteed to be executed atomically.
Synchronization between competing users is handled automatically by MemSys.
MemWrite() attempts to write data into a specific area of a memory segment. This area
must be write accessible by the calling user. More precisely, every byte of the targeted
area must be write accessible by the caller at the time of the MemWrite() call.
MemWrite() takes five arguments:

o The Mid of the memory segment to be written to.

MemSys 3-15

01/22/2004

Rev. No.: 4

o The offset into the segment where the MemWrite() operation should commence.

o The number of bytes to be written (the target area size).

o A pointer to the data to be written, or a call to the MEM_FILL macro.
MEM_FILL when specified, identifies a byte value with which to fill the entire
targeted area.

o A blocking option code in case the operation needs to block.
Example:

/*
 * Write "Hello World" into the first 11 bytes of the memory
 * segment identified by Mid. Note: The offset and the size
 * are 'XINT's.
 */

RetCode = MemWrite(Mid, 0L, 11L, "Hello World", MEM_WAIT);

Example:
/*
 * Write NewCustomerRecord into the 25th entry
 * of the Customer Table that we created earlier.
 */

typedef struct
{
 ...
} CUSTOMER_RECORD;

CUSTOMER_RECORD NewCustomerRecord;
XINT RecSize = sizeof(CUSTOMER_RECORD);
...
RetCode = MemWrite(
 CustTableMid, /* Target memory segment */
 (XINT)(24 * RecSize), /* Offset past 24 customers */
 (XINT)RecSize, /* Target area length */
 &NewCustomerRecord, /* The new 25th customer entry */
 MEM_WAIT); /* Block if target area busy */

The segment area that is designated to receive the written data must be write-accessible
by the calling user. If any byte of the targeted area is not write-accessible, the
MemWrite() operation will not succeed.
If, in such a case, MEM_WAIT is specified as the function call's blocking option, then the
function will block and wait until the entire targeted area can be written to, at which point
it will complete.
If MEM_FILL is given as the data buffer argument, then the specified byte value is
written to the entire targeted memory area.

Example:
/*
 * Create a 4K shared image segment, define a writeable section
 * over it and then initialize the segment's entire contents to
 * Hex "FF". NOTE: MemSecDef() is described later in the guide.
 */

/*
 * Create the MemSys memory segment.
 */

Mid = MemCreate("ImageSegment", 4096L);

/*
 * Define a section over the entire segment making the segment

3-16 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

 * read-write accessible. (MemSecDef() and MemSection() are
 * described below.)
 */

RetCode = MemSecDef(MemSection(Mid, 0L, 4096L));

/*
 * Fill the entire segment with hex FF.
 */

RetCode = MemWrite(Mid, 0L, 4096L, MEM_FILL(0xFF), MEM_WAIT);

An important efficiency consideration regarding MemWrite() is the following:
If the entire targeted area is "locked" by the writer (i.e., all overlaying sections are owned
by the writing user and have other privileges of MEM_NA), then the atomic nature of the
write operation is guaranteed implicitly and the actual data transfer is performed in its
most efficient form, without the need for explicit protection by MemSys.
If, however, any part of the targeted write area is not currently "locked" from other user
access (i.e., one or more of the overlaying sections are either not owned by the writing
user or are owned but do not have other privileges set to MEM_NA), then the atomic
nature of the write operation is explicitly enforced by MemSys.
Building on the earlier examples, consider the situation where customer records 100
through 200 have to be updated atomically. The MemWrite() operations will be executed
without any need for MemSys to provide explicit synchronization. This is because the
calling program has attained exclusive rights to the segment area involved (via the
MemLock() call).
Had the targeted area of the write operations not been "locked," then MemSys would
have provided the necessary explicit synchronization for each MemWrite() operation in
order to ensure its occurring atomically. This would have borne the necessary overhead
and would have been somewhat less efficient.

Example:

typedef struct
{
 ...
 ...
} CUSTOMER_RECORD;

CUSTOMER_RECORD NewCustomerRecord;

XINT RecSize = sizeof(CUSTOMER_RECORD);

 ...

/*
 * 'Lock' records 100 - 200 for updating purposes. (MemLock() will
 * be described below).
 */

RetCode = MemLock(...);

/*
 * Update the locked records.
 */

for (i = 100; i <= 200; i++)

MemSys 3-17

01/22/2004

Rev. No.: 4

{
 /*
 * Update the i-th record.
 */

 ...

 RetCode = MemWrite(
 CustTableMid, /* Target memory segment */
 (XINT)((i-1) * RecSize), /* Offset past i-1 records */
 (XINT)RecSize, /* Target area size */
 &NewCustomerRecord, /* The new i-1th customer entry */
 MEM_WAIT); /* Block if target area busy */

}

The above examples demonstrate MemWrite() using synchronous blocking options.
Asynchronous blocking is also possible by specifying one of the three asynchronous
blocking options. Refer to the Advanced Topics chapter for a detailed description of the
asynchronous blocking options.
3.3.4 MemRead() - Reading Data from a Memory Segment

Reading data from a MemSys memory segment is accomplished via the MemRead()
function call. The read operation is guaranteed to be executed atomically.
Synchronization between competing users is handled automatically by MemSys.
MemRead() attempts to read data from a specific area of a memory segment. This area
must be read-accessible by the calling user. More precisely, every byte of the specified
area must be read accessible by the caller at the time of the MemRead call.
MemRead() takes five arguments:

o The Mid of the memory segment to be read from.

o The offset into the segment where the MemRead() operation should commence.

o The number of bytes to read (the source area size).

o A pointer to a data buffer that receives the read data.

o A blocking option code in case the operation needs to block.
Example:

/*
 * Read the "Hello World" message written to memory segment Mid
 * in the previous section into a local buffer. Note: The offset
 * and the size are 'longs'.
 */

CHAR Buffer[11];

RetCode = MemRead(Mid, 0L, 11L, Buffer, MEM_WAIT);

3-18 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

Example:

/*
 * Read the 25th entry of the Customer Table into the
 * CustomerRecord variable.
 */

typedef struct
{
 ...
} CUSTOMER_RECORD;

CUSTOMER_RECORD CustomerRecord;

XINT RecSize = sizeof(CUSTOMER_RECORD);
...

RetCode = MemRead(
 CustTableMid, /* Source memory segment */
 (XINT)(24 * RecSize), /* Offset past 24 customers */
 (XINT)RecSize, /* Source area size */
 &CustomerRecord, /* The 25th customer entry */
 MEM_WAIT); /* Block if record is busy */

The segment area that is specified as the source of the read operation must be read-
accessible by the calling user. If any byte of the source area is not read-accessible, the
MemRead() operation will not succeed.
If, in such a case, MEM_WAIT is specified as the function call's blocking option, the
function will block and wait until the entire specified area becomes read-accessible by the
calling user, at which point it will complete.
The same efficiency considerations described regarding writing "locked" areas of a
MemSys segment apply to MemRead() as well. Namely that MemRead() operations on
"locked" segment areas are more efficient than similar operations to unlocked areas.
The above examples demonstrate MemRead() using synchronous blocking options.
Asynchronous blocking is also possible by specifying one of the three asynchronous
blocking options. Refer the Advanced Topics chapter for a detailed description of the
asynchronous blocking options.
3.3.5 MemSection(), MemSectionBuild() - Initializing a Section Variable

As was described earlier, many MemSys operations make use of the notion of sections.
MemSys sections logically overlay all or part of a MemSys segment.
MemSys provides a 'typedef' defined object called SECTION for easy manipulation of
sections within a program. MemSection() and MemSectionBuild() are functions that can
be used to initialize SECTION variables.
MemSection() takes three arguments:

o The Mid of the memory segment to be used.

o The offset into the segment where the section starts.

o The size of the section.

MemSys 3-19

01/22/2004

Rev. No.: 4

Example:

/*
 * Initialize a SECTION variable that will eventually be used for
 * locking the first 1024 bytes of MemSys segment Mid.
 */

SECTION LockSection;

LockSection = MemSection(Mid, 0L, 1024L);

In the above example a SECTION variable "LockSection" has been initialized
describing a section on the first 1024 bytes of MemSys segment Mid.
It is very important to note that the MemSection() function is not reentrant and should not be used in an
environment where reentrant code is required, such as in a threaded environment or in code that handles
signals or interrupts. The MemSectionBuild() function should be used in its place.

MemSectionBuild() takes four arguments:

o A pointer to a section variable.

o The Mid of the memory segment to be used.

o The offset into the segment where the section starts.

o The size of the section.

Example:

/*
 * Initialize a SECTION variable that will eventually be used for
 * locking the first 1024 bytes of MemSys segment Mid.
 */

SECTION LockSection;

MemSectionBuild(&LockSection, Mid, 0L, 1024L);

In the above example, a SECTION variable "LockSection" has been initialized describing
a section on the first 1024 bytes of MemSys segment Mid.
Note that, unlike MemSection(), MemSectionBuild() requires that a SECTION variable
be defined. MemSectionBuild returns a pointer to the SECTION variable and, like
MemSection, it can be used anywhere a SECTION variable is required.
MemSection() and MemSectionBuild() do not define a new section to MemSys. They are
simply a short-cut for initializing a SECTION variable. A number of MemSys functions
expect SECTION variables as arguments. Using MemSection() and MemSectionBuild()
on the fly, when invoking these functions, makes working with them easier. We will see
examples of this below.
3.3.6 MemListXxx() – Functions for Manipulating Section Lists

MemSys operations that manipulate memory sections do so using memory section lists.
Manipulating a single memory section within these functions is accomplished using a
single element list. A list of memory sections is referred to as a MIDLIST. A MIDLIST
data type is defined for creating and working with MidLists. Functions expecting a list of
memory sections as one of their arguments take a MIDLIST data type for this purpose.

3-20 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

There are two functions for building MidLists: MemList() and MemListBuild().
MemList() takes a list of memory sections as its arguments with MEM_EOL marking the
end of the list. MemList() creates a MIDLIST in its internal static area. For this reason,
the returned MIDLIST can be safely used only once.
MemLock() expects a MIDLIST as its second argument (MemLock is described below).
In the next example, MemList() is used "on the fly" to create the MIDLIST argument for
MemLock().
MemUnlock(), like MemLock(), expects a MIDLIST as one of its arguments. The
MIDLIST built for MemLock in the next example must be rebuilt for MemUnlock().
Example:

/*
 * Lock memory sections 'a', 'b', 'c' and 'd'. The user can then
 * work with them under his exclusive control. Unlock when done.
 */

SECTION a, b, c, d;

a = MemSection(...);
b = MemSection(...);
c = MemSection(...);
d = MemSection(...);

RetCode = MemLock(MEM_ALL, MemList(a, b, c, d, MEM_EOL), ...);
...

/* Work with the locked sections */
...

RetCode = MemUnlock(MemList(a, b, c, d, MEM_EOL), ...);

MemListBuild() takes a MIDLIST variable as its first argument. The remaining
arguments are a list of memory section variables as described for MemList().
MemListBuild() creates a MIDLIST in the user-provided MIDLIST variable. This
MIDLIST can safely be reused by the programmer.

MemSys 3-21

01/22/2004

Rev. No.: 4

Example:

SECTION a, b, c, d;
MIDLIST MidList;

a = MemSection(...);
b = MemSection(...);
c = MemSection(...);
d = MemSection(...);

MemListBuild(MidList, a, b, c, d, MEM_EOL);

/*
 * Lock memory sections 'a', 'b', 'c' and 'd'.
 * The user can then work with them under his exclusive control.
 * Unlock the same sections when done.
 */

RetCode = MemLock(MEM_ALL, MidList, ...);
...

/* Work with the locked sections */
...

RetCode = MemUnlock(MidList, ...);

Unlike the previous example, the MIDLIST built for MemLock() can be reused by
MemUnlock(). In this way the MIDLIST needs to be built only once.
A MidList must not exceed MEM_LEN_MIDLIST elements. This is usually not a great
concern since MEM_LEN_MIDLIST is currently defined to be 8.
Two additonal functions, MemListAdd() and MemListRemove(), allow for updating
MidLists dynamically, and another function, MemListCount(), allows determination of
the number of elements in a MidList..
MemListAdd() is provided to allow the programmer to add sections to an existing
MidList (i.e., one that has been created by MemListBuild()). This is a common
requirement in situations where the needed MidList must be built dynamically, based on
certain run-time conditions.
MemListRemove() is provided to allow the programmer to remove sections from an
existing MidList when necessary.
The calling sequence for MemListAdd() and for MemListRemove() is identical to that of
MemListBuild(). These too expect a user-provided MidList as their first argument. The
listed sections are added to or removed from that MidList.
The following example is similar to the ones above, except that only one memory section
is locked at a time, leaving the others unlocked.

3-22 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

Example:

SECTION a, b, c, d, LockedSection;
MIDLIST MidList;

a = MemSection(...);
b = MemSection(...);
c = MemSection(...);
d = MemSection(...);

MemListBuild(MidList, a, b, c, d, MEM_EOL);

/*
 * Lock memory sections 'a', 'b', 'c' and 'd', one at a time, in
 * whatever order they become available. The user can then work with
 * each one under his exclusive control, leaving the others free.
 * Unlock each section when done working with it.
 */

while (MemListCount(MidList)>0)
{
 RetCode = MemLock(MEM_ANY, MidList, &LockedSection, MEM_WAIT);
 ...
 /* Work with whichever section was locked (LockedSection),
 * then unlock it and remove it from the MidList
 */
 ...
 RetCode = MemUnlock(MemList(LockedSection, MEM_EOL), NULL);
 MemListRemove(MidList, LockedSection, MEM_EOL);
}

3.3.7 MemLock() - Locking Memory Sections

Locking all or part of a MemSys segment can be accomplished using the MemLock() function call. Recall
that a section cannot be locked unless and until all of the segment bytes it overlays are read-write accessible
by the calling User.

MemLock() takes four arguments:

o A type code indicating the type of lock operation to perform.

o A MIDLIST holding a list of memory sections to lock.

o A pointer to a SECTION variable that gets assigned by MemLock().

o A blocking option code in case the operation needs to block.

MemSys 3-23

01/22/2004

Rev. No.: 4

Example:

XINT Mid;
SECTION a, b;
SECTION RetSec;
MIDLIST MidList;

/*
 * Create a 4K MemSys segment.
 */

Mid = MemCreate("TestSegment", 4096L);

/*
 * Initialize SECTION variables 'a' and 'b' to overlay the
 * first and last 1K bytes of the created segment
 */

MemSectionBuild(&a, Mid, 0L, 1024L);
MemSectionBuild(&b, Mid, 3072, 1024L);

/*
 * Build a MIDLIST containing memory sections 'a' and 'b'.
 */

MemListBuild(MidList, a, b, MEM_EOL);

/*
 * Lock memory sections 'a' and 'b'. The user can then work
 * with them under his exclusive control. Unlock the same
 * sections when done.
 */

RetCode = MemLock(MEM_ALL, MidList, &RetSec, MEM_WAIT)
...

/*
 * Work with the locked sections
 */
...

RetCode = MemUnlock(MidList, &RetSec);

MemLock() attempts to lock a list of memory sections. Section locking can occur in one of three ways:

o MEM_ANY: Lock any of the memory sections listed.

o MEM_ALL: Lock all of the memory sections listed as they become available
(i.e., cumulatively).

o MEM_ATOMIC: Lock all of the memory sections listed, waiting until all of them
are available at the same time (i.e., atomically).

In the above example, MEM_ALL is specified as the first argument to MemLock(). This
instructs MemLock() to lock the listed sections as they become available. Had
MEM_ATOMIC been specified then the function would not have locked any of the listed
sections until all of the listed sections were accessible for locking at the same time. Of
course, had the function specified MEM_ANY, then the function would return as soon as
any of the listed sections became lock-able.

3-24 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

There is no significance to the order of section specification within the MIDLIST when
employing MEM_ALL or MEM_ATOMIC. Within a MEM_ANY call, the listed Mids are
locked in the order listed.
When MemLock() succeeds, "RetSec" is returned identifying the last memory section
locked. For single-section operations, this is not very useful information. For MemLock()
operations involving multiple memory sections, however, this information can be
important. A NULL RetSec argument can be specified.
When MemLock() fails, and the cause of the failure is related to one of the listed memory
sections, RetSec is set to identify the problematic section.
The previous example could have been coded in the following manner producing equal
results. Note, in particular, how the memory section descriptions are passed to
MemList().

Example:

XINT Mid;
SECTION RetSec, TempSec;

/*
 * Create a 4K MemSys segment.
 */

Mid = MemCreate("TestSegment", 4096L);

/*
 * Lock the first and last K bytes of segment Mid. The user
 * can then work with them under his exclusive control.
 * Unlock the same sections when done.
 */

RetCode = MemLock(
 MEM_ALL,
 MemList(
 *MemSectionBuild(&TempSec, Mid, 0L, 1024L),
 *MemSectionBuild(&TempSec, Mid, 3072, 1024L),
 MEM_EOL)),
 &RetSec,
 MEM_WAIT);

...

/*
 * Work with the locked sections.
 */

...

RetCode = MemUnlock(
 MemList(
 *MemSectionBuild(&TempSec, Mid, 0L, 1024L),
 *MemSectionBuild(&TempSec, Mid, 3072, 1024L),
 MEM_EOL)),
 &RetSec);

The above examples demonstrate MemLock() using synchronous blocking options.
Asynchronous blocking is also possible by specifying one of the three asynchronous
blocking options. Refer to the Advanced Topics chapter for a detailed description of the
asynchronous blocking options.

MemSys 3-25

01/22/2004

Rev. No.: 4

3.3.8 MemUnlock() - Unlocking Memory Sections

The inverse of memory section locking is memory section unlocking. As we have already
seen in some of the examples, this is accomplished using MemUnlock().
Locked sections of a memory segment must be unlocked in order for underlying data to
become once again read-write accessible by other users. Recall that when a section of a
memory segment is locked, its other privileges are set to MEM_NA, meaning that all other
users are not able to read, write or lock the segment area involved.
MemUnlock() takes two arguments:

o A MIDLIST holding a list of memory sections to unlock.

o A pointer to a variable that gets assigned by MemUnlock().

Example:

/*
 * Unlock the first and last 1K sections of MemSys segment
 * Mid. (It is assumed that they were locked earlier on.)
 */

RetCode = MemUnlock(MemList(MemSection(Mid, 0L, 1024L),
 MemSection(Mid, 3072, 1024L),
 MEM_EOL),
 &RetSec);

It is, of course, an error to attempt to unlock a memory section not currently locked by
the user. In such a case, RetSec would be returned with the identity of the invalid section.
It is acceptable to specify a NULL RetSec argument.

3.3.9 Memory Section Primitive Functions

MemSys manipulation of memory sections using MemLock() and MemUnlock() is
actually achieved via a group of memory section primitive functions. These functions
provide the greatest level of control over access to MemSys segment data.

To best understand the relationship between MemLock(), MemUnlock() and the memory section primitive
functions, consider the following:

 MemLock() = MemSecDef() + MemSecOwn() + MemSecPriv()

 MemUnlock() = MemSecPriv() + MemSecRel() + MemSecUndef()

MemLock() is conceptually implemented in three steps. First it calls MemSecDef() to
define the specified section. The section upon creation has RW-RW privileges and has no
owner. MemSecOwn() is then called for acquiring ownership of the section.
MemSecPriv() is finally called to change to privileges to RW-NA. The net result is that
the specified section of shared memory is now locked by the calling user.
MemUnlock(), when called, reverses the process.

3.3.9.1 MemSecDef() - Defining A Memory Section

The MemSecDef() function is used for defining a new section over a specific area of a
MemSys memory segment. Defining a section is the first step in gaining access to, or
control of, an area of a memory segment.

3-26 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

MemSecDef() takes one argument:

o A SECTION variable describing the new section to be defined.

Example:

/*
 * Create a MemSys memory segment of size 10K bytes. The
 * segment will be used to hold a table of codes having
 * varying security requirements.
 */

SECTION TopSecret;
XINT Mid, RetCode;
XINT KByte = 1024L;

/*
 * Create the "CodeTable" MemSys segment.
 */

Mid = MemCreate("CodeTable", 10 * KByte);

/*
 * Initialize the "TopSecret" SECTION variable. The
 * "TopSecret" section is to start at the top of the
 * table and be 2K in size.
 */

TopSecret = MemSection(Mid, 0L, 2 * KByte);

/*
 * Define to MemSys the TopSecret section using the
 * TopSecret SECTION variable we just initialized.
 */

RetCode = MemSecDef(TopSecret);

A 10K byte MemSys segment named "CodeTable" is created in the above example. A
section is then defined over the first 2K bytes of the segment. (We will build on this
example in the next few sections.) Memory sections can be owned. A newly defined
section initially has no owner. Initial privilege settings of a new section are MEM_RW for
owner and others.
The above example might have been coded more concisely as:
Example:

/*
 * Create a MemSys memory segment of size 10K bytes. Then,
 * define a section over the first 2K bytes.
 */

Mid = MemCreate("CodeTable", 10 * KByte);

RetCode = MemSecDef(MemSection(Mid, 0L, 2 * KByte));

Recall that all read and write operations to and from a MemSys segment only succeed
when the calling users have the proper access to the underlying segment area involved.
This implies that no read or write operation can succeed on a segment unless at least one
section has been defined over at least some part of the segment.

MemSys 3-27

01/22/2004

Rev. No.: 4

MemSys segments, when created, have no sections defined over them and are hence
initially inaccessible. It is therefore quite common to define a section over all or part of a
segment soon after it is created so as to give it some degree of accessibility.
On the other hand, MemLock() automatically defines the sections it intends to lock (if
they do not yet exist), as part of its locking function. Section definition is thus not
required when reading or writing to and from locked segment areas.
Returning to an earlier example:

/*
 * Create a 4K shared image segment, define a section over
 * it and then initialize the segment's entire contents to
 * Hex "FF". Note: New sections have privileges of MEM_RW
 * for Owner and Others.
 */

Mid = MemCreate("ImageSegment", 4 * KByte);

RetCode = MemSecDef(MemSection(Mid, 0L, 4 * KByte));

RetCode = MemWrite(Mid, 0L, 4 * KByte, MEM_FILL(0xFF), MEM_WAIT);

Locking a section of a MemSys segment via MemLock implicitly causes the definition of the specified
section. The last example could thus have been coded as:

/*
 * Create a 4K shared image segment, lock it for exclusive use,
 * initialize the segment's entire contents to Hex "FF" and then
 * unlock it. Note: MemUnlock() unlocks and undefines the section
 * it is passed. (Using MemSecUndef() for manually undefining a
 * section is described below.)
 */
Mid = MemCreate("ImageSegment", 4 * KByte);

RetCode = MemLock(
 MEM_ALL,
 MemList(MemSection(Mid, 0L, 4 * KByte), MEM_EOL),
 &RetSec,
 MEM_WAIT);

RetCode = MemWrite(Mid, 0L, 4 * KByte, MEM_FILL(0xFF), MEM_WAIT);

RetCode = MemUnlock(
 MemList(MemSection (Mid, 0L, 4 * KByte), MEM_EOL),
 &RetSec);

3.3.9.2 MemSecOwn() - Becoming Owner Of Memory Sections

Owning one or more sections of a MemSys segment can be achieved using the
MemSecOwn() function call.
As was the case with section locking (i.e., MemLock()), a user cannot attain ownership of
a section unless and until all of the bytes overlaid by the section are read and write
accessible by the user.

MemSecOwn() takes four arguments:

o A type code indicating the type of MemSecOwn() operation to perform.

o A MIDLIST holding a list of memory sections of which to attain ownership.

3-28 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

o A pointer to a SECTION variable that gets assigned by MemSecOwn().

o A blocking option code in case the operation needs to block.
Returning to our CodeTable example, we now acquire ownership of the TopSecret
section of the table.
Example:

/*
 * Create a MemSys memory segment of size 10K bytes. Then,
 * define a section over the first 2K bytes.
 */

SECTION TopSecret;

Mid = MemCreate("CodeTable", 10 * KByte);

TopSecret = MemSection(Mid, 0L, 2 * KByte);

RetCode = MemSecDef(TopSecret);

/*
 * Now, become owner of the TopSecret section of the
 * CodeTable, (i.e., the table's first 2K bytes.) The
 * user can then modify the privileges of the section
 * as he sees fit.
 */

RetCode = MemSecOwn(
 MEM_ALL,
 MemList(TopSecret, MEM_EOL),
 &RetSec,
 MEM_WAIT);

Notice the similarity between the MemLock() and MemSecOwn() calling sequences. In
fact, they are identical. The rules describing argument specification for MemLock() apply
equally to MemSecOwn(). Refer to the MemLock() description for the details.
The above examples demonstrate MemSecOwn() using synchronous blocking options.
Asynchronous blocking is also possible by specifying one of the three asynchronous
blocking options. Refer to the Advanced Topics chapter for a detailed description of the
asynchronous blocking options.
3.3.9.3 MemSecPriv() - Modify Memory Section Privileges

A user who owns a section may want to modify its read-write privilege settings. This can
be accomplished using the MemSecPriv() function.

MemSecPriv() takes three arguments:

o A SECTION variable describing the section whose privileges are to be
modified.

o The section's owner privilege setting code.

o The section's other privilege setting code.

MemSys 3-29

01/22/2004

Rev. No.: 4

Expanding further on the CodeTable examples:

/*
 * Create a MemSys memory segment of size 10K bytes. Then,
 * define a TopSecret section over the first 2K bytes,
 * define a SemiSecret section over the next 2K bytes,
 * define a PublicInfo section over the remaining 6K bytes.
 *
 * Attain ownership of the three sections and then set their
 * privileges as follows:
 * TopSecret: read-only by owner, non-accessible by others.
 * SemiSecret: read-write by owner, read-only by others.
 * PublicInfo: should be read-write by all users.
 */

SECTION TopSecret;
SECTION SemiSecret;
SECTION PublicInfo;
XINT Mid;
XINT RetCode;
SECTION RetSec;

Mid = MemCreate("CodeTable", 10 * KByte);

TopSecret = MemSection(Mid, 0 * KByte, 2 * KByte);
SemiSecret = MemSection(Mid, 2 * KByte, 2 * KByte);
PublicInfo = MemSection(Mid, 4 * KByte, 6 * KByte);

RetCode = MemSecDef(TopSecret);
RetCode = MemSecDef(SemiSecret);
RetCode = MemSecDef(PublicInfo);

/*
 * Become the owner of all three sections of the segment.
 */

RetCode = MemSecOwn(
 MEM_ALL,
 MemList(TopSecret, SemiSecret, PublicInfo, MEM_EOL),
 &RetSec,
 MEM_WAIT);

/*
 * Set the section privileges as specified.
 */

RetCode = MemSecPriv(TopSecret, MEM_RO, MEM_NA);
RetCode = MemSecPriv(SemiSecret, MEM_RW, MEM_RO);
RetCode = MemSecPriv(PublicInfo, MEM_RW, MEM_RW);

Note that the last call to MemSecPriv(), setting the privileges of the PublicInfo section to
MEM_RW by all, is not necessary since newly defined sections have privilege settings of
MEM_RW for owner and other by default.

3-30 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

Assuming that the calling process is MemSys user 2, the resulting situation is as follows:

3.3.9.4 MemSecRel() - Relinquishing Ownership Of Memory Sections

A user can relinquish ownership of one or more sections that he owns, using the
MemSecRel() function. The listed sections then become ownerless. Of course, if one or
more users are blocked waiting for a chance to own any of the released sections, then the
longest waiting user becomes the new owner.

MemSecRel() takes two arguments:

o A MIDLIST holding a list of memory sections to relinquish ownership of.

o A pointer to a SECTION variable that gets assigned by MemSecRel().
Returning once more to the CodeTable example:

/*
 * Relinquish ownership of the PublicInfo section.
 */

RetCode = MemSecRel(MemList(PublicInfo, MEM_EOL), &RetSec);

3.3.9.5 MemSecUndef() - Undefining A Memory Section

The MemSecUndef() function is used for removing a section definition from a MemSys
segment. Undefining a section removes the section and any of its access control influence
from the underlying segment.
A user can only undefine a section that he owns or that has no owner. Otherwise, the call
will return with an MEM_ER_ACCESSDENIED error code.

MemSecUndef() takes one argument:

o A SECTION variable describing the section to be undefined.

CodeTable

 Owner: 2 TOP-SECRET
 Owner Priv: RO
 Other Priv: NA

 Owner: 2 SEMI-SECRET
 Owner Priv: RW
 Other Priv: RO

 Owner: 2 PUBLIC-INFO
 Owner Priv: RW
 Other Priv: RW

 0K

2K

4K

10K

MemSys 3-31

01/22/2004

Rev. No.: 4

Example:

/*
 * Undefine the "PublicInfo" section.
 */

RetCode = MemSecUndef(PublicInfo);

Undefining a section can affect the accessibility to all or part of the MemSys segment
area it overlays. For segment areas upon which no other sections are defined,
accessibility to that portion of the segment will be impossible until a new section is
defined over that area or until the section is implicitly re-defined via MemLock().
For segment areas upon which multiple sections have been overlaid, undefining one of
the sections can change the accessibility to the underlying segment data for one or more
users, depending on the privilege settings of the section removed and of those that
remain.
It is important to undefine a section as soon as it is no longer of use. Extra section
definitions over a segment, even if they exert no influence on the accessibility of
underlying segment data, can cause some performance degradation.

3.3.10 MemDelete() - Deleting a Segment

A segment should be deleted from its instance when it is no longer needed. This recycles
internal MemSys resources and makes the MemView monitor less cluttered.

MemDelete() takes one argument:

o The Mid of the segment to be deleted.

Example:

RetCode = MemDelete(Mid);

MemDelete() will succeed only if the subject segment is completely inactive at the time.
Segments that have one or more sections defined over it cannot be deleted.
If a segment must be removed regardless of its current status, then MemDestroy() should
be employed.
3.3.11 MemDestroy() - Destroying a Segment

A segment that must be removed from its instance can be destroyed using MemDestroy().
MemDestroy() removes the subject segment regardless of the segment's current status.
MemDestroy() takes one argument:

o The Mid of the segment to be destroyed.
Example:

RetCode = MemDestroy(Mid);

When a segment is destroyed, a number of things occur:

o All MemRead(), MemWrite(), MemLock() and MemSecOwn() operations
involving the destroyed segment are cancelled and returned with RetCode =
MEM_ER_DESTROYED.

3-32 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

o All users locking or owning sections over the destroyed segment have those
sections removed from their ownership. This occurs silently and it is the
responsibility of the program to adjust to the segment's destruction.

For obvious reasons, MemDestroy() should be used sparingly. Its most likely application
would be within the execution of a system's "cleanup" program at which time the above
side-effects are normally of no concern.
3.3.12 MemInfoSys() - Information About an Instance's MemSys

XsIPC provides a set of MemSys functions that can be used to access status information
about various aspects of an instance's MemSys.
The returned data can be used to make run-time decisions about on-going application
processing.

MemInfoSys returns with information about the instance's MemSys that the user is logged into.
MemInfoSys() takes one argument:

o A pointer to a MEMINFOSYS structure that is to be returned filled with the
subsystem's status information.

Example:

MEMINFOSYS SysData;

RetCode = MemInfoSys(&SysData);

A complete description of how to use the Info functions is presented in the Advanced
Topics chapter of the XsIPC User Guide, in the section entitled, "Info Function List
Manipulation."
The definition of the MEMINFOSYS datatype is included in the User Data Structures
chapter of the QueSys/MemSys/SemSys Reference Manual.
3.3.13 MemInfoUser() - Information about a MemSys User

MemInfoUser() returns with information about a specified user. MemInfoUser() takes two arguments:

o The Uid whose status is desired.

o A pointer to a MEMINFOUSER structure that is to be returned filled with the
user's status information.

Besides statistical data, the MEMINFOUSER structure returns with "list" data related to the specified user.
Each user has an HList, QList and WList associated with it.

o The HList is the list of Sections currently held (owned or locked) by the subject
user. The Sections are listed in the order that they were acquired.

o The QList is the list of Sections currently being requested by the subject user.
The QList will have elements only when the user is blocked on a MemSecOwn()
or MemLock() operation.

o The WList is the list of Sections currently being waited on by the subject user.
The WList is the subset of the QList that has not yet been satisfied. It too will
only have elements when the user is blocked on a MemSecOwn() or MemLock()
operation.

MemSys 3-33

01/22/2004

Rev. No.: 4

The lists within MEMINFOUSER are arrays that can accommodate up to
MEM_LEN_INFOLIST elements. The actual lists may, at times, be greater than
MEM_LEN_INFOLIST elements in length. A call to the MemInfoUser() function must
therefore be preceded by the setting of three MEMINFOUSER structure members
(HListOffset, QListOffset andWListOffset) with values specifying what portions of the
three respective lists are desired.
More specifically, before MemInfoUser() is called, the three list offset variables within
the MEMINFOUSER structure must be set, indicating from which point in each list to
return data. Setting the offsets to zero directs the function to return with list data from the
start of the lists.
Example:

MEMINFOUSER UserData;

UserData.HListOffset = 0;
UserData.QListOffset = 0;
UserData.WListOffset = 0;

RetCode = MemInfoUser(Uid, &UserData);

A complete description of how to use the Info functions is presented in the Advanced
Topics chapter of the X(IPC User Guide, in the section entitled, "Info Function List
Manipulation."
The definition of the MEMINFOUSER datatype is included in the User Data Structures
chapter of the QueSys/MemSys/SemSys Reference Manual.

3.3.14 MemInfoMem() - Information about a MemSys Segment

MemInfoMem() returns with information about a specified memory segment.
MemInfoMem()_ XE "MemInfoMem()" _ takes two arguments:

o The Mid whose status is desired.

o A pointer to a MEMINFOMEM structure that is to be returned filled with the
memory segment's status information.

Besides statistical data, the MEMINFOMEM structure returns with "list" data related to the specified memory
segment. Each memory segment has an SList and WList associated with it.

o The SList is the list of Sections currently defined over the specified memory
segment. Each list element contains location, size, ownership and access
privilege data about a Section existing on the subject memory segment, at the
time of the MemInfoMem() call.

o The WList is the list of blocked MemSys operations involving the specified
memory segment. The operations are listed in the order that they blocked.

The lists within MEMINFOMEM are arrays that can accommodate up to
MEM_LEN_INFOLIST elements. The actual lists may at times be greater than
MEM_LEN_INFOLIST elements in length. A call to the MemInfoMem() function must
therefore be preceded by the setting of two MEMINFOMEM structure members
(SListOffset and WListOffset) with values specifying which portions of the two respective
lists are desired.

3-34 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

More specifically, before MemInfoMem() is called, the two list offset variables within
the MEMINFOMEM structure must be set, indicating from what point in each list to return
data. Setting the offsets to zero directs the function to return with list data from the start
of the lists.
Example:

MEMINFOMEM MemData;

MemData.SListOffset = 0;
MemData.WListOffset = 0;

RetCode = MemInfoMem(Mid, &MemData);

A complete description of how to use the Info functions is presented in the Advanced
Topics chapter of the XsIPC User Guide, in the section entitled, "Info Function List
Manipulation."
The definition of the MEMINFOMEM datatype is included in the User Data Structures
chapter of the QueSys/MemSys/SemSys Reference Manual.

3.3.15 MemInfoSec() - Information About an Instance's Section

MemInfoSec() returns with information about a Section currently defined in MemSys. MemInfoSec() takes
two arguments:

o A SECTION variable identifying the section whose status is desired.

o A pointer to a MEMINFOSEC structure that is to be returned filled with the
section's status information.

Example:

MEMINFOSEC SecData;

RetCode = MemInfoSec(&SecData);

A complete description of how to use the Info functions is presented in the Advanced
Topics chapter of the X(IPC User Guide, in the section entitled, "Info Function List
Manipulation."
The definition of the MEMINFOSEC datatype is included in the User Data Structures
chapter of the QueSys/MemSys/SemSys Reference Manual.

3.3.16 MemPointer() - Accessing a Pointer to a Segment

MemPointer() obtains a pointer to the first byte (offset 0) of the MemSys segment it is
passed. The pointer can then be used for directly accessing the data within the segment.
MemPointer() takes two arguments:

o The Mid of the segment whose pointer is desired.

o The address of a pointer variable to be filled with the segment pointer.
MemPointer() returns MEM_ER_NOTLOCALwhen the calling program is working within
a network instance that was started on another node.
This function is a double-edged sword. On the one hand, it provides the most basic
method of manipulating a MemSys segment. This can simplify certain coding tasks. On
the other hand, using a direct pointer into a MemSys segment for manipulating its data

MemSys 3-35

01/22/2004

Rev. No.: 4

completely circumvents the software synchronization and access control mechanisms
inherent in MemWrite() and MemRead() It also introduces the risk of overrunning
MemSys segment boundaries.
As such, a direct segment pointer should only be used (if at all) to access areas of a
MemSys segment that are currently "locked" by the user. To use it otherwise could
produce unpredictable results at best.
Example:

/*
 * Create a Data Segment, lock it and then access a
 * pointer to the segment for manipulating its data.
 * This example assumes that the instance is local.
 */

XINT Mid;
XINT RetCode;
SECTION RetSec;
CHAR *p;

/*
 * Create the MemSys segment.
 */

Mid = MemCreate("Data", 256L);

/*
 * Lock it for exclusive access.
 */

RetCode = MemLock(
 MEM_ALL,
 MemList(MemSection(Mid, 0L, 256L), MEM_EOL),
 &RetSec,
 MEM_WAIT);

/*
 * Get a pointer to the segment.
 */

RetCode = MemPointer(Mid, &p);

/*
 * Set the bytes of the Data segment to: 0, 1, 2, 3, ...
 * directly, via pointer "p".
 */

for (i = 0; i < 256; i++)
 *(p + i) = (BYTE)i;

/*
 * Unlock it.
 */

RetCode = MemUnlock(MemList(MemSection(Mid, 0L, 256L)), &RetSec);

MemPointer() will return a valid pointer to a segment of a MemSys instance, if the
instance involved is local to the calling program (not over the network). Requests for

3-36 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

pointers to MemSys segments regarding instances that are non-local return the NULL
pointer.
A more robust version of the above example would have tested the value returned by
MemPointer() to determine whether the instance being used was local or not. Code for
handling the non-local case would then be included.
An example follows.

MemSys 3-37

01/22/2004

Rev. No.: 4

/*
 * Create a Data Segment, lock it and then access a
 * pointer to the segment for manipulating its data.
 */

XINT Mid;
XINT RetCode;
SECTION RetSec;
CHAR *p;
CHAR Buffer[256];
XINT RemoteFlag = FALSE;

/*
 * Create the MemSys segment.
 */

Mid = MemCreate("Data", 256L);

/*
 * Lock it for our exclusive access.
 */

RetCode = MemLock(
 MEM_ALL,
 MemList(MemSection(Mid, 0L, 256L)),
 &RetSec,
 MEM_WAIT);

/*
 * Attempt to access a pointer to the MemSys segment.
 */

RetCode = MemPointer(Mid, &p);

if (RetCode == MEM_ER_NOTLOCAL)
{
 MemRead(Mid, 0L, Buffer, 256L, MEM_WAIT);
 p = Buffer;
 RemoteFlag = TRUE;
}

/*
 * Set the bytes of the Data segment to: 0, 1, 2, 3, ...
 * directly, via pointer "p".
 */

for (i = 0; i < 256; i++)
 *(p+i) = (BYTE)i;

/*
 * Update the segment, if it's not local.
 */

if (RemoteFlag == TRUE)
 MemWrite(Mid, 0L, Buffer, 256L, MEM_WAIT);

/*
 * Unlock it.
 */

RetCode = MemUnlock(MemList(MemSection(Mid, 0L, 256L)), &RetSec);

3-38 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

3.3.17 MemFreeze() - Freezing MemSys

XsIPC also provides the user with the ability to attain exclusive control over an instance's
MemSys. This mechanism allows a user to execute a series of MemSys operations, with
the assurance that no other user's MemSys operations are interwoven with his.
Such a capability is important when a user requires exclusive access to the subsystem for
a brief period of time. As an example, a need for this feature would arise when writing a
function that increments an arbitrary four byte "word" of MemSys shared memory in an
"atomic" manner.
One solution would be to lock the targeted bytes using MemLock(), perform the
increment operation and then do MemUnlock(). While this would work, an alternative
approach would be more efficient in situations where all competing users always have
read-write access to the targeted area.
In that case, temporarily freezing the subsystem for the duration of the three necessary
MemSys operations would work more efficiently.

Example:

XINT
MemIncr(Mid, Offset)
XINT Mid;
XINT Offset;
{
 XINT Data;

 MemFreeze();

 MemRead(Mid, Offset, (CHAR *)&Data, 4L, MEM_NOWAIT);
 Data ++;
 MemWrite(Mid, Offset, (CHAR *)&Data, 4L, MEM_NOWAIT);

 MemUnfreeze();

 return (Data);
}

A more complete version of this example appears in the Advanced Topics section of this
Guide.
A further note regarding MemFreeze(). It is an error for a user to issue a blocking
MemSys function call specifying a blocking option code (i.e., MEM_WAIT or
MEM_TIMEOUT) once the user has frozen the subsystem.

3.3.18 MemUnfreeze() - Unfreezing MemSys

MemUnfreeze is the bracketing function to MemFreeze. It returns the MemSys
subsystem to its unfrozen state. Other MemSys users resume normal MemSys operations.
Example:

MemUnfreeze();

MemUnfreeze() will fail if the calling user has not frozen the subsystem.

3.4 The MemSys On-Line Monitor: MemView

MemView is the on-line monitor for XsIPC MemSys.

MemSys 3-39

01/22/2004

Rev. No.: 4

3.4.1 Starting MemView

MemView is started from the command line using the "MemView" command.

MemView takes two arguments:

o The first argument is the initial "interval" snapshot setting. It defines in
milliseconds the initial update frequency of the monitor. The interval argument
is mandatory.

o The second argument is the instance file name of the instance to be monitored.
This argument is optional. If it is omitted, MemView uses the value of the xipc
environment variable for the instance file name of the instance to start
monitoring.

Example:

memview 100 /usr/demo

The above command starts the MemView monitor for the MemSys subsystem of the
/usr/demo instance. The initial update interval is set to 100 milliseconds.
3.4.2 MemView Layout

MemView's main display is matrix-like in appearance. Users logged into the instance and
existing MemSys segments form the axes of the matrix. Interaction between instance
users and segments is displayed within the body of the "interaction matrix".
MemSys operations that block asynchronously are treated as pseudo-users of MemSys.
These Asynchronous Users are displayed in the same manner as ordinary users, thus
providing a consistent visual display of all pending MemSys asynchronous operations.

Status
Interval

Segments...

Users
...
...
...

User - Segment
Interaction

Matrix

Command Statistics Capacity

Monitor status and interval setting are shown at the top left portion of the screen.
MemSys memory pool and other capacity data is displayed at the lower right portion of
the screen. The command entry window is at the lower left of the screen.

3-40 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

3.4.2.1 Sample MemView Screen

3.4.2.2 User Entries

Users logged into the instance are listed on the left side of the interaction matrix, one line
per user.
Each user entry includes:

o A MemSys user ID.

o The user's login name.

o The user's blocking status (if any).

o The blocking time out value (if any).
An example (not associated with the screen presented above) follows.

02 TblInit
03 TblUpdt WRT ...
06 NetProg RD 27
29 A029-006 ALL ...

In this example, four MemSys users are identified with three ordinary and one
asynchronous MemSys operation.

o MemSys user 2 has the login name "TblInit." The user is not blocked on any
MemSys operation.

o MemSys user 3 has logged in as "TblUpdt." It is blocked on a MemWrite()
operation and is blocked indefinitely, thus having no time out value.

MemSys 3-41

01/22/2004

Rev. No.: 4

o MemSys user 6, logged in as "NetProg," is blocked on a MemRead() operation
and has a time out pending. There are 27 seconds remaining until the operation
times out.

o MemSys user 29 is an asynchronous MemLock (MEM_ALL) operation that was
initiated by user 6.

3.4.2.3 Memory Segment Entries

The instance's memory segments are identified across the top of the interaction matrix.

Each segment entry includes:

o The Mid of the segment.

o The user-assigned ASCII name of the segment.

o The segment's section status (Locked Sections/Total Sections).

o The segment's byte status (Locked Bytes/Total Bytes).

An example (not associated with the screen presented above) follows.
 0 1 5
CustTable CodeTable ImageDB
 4/6 1/1 0/0
100/8192 1.2/10.0 0.0/64.0
...

In this example:

o Segment "CustTable" is shown to have a Mid of 0. It is a segment that is 8192
bytes in size. It currently has 6 sections defined over it, of which 4 sections are
"locked." The locked sections cover 100 bytes of the segment's 8192 bytes.

o Segment "CodeTable" has Mid 1. Its size is 10K bytes. There is currently one
section defined over the segment, it is 1.2K bytes in size and it is locked.

o Segment "ImageDB" has Mid 5. It is being used to hold a memory resident
Image Database. The segment is 64K bytes in size. There are currently no
sections defined over the segment.

3.4.2.4 Interaction Matrix Cells

Each cell on the MemView interaction matrix describes the current relationship between
a user and a segment.
Possible cell values include:
.. .. Indicating that the user is not blocked in any manner on the intersecting segment,

nor has he locked any of the segment’s sections.

nn mm Indicating that the user has locked nn sections on the intersecting segment, and
that he is blocked waiting to lock an additional mm sections on the same segment.

nn R Indicating that the user has locked nn sections on the intersecting segment, and
that he is blocked waiting to read (R) data to the segment.

3-42 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

nn W Indicating that the user has locked nn sections on the intersecting segment, and
that he is blocked waiting to write (W) data to the segment.

3.4.3 Monitoring Modes

The topic of monitoring modes -- the available options and when they should be used -- is
described in detail in the XsIPC User Guide.

3.4.4 MemView Zoom Windows

MemView provides the developer with three zoom window capabilities.

3.4.4.1 Zooming in on a User

The MemView user zoom window creates a detailed display of the status of a particular
MemSys user. The command string for user zooming is "zuN" where N is the Uid to be
zoomed in on.
Example:
The command for opening a zoom window on the user having a Uid of 4 is:

Command> zu4

Status: [NOT BLOCKED]
 Req List :
 Wait List :
 Hold List : (1 100 8)

 Uid: 4
 Name: TableDaemon
 Pid: 23
 Login: Dec 23 12:23

User "TableDaemon" has locked one section for its exclusive use. The section is on
segment Mid 1, at offset 100 and is 8 bytes long. The user is otherwise not currently
blocked.

Status: [BLOCKED ATOMIC]
 Req List : (0 0 64)(1 0 64)
 Wait List : (0 0 64)(1 0 64)
 Hold List : (1 100 8)

 Uid: 4
 Name: TableDaemon
 Pid: 23
 Login: Dec 23 12:23

The user has now blocked attempting to lock the first 64 bytes of both segments 0 and 1.
The user will not be unblocked until both of the pending sections are available at the
same time (i.e., ATOMIC).

Status: [NOT BLOCKED]
 Req List :
 Wait List :
 Hold List : (1 100 8)(0 0 64)(1 0
64)

 Uid: 4
 Name: TableDaemon
 Pid: 23
 Login: Dec 23 12:23

The request has been satisfied and the user is no longer blocked.
The three lists included in the MemSys user zoom window serve the same function as
their counterparts in the SemSys user zoom window. Refer to the SemSys chapter for an
example that fully describes the information being provided.

MemSys 3-43

01/22/2004

Rev. No.: 4

3.4.4.2 Zooming in on a Segment

The memory segment zoom window provides a complete report of a segment's current status. The
command string for zooming on a segment is "zmN" where N is the Mid to be zoomed in on.

Example:

The command for opening a zoom window on memory segment 2 is:

Command> zm2

Map:
...oooo...o..oo........oooooo....oo.
 Lock: 2000/4096 (49%)
[*******........]
 Last Uid: 5 Offset: 1024 Size:
32
 Wait List : 8 14

 Mid: 6
 Name: ImageDB
 CreateUid: 2
 Created: Jan 4
9:30

Memory segment 6 is shown to be 4K bytes in size (4096) and 2000 of the segment’s
4096 bytes (49%) are currently locked. The approximate location of the locked sections
on the segment are indicated via a map. The 'o' characters mark the relative position and
size of locked sections on the segment.
The last user to have locked a section on the segment was user 5. The section locked was
at offset 1024 and was 32 bytes in size.
The wait list indicates that users 8 and 14 are currently blocked on operations involving
the segment. The details of their individual blockages can be viewed on their respective
user zoom windows.

3.4.4.3 Zooming in on Memory Pool Status

A zoom window for monitoring the MemSys memory pool status can be opened using
the "zp" command string.

Example:

Command> zp

Capcty: 21.1/40.0 (53%)
[*******.......]
 Frgmnt: 24/208 (12%)
[**............]
 Largst Blk: 29008

 Pool Size: 40K
 Tick Size: 1024

The interpretation of the memory pool window is the same as the QueSys text pool
window described in the QueSys chapter.

3-44 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

3.4.5 Watching Memory Segment Contents - The Watch Window

A key element of MemView is the memory Watch Window facility. With it, a developer
can view shared memory contents in real-time .
A watch window is opened using the command string "wN," where N is the Mid to be
watched.

Unlike the zoom windows already described, the watch window uses the top 3/4 of the monitor
screen. The system statistics and command windows remain visible at the bottom of the screen.

A sample screen display follows.

A replication of a different Watch Window is provided below, as an example for reading sample screen
data:

Segment
 50
Flow *

 Mid = 2 Size = 8192 Name = CustTable Sections =
2/4

 4W(10 32) 7R(1024 128)

MemSys 3-45

01/22/2004

Rev. No.: 4

 08020:
 08040:
 08060:
 08080:
 08100:
 08120:
 08140:
 08160:
 08180:

 00000000 00000000 00313030
30303131
 48617276 65792053 63686e69
646c6170
 70203039 342d3430 2d323831
39203337
 53747265 6574204c 65782e20
43697479
 30373736 31000101 73323347
30307274
 00000000 00000000 00343331
31393031
 4a656520 57696c73 6f6e2030
37322d34
 352d3830 31392050 65746556
696c6c65
 00000000 00000000 00000000

1000011
 Harvey Schmidlap
 p 094-40-2819 37
 Street Lex City.
 07761....23.00..
4311901
 Joe Wilson 072-4
 5-8019 Peteville

<Break> to
Command

 Section: 4/50 (
8%)
 MemPool: 1.1/10.0
(10%)
 Fragmnt: 2/36 (
5%)

 Segmnt: 1/10 (10%)
 Users: 11/40 (27%)
 Nodes: 37/80 (46%)

The watch window can operate in the same update modes as those available from the
monitor screen.
The screen example immediately above for example, depicts a watch window monitoring
the contents of segment 2, in flow mode, with an interval rate of 50 milliseconds. In such
a mode it is possible to watch each and every shared memory update as it occurs, with the
updates occurring in slow motion.
The watch window presents the segment's data contents in the same format as used by the
QueSys browse facility. The screen is broken into three regions. Offsets appear on the
left, segment data in HEX appears in the middle and the same data in ASCII format
appears on the right.
The top of the watch window identifies the segment being watched, as well as providing
the segment's section statistics.
Also included at the top of the watch window is the list of users (if any) that are currently
blocked trying to read or write data to or from the segment being watched.
In this example, user 4 is currently blocked attempting a write operation to the segment.
The write operation target starts at offset 10 in the segment and extends for 32 bytes. A
second user, user 7, is blocked attempting to read 128 bytes starting at offset 1024 in the
segment.

3-46 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

3.4.5.1 Watch Window Commands

MemView commands can be used from within the watch window in the same way that they are used from
the main monitor window. Examples:

Command Effect
in Set the interval to n milliseconds
tf Enter trace flow mode
ts Enter trace step mode
wn Open a watch window on segment n
sn Open a section window on segment n
bn Browse the contents of segment n
q Exit the watch window

Additional commands are available that are specific to the watch window. They provide a means for
moving the watch window to different parts of the segment. These movement commands are:

Command Effect
⇑ (up arrow) Scroll up one line (20 Bytes)
⇓ (down arrow) Scroll down one line (20 Bytes)
PAGE-UP Scroll up one page (260 Bytes)
PAGE-DOWN Scroll down one page (260 Bytes)
HOME Scroll to the top of the memory segment
END Scroll to the bottom of the memory segment.

Scrolling only works where it makes sense. Otherwise, the command is ignored.
3.4.6 Monitoring a Segment's Sections - The Section Window

MemView also provides a window for monitoring the details of section activity occurring
on a segment This window is the Section Window.
The section window provides a detailed picture of all the sections that are defined on a
segment, including a summary of the users that are attempting to Lock or Own any of the
segment's sections.
A section window is opened using the command string "sN," where N is the Mid to be
monitored.
Like the watch window, the section window uses the top 3/4 of the monitor screen. The
system statistics and command windows remain visible at the bottom of the screen.

MemSys 3-47

01/22/2004

Rev. No.: 4

A sample screen presentation follows.

A replication of a different Section Window is provided below, as an example for reading sample screen
data:

Segment
 50
 Flow *

 Mid = 2 Size = 8192 Name = CustTable Sections =
2/4

4W(10 32) 7R(1024 128)

 0
 1024
 5000
 8190

400

2000

226

2

 ..
 7
 14
 0

RW
RW
RW
RW

RW
..
..
RO

==...............
 ooo............
...........oo....
................=

5L 1N
8L

<Break> to
Command
User 14:
MemUnlock

Section: 4/50 (
8%)
MemPool: 1.1/10.0
(10%)
Fragmnt: 2/36 (
5%)

Segmnt: 1/10 (10%)
Users: 11/40 (27%)
Nodes: 37/80 (46%)

The section window also operates in the same update modes as those available from the
main monitor window.
The screen example immediately above monitors the section activity occurring on
segment 2, in flow mode, with an interval rate of 50 milliseconds. In such a mode it is

3-48 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

possible to observe section related operations as they occur, with updates reported
continuously.

The section window presents its information with each row representing a section. For each section, the
following information is given:
Offset The offset where the section starts.

Size The size of the section.

Owner The owner of the section, if one exists. ".." indicates a section with
no owner.

Owner Priv The section's Owner privilege setting. ".." indicates No Access.

Other Priv The section's Other privilege setting. ".." indicates No Access. A
section that is inaccessible by Others is considered locked.

Map A map depicting the size and location of the section relative to the
entire segment. Sections that are locked are indicated by a string of
'o' characters. Otherwise the section's relative size and location is
marked with '=' characters.

Wait List The list of users currently blocked attempting to either lock or own
the section.

In the sample section window, four sections are currently defined over the "CustTable" segment (Mid = 2):

o The first section starts at offset 0 of the segment and is 400 bytes in size. The
section is currently ownerless. The privilege setting for both owner and other is
RW. The section, as expected, appears at the beginning of the segment map.
Finally, there are no users blocked trying to lock or own the section.

o Next, is a 2000 byte section starting at offset 1024. This section is currently
locked by user 7. Thus the privilege settings for owner and other are RW and
NA ("..") respectively. The map indicates the section’s location. Users 5 and 1
are currently blocked, trying to lock (L) and own (N) the section respectively.

o The next section is locked by user 14. User 8 is waiting in turn to lock it. The
other information has the same interpretation as given for the previous two
sections.

o The last section covers the last two bytes of the segment. The section is owned
by user 0, The privilege settings are RW and RO for owner and other
respectively. The section is thus protected from other users' write access.

The top of the section window identifies the segment being monitored, as well as
providing the segment's section statistics. Specifically, section "CustTable" (Mid = 2) is
8192 bytes in size and has four sections defined on it, two of which are locked.
Also included at the top of the section window is the list of users (if any) that are
currently blocked trying to read or write data to or from the segment being monitored.

MemSys 3-49

01/22/2004

Rev. No.: 4

In the example, user 4 is currently blocked attempting a write operation to the segment.
The write operation target starts at offset 10 in the segment and extends for 32 bytes. A
second user, user 7, is blocked attempting to read 128 bytes starting at offset 1024 in the
segment.
Finally, because the monitor is in a trace mode, the next MemSys operation to be
executed is reported in the Trace Window. User 14 is about to unlock the section he is
holding.

Section Window Commands

MemView commands can be used from within the section window in the same manner that they are used
from the main monitor window. Examples:

Command Effect
in Set the interval to n milliseconds flow mode
ts Enter trace step mode
wn Open a watch window on segment n
sn Open a section window on segment n
bn Browse the contents of segment n
q Exit the watch window

Additional commands are available that are specific to the section window (and watch window). They
provide a means for scrolling within the section window data. These commands are:

Command Effect
((up arrow) Scroll up one line
((down arrow) Scroll down one line
PAGE-UP Scroll up one page
PAGE-DOWN Scroll down one page
HOME Scroll to the top of the section data
END Scroll to the bottom of the section data

Scrolling only works where it makes sense. Otherwise, the command is ignored.

3.4.7 Browsing a Shared Memory Segment

Segment browsing is also provided from within MemView. Using this capability, a
programmer can verify a segment's data content or search for specific Hex or ASCII
memory patterns.
Unlike the windows just described, when the browse facility is used, it temporarily
freezes the subject MemSys instance.
Browsing is initiated using the command string "bN," where N is the Mid to be browsed.
Example:
The command to initiate browsing of Mid 5 is:

Command> b5

The browse facility uses a full screen window for displaying shared memory contents.

3-50 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

Example:

Segment: Mid = 2 Size = 8192 Name = CustTable Sections = 2/4

 4W(10 32) 7R(1024 128)

 08020:
 08040:
 08060:
 08080:
 08100:
 08120:
 08140:
 08160:
 08180:

 00000000 00000000 00313030
30303131
 48617276 65792053 63686e69
646c6170
 70203039 342d3430 2d323831
39203337
 53747265 6574204c 65782e20
43697479
 30373736 31000101 73323347
30307274
 00000000 00000000 00343331
31393031
 4a656520 57696c73 6f6e2030
37322d34
 352d3830 31392050 65746556
696c6c65
 00000000 00000000 00000000

1000011
 Harvey Schmidlap
 p 094-40-2819 37
 Street Lex City.
 07761....23.00..
4311901
 Joe Wilson 072-4
 5-8019 Peteville

 Command:
Offset = 0

The top line identifies the segment being browsed. Beneath that is the list of users
currently blocked writing or reading the segment.
The body of the screen presents the segment's text in hex and ASCII. The format used
should be familiar by now. It is the same format as the one used for browsing in QueSys
and the watch window in MemSys.
3.4.8 Browse Facility Commands

Navigating in and about shared memory segments is accomplished using the browse
facility commands.
Scroll commands are:

Command Effect
⇑ (up arrow) Scroll up one line (20 Bytes)
⇓ (down arrow) Scroll down one line (20 Bytes)
PAGE-UP Scroll up one page (260 Bytes)
PAGE-DOWN Scroll down one page (260 Bytes)
HOME Scroll to the top of the memory segment
END Scroll to the bottom of the memory segment

Scrolling only works where it makes sense. Otherwise the command is ignored.
We will see in the next section that searching for a pattern within a segment can cause the
segment to scroll to the offset where the pattern is found.

MemSys 3-51

01/22/2004

Rev. No.: 4

3.4.8.1 ASCII Pattern Searching

The search commands available within the MemSys browse facility are identical to those
available in QueSys, except that they apply to a memory segment instead of messages on
a queue.
Forward ASCII pattern searching is executed by specifying a pattern between two '/'
characters and hitting return. Backward searches are specified using two ‘\ ‘characters.
The second bracket character is not always necessary, as shown in the following
examples. Repeat patterns are remembered. The following examples demonstrate these
points:

Command Effect
// Repeat the search
/ Same
\IBM\ Search backward in the current segment for the ASCII string
"IBM"
\\ Repeat the search
\ Same

3.4.8.2 Hexadecimal Pattern Searching

Searching for Hexadecimal patterns is very similar to ASCII pattern searching. The only
differences are that the pattern specified is a Hex string, and that an 'x' is appended to the
end of the search command.

/4f37/x Search forward for the hex pattern "4f37" within the segment
\4f37\x Search backward for the hex pattern "4f37" within the segment

3.4.8.3 Switching to Another Segment

Switching to browse another segment is accomplished using the "b n" command as
described above.
This allows navigation between segments without having to exit the browse facility. This
is important, since the entire MemSys instance remains frozen. Exiting the browse
facility, however briefly, unfreezes the instance.

3.4.8.4 Exiting the Browse Facility

The browse facility is exited using the "q" command. Once browsing is terminated, the
MemSys instance is unfrozen.

Example:

Command> q

3.4.9 Panning with MemView

Panning within MemView lets the developer observe different portions of the interaction
matrix. This is especially useful when a zoom window is open and parts of the matrix are
not visible.
All "panning" commands start with 'p'.
Vertical panning (up and down) to observe other users is done by specifying a 'u' (for
user) and a Uid to pan to.

3-52 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

Example:

Command> pu8

The above command scrolls the interaction matrix so that Uid 8 is at the top of the
display.
Horizontal panning (right and left) to monitor other segments is accomplished specifying
a 'm' (for segment) and an Mid to pan to.

Example:

Command> pm4

The above command scrolls the interaction matrix so that Mid 4 is the first displayed
(left-most).
Example:

Command> po

The command "po" returns the display to the origin of the activity matrix.

3.4.10 Stopping MemView

MemView monitoring is terminated via the 'q' command.
Example:

Command> q

Bringing down MemView has no effect on the underlying activities of the MemSys
instance. It continues to function unaffected. Any overhead incurred by monitoring is
eliminated.

SemSys 4-1

01/22/2004

Rev. No.: 4

4. THE X♦IPC SEMAPHORE SYSTEM (SEMSYS)

4.1 SemSys Concepts

Two classes of semaphores are available using SemSys.

o Event semaphores

o Resource semaphores
4.1.1 Event Semaphores

XsIPC event semaphores are Boolean in nature and are used for signaling the occurrence of
events. Event semaphores are either "set" or "clear." Users can wait for "clear" event
semaphores to be "set" by other users. The "setting" of an event semaphore will usually
unblock (i.e., wake up) at least one of the users waiting for the event to occur.
We will see that it is possible with XsIPC to wait on groups of event semaphores in a
variety of ways.
4.1.2 Resource Semaphores

XsIPC resource semaphores are numerical devices for enforcing accurate and fair resource
access control. Resource semaphores are typically used for limiting the concurrent usage
of a resource to some preset level. User programs that wish to access or use the resource
attempt to acquire a copy of the designated semaphore, perhaps blocking until a copy of
the resource is available. Users that release held copies of the resource may in turn cause
the wake-up of users which were previously blocked when trying to acquire the resource.
Here, too, we will see that it is possible to attempt to acquire multiple resource
semaphores in a variety of ways.
4.1.3 Multiple Semaphore Operations

XsIPC SemSys supports operations involving multiple semaphores in a straight-forward
manner. Using this capability, it is possible to build sophisticated interprocess
synchronization schemes.
It is, for example, easy to design systems that:

o "Block until ANY of 5 events have occurred."

o "Block until ALL of a group of resources are available simultaneously
(Atomically)."

o "Block until ALL of a group of resources become available over time
(Cumulatively)."

o "Block until ALL of a list of events have occurred."
The specifics for coding such constructs are included below in the sections on
SemAcquire() and SemWait().

4-2 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

4.2 SemSys Configuration

As we saw earlier, an XsIPC instance is defined by its configuration (.cfg) file. The
SemSys section of the configuration file describes the composition and capacity of the
instance's SemSys.
Three parameters must be set within the SemSys section of the instance configuration
file. Additional operating system specific parameters (if required) are listed in the
relevant Platform Notes.

The configuration parameters are:

o MAX_SEMS, The maximum number of concurrent semaphores. It should be set
based on the requirements of the programs using the I nstance.

o MAX_USERS, The maximum number of concurrent users and simultaneous
asynchronous operations. It should be set based on the programs using the
instance. Note that asynchronously blocked SemSys operations are treated as
SemSys users. The expected level of SemSys asynchronous activity should
therefore be factored into this parameter.

o MAX_NODES, The maximum number of nodes. It defines the number of nodes
that are to be made available to the instance. SemSys nodes are used internally
for recording blocking and ownership of the instance's semaphores.

 There is no hard and fast rule for calculating an appropriate value for
MAX_NODES. It depends on the mix of event vs. resource semaphores to be
employed, the number of user programs involved, and the degree of blocking
that is expected. An approximating formula to start with is:
MAX_NODES = (MAX_SEMS*2) + (MAX_USERS*4) + (MAX_USERS*MAX_SEMS)

 Empirical observations via SemView should be made to monitor node usage.
Adjustments should follow as necessary.

4.3 SemSys Functions

4.3.1 SemCreate() - Creating a New Semaphore

The first step toward using an XsIPC semaphore within an instance is to create it. As we
saw earlier, there are two types of semaphores: Event and Resource. A semaphore's type
is specified when the semaphore is created.
SemCreate() takes two arguments:

o The name of the new semaphore

o A value indicating the type of the semaphore to be created
SemCreate() returns the "semaphore id" (Sid) of the newly created semaphore. This value
is used as the semaphore's "handle" in all subsequent SemSys function calls that refer to
this semaphore.

Example:
Sid = SemCreate("CritSectSem", 1);

SemSys 4-3

01/22/2004

Rev. No.: 4

In the above example, the calling user attempts to create a new semaphore having the
name CritSectSem. The new semaphore will be a resource semaphore having a
maximum resource count of one. Such a semaphore could be used to enforce single
access to an application's critical section.

Example:
Sid = SemCreate("BufferSem", 5);

In this example, the calling user is creating a resource semaphore having the name
BufferSem and a maximum resource count of five. Such a semaphore might be used to
control orderly access to a system's five usable buffers.

Example:
Sid = SemCreate("NetworkDownSem", SEM_CLEAR);

Here the calling process creates an event semaphore with the name NetworkDownSem.
The semaphore is created with an initial state of "clear." Such a semaphore might be
employed to notify user programs within an application that a network has come down.
Event semaphore creation differs from resource semaphore creation in the value given for
SemCreate()'s second argument. Resource semaphore creation specifies the maximum
resource count. Event semaphore creation specifies the semaphore's initial state as
SEM_SET or SEM_CLEAR.
Duplicate semaphore names are not allowed within an instance.
Specifying SEM_PRIVATE as the name of the new semaphore creates a semaphore
inaccessible via SemAccess(), effectively making its Sid private to the creating program.
Of course, the creating program can pass the Sid to others, if it so wishes. The advantage
of using SEM_PRIVATE as a name is that it is guaranteed not to conflict with any
semaphore name currently in the instance.
4.3.2 SemAccess() - Accessing an Existing Semaphore

Once a semaphore has been created, other users can access its Sid using SemAccess().
SemAccess() takes one argument:

o The name of an existing semaphore.
SemAccess() returns the "semaphore id" (Sid) of the desired semaphore. This value is
used as the semaphore's "handle" in all subsequent SemSys function calls that refer to the
semaphore.

Examples:
CritSid = SemAccess("CritSectSem");
BuffSid = SemAccess("BufferSem");
NetDownSid = SemAccess("NetworkDownSem");

The above example accesses the three semaphores created in the previous section.
4.3.3 SemListXxx() – Manipulating Semaphore Lists

SemSys operations that manipulate semaphores do so using semaphore id lists.
Manipulating a single semaphore is accomplished using a list having one element.

4-4 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

A list of Sids is referred to as a SidList. A SIDLIST data type is defined for creating
and working with SidLists. Functions expecting a list of Sids as one of their arguments
take a SIDLIST data type for this purpose.
There are two functions for building SidLists: SemList() and SemListBuild()
SemList() takes a list of Sids as its arguments with SEM_EOL marking the end of the list.
SemList() creates a SidList in its internal static area. For this reason, the returned SidList
can be safely used only once.

Example:
RetCode = SemRelease(SemList(Sid1, Sid2, Sid3, SEM_EOL), ...);

SemRelease() expects a SidList as its first argument. (SemRelease() is described in a later
section.) In the above example, SemList() is used "on the fly" to create the SidList
argument for SemRelease().
SemListBuild() takes a SIDLIST variable as its first argument. The remaining
arguments are a list of Sids as described for SemList(). SemListBuild() creates a SidList
in the user-provided SIDLIST variable. This SidList can safely be reused by the
programmer.

Example:
SIDLIST SidList;
XINT Sid1, Sid2, Sid3;

SemListBuild(SidList, Sid1, Sid2, Sid3, SEM_EOL);
...
RetCode = SemAcquire(SEM_ALL, SidList, NULL, SEM_WAIT);
...
/*
 * Work with resources associated with resource
 * semaphores Sid1, Sid2 and Sid3
 */
...
RetCode = SemRelease(SidList, NULL);

SemAcquire(), like SemRelease(), takes a SidList as an argument (SemAcquire() and its
SEM_ALL option are described in a later section). The SidList built with SemListBuild()
can be used repeatedly.
A SidList must not exceed SEM_LEN_SIDLIST elements. This is usually not a great
concern since SEM_LEN_SIDLIST is currently defined to be 32.
Two additional functions, SemListAdd() and SemListRemove(), allow for updating
SidLists dynamically, and another function, SemListCount(), allows determination of the
number of elements in a SidList.
SemListAdd() is provided to allow the programmer to add SidList elements to an existing
SidList (i.e., one that has been created by SemListBuild()). This is a common
requirement in situations where the needed SidList must be built dynamically based on
certain run-time conditions.
SemListRemove() is provided to allow the programmer to remove SidList elements from
an existing SidList when necessary.

SemSys 4-5

01/22/2004

Rev. No.: 4

The calling sequence for SemListAdd() and for SemListRemove() is identical to that of
SemListBuild(). It too expects a user-provided SidList as its first argument. The listed
SidList elements are added to or removed from that SidList.

Example:
/*
 * A SidList containing Sid1, Sid2 and Sid3 is created
 * one element at a time using SemListAdd(), as follows:
 */

SIDLIST SidList;
XINT Sid1, Sid2, Sid3;
...

SemListBuild(SidList, SEM_EOL);
SemListAdd(SidList, Sid1, SEM_EOL);
SemListAdd(SidList, Sid2, SEM_EOL);
SemListAdd(SidList, Sid3, SEM_EOL);

In the following example, SemListRemove() is used so that the resource semaphores Sid1, Sid2 and
Sid3 are each acquired (SemAcquire() and its SEM_ANY option are described in a later section), then
released, in whatever order they become available:

SIDLIST SidList;
XINT Sid1, Sid2, Sid3, AcquiredSemID;

SemListBuild(SidList, Sid1, Sid2, Sid3, SEM_EOL);

/*
 * Acquire and release resource semaphores Sid1, Sid2, and Sid3,
 * one at a time, in whatever order they become available.
 */

while (SemListCount(SidList)>0)
{
 RetCode = SemAcquire(SEM_ANY, SidList, &AcquireSemID, SEM_WAIT);
 ...
 /* Work with resource associated with whichever resource semaphore
 * was acquired (AcquiredSemID), then release it and remove it
 * from the SidList
 */
 ...
 RetCode = SemRelease(SemList(AcquiredSemID, SEM_EOL), NULL);
 SemListRemove(SidList, AcquiredSemID, SEM_EOL);
}

4.3.4 SemAcquire() - Acquiring Resource Semaphores

SemAcquire() and SemRelease() are used for manipulating SemSys resource semaphores
.
The maximum semaphore value specified when a resource semaphore is created
determines the maximum number of copies of the semaphore that can exist at any one
time. Users vying for access to the resource represented by the semaphore do so by
acquiring and releasing copies of the semaphore.
A user attempts to attain copies of one or more resource semaphores using SemAcquire().
It subsequently releases held semaphore copies using SemRelease().

4-6 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

SemAcquire() takes four arguments:

o A type code indicating the type of acquire operation to perform.

o A SidList holding a list of Sid copies to acquire.

o A pointer to a variable that gets assigned by SemAcquire(). (This value can be
NULL if no return value is desired.)

o A blocking option code in case the operation needs to block.

Example:

/*
 * Create a critical section semaphore.
 * Then, gain access to the critical section by
 * acquiring the only copy of the semaphore.
 */

CritSid = SemCreate("CritSectSem", 1);

RetCode = SemAcquire(SEM_ALL,
 SemList(CritSid, SEM_EOL),
 &RetSid,
 SEM_WAIT);

SemAcquire() attempts to access a list of resource semaphore copies. Semaphore
acquisition can occur in one of three ways:

o SEM_ANY: Acquire any of the semaphore copies listed.

o SEM_ALL: Acquire all of the semaphore copies listed as they become available
(i.e., cumulatively).

o SEM_ATOMIC: Acquire all of the semaphore copies listed, waiting until all of
them are available at the same time (i.e., atomically).

In the above example, the SidList has one element (CritSid). It is therefore
inconsequential which acquire type is specified, since they are all equivalent when
applied to a single element list.
When SemAcquire() succeeds, RetSid is returned with the Sid of the last semaphore
acquired. For single-semaphore operations, this is not very useful information. For
SemAcquire() operations involving multiple semaphores, this information can be
important. It is acceptable to specify a NULL RetSid argument.
When SemAcquire() fails, and the cause of the failure is related to one of the listed
semaphores, RetSid is assigned the Sid of the problematic semaphore.

SemSys 4-7

01/22/2004

Rev. No.: 4

Now consider the following example:
/*
 * Create a buffer access semaphore to control
 * access to five available buffers.
 * Then access two copies of the semaphore.
 */

BuffSid = SemCreate("BufferSem", 5);

RetCode = SemAcquire(SEM_ATOMIC,
 SemList(BuffSid, BuffSid, SEM_EOL),
 &RetSid,
 SEM_WAIT);

This form of SemAcquire() (using SEM_ATOMIC) succeeds only when all of the listed
Sid copies are available at one time. The calling user blocks until this occurs, based on
the SEM_WAIT argument. At that time, the process is allowed to proceed, presumably to
make use of the buffers that have become available.

If the calling user needed control of the critical section as well as access to two buffers before
proceeding, then the SemAcquire() would be coded as:

RetCode = SemAcquire(SEM_ALL,
 SemList(CritSid, BuffSid,
 BuffSid, SEM_EOL),
 &RetSid,
 SEM_WAIT);

Note that in this example we have assumed that the listed copies could be acquired
cumulatively (via SEM_ALL).
There is no significance to the order of Sid specification within the SidList when
employing SEM_ALL or SEM_ATOMIC. Within a SEM_ANY call, the listed Sids are
pursued in the order listed.

Example:
RetCode = SemAcquire(SEM_ANY,
 SemList(SidA, SidB, SidC, SEM_EOL),
 &RetSid,
 SEM_WAIT);

In this example, the Sids are checked for availability in the order specified (SidA, SidB
and then SidC). If none are available, blocking occurs and the first of the three copies to
become available is acquired. The order of specification is by then no longer relevant. In
either case, RetSid is returned with the Sid of the semaphore that was acquired.
The above examples demonstrate SemAcquire() using synchronous blocking options.
Asynchronous blocking is also possible by specifying one of the three asynchronous
blocking options. Refer to the Advanced Topics chapter for a detailed description of the
asynchronous blocking options.
4.3.5 SemRelease() - Releasing Resource Semaphores

The flip side of resource semaphore acquisition is releasing resource semaphores. This is
accomplished using SemRelease().Resource semaphorecopies must be released by
holding users in order for them to be successfully acquired by other users.

4-8 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

SemRelease() takes two arguments:

o A SidList holding a prepared list of Sid copies to release.

o A pointer to a variable that gets assigned by SemRelease().

Example:
/*
 * Release the critical section semaphore, and two
 * copies of the buffer semaphores being held.
 */

RetCode = SemRelease(SemList(CritSid, BuffSid,
 BuffSid, SEM_EOL),
 &RetSid);

It is, of course, an error to attempt to release a semaphore copy not currently held. Here,
too, RetSid is returned with the identity of an invalid Sid, if one was encountered. As
with SemAcquire(), it is acceptable to specify a NULL RetSid argument.

4.3.6 SemSet() - Setting Event Semaphores

Semaphores are often needed for interprocess event synchronization and notification.
Event semaphores are ideal for such situations. Event semaphores are Boolean in nature.
They are either "set" or "clear" at any point in time.
Users waiting for an event to occur typically block on a "clear" event semaphore
associated with the event. A user detecting the event's occurrence then "sets" the
semaphore, thus allowing the blocked users to proceed.
The ability to operate on multiple resource semaphores in a single operation, described in
the section on SemAcquire(), applies similarly to event semaphores. It is thus possible to
"set," "clear" and "wait" on multiple events (via their semaphores) using SidLists.
Event semaphore "setting" is accomplished via SemSet().

SemSet() takes two arguments:

o A SidList holding a list of event Sids to set.

o A pointer to a variable that gets assigned by SemSet().

Example:
/*
 * Network is detected to have gone down.
 * Set the Network Down event semaphore.
 */

RetCode = SemSet(SemList(NetDownSid, SEM_EOL), &RetSid);

A semaphore remains "set" until it is "cleared." It is often required to "clear" an event
semaphore some time after it has been "set" so that the event can be waited on again. This
is done using the SemClear() function.
RetSid is returned with the identity of an invalid Sid, if one was encountered. As with
SemClear(), it is acceptable to specify a NULL RetSid argument.

SemSys 4-9

01/22/2004

Rev. No.: 4

4.3.7 SemClear() - Clearing Event Semaphores

SemClear() is the reverse of SemSet() in that it places the listed semaphores into the "clear" state.
SemSet() takes two arguments:

o A SidList holding a list of event Sids to clear.

o A pointer to a variable that gets assigned by SemClear().

Example:
/*
 * Network has come back up.
 * Clear the Network Down event semaphore.
 */

RetCode = SemClear(SemList(NetDownSid, SEM_EOL), &RetSid);

4.3.8 SemWait() - Waiting on Event Semaphores

When a user wants to block until one or more events have occurred, it issues a SemWait()
call with a list of event Sids as one of the arguments.
Occasionally it is important that only one of the users blocked on an event semaphore be
allowed to proceed once the semaphore is "set." To assure this form of control,
SemWait() includes an option flag indicating that the "set" semaphore(s) should be
"cleared" once the SemWait() request has been fully satisfied. In effect, the user is given
the option of "shutting the door behind him."
SemWait() takes four arguments:

o A type code indicating the type of wait operation to perform.

o A SidList holding a list of event Sids to wait on.

o A pointer to a variable that gets assigned by SemWait(). (This value can be
NULL if no return value is desired.)

o A blocking option specifying the action to be taken in case the SemWait() needs
to block. An optional SEM_CLEAR flag may be logically ORed to the left of the
specified blocking option, indicating that "set" semaphores should be "cleared"
once the SemWait() request has been fully satisfied. An example of this will be
provided shortly.

Example:
/*
 * Create an event semaphore that will be set when
 * the database is full. The calling user then blocks
 * (via SemWait()) until some other user detects the
 * condition and sets the semaphore. The semaphore
 * remains set after SemWait() returns.
 */

DBFullSid = SemCreate("DatabaseFullSem", SEM_CLEAR_xe "SEM_CLEAR"_);

RetCode = SemWait(SEM_ALL,
 SemList(DBFullSid, SEM_EOL),
 &RetSid,
 SEM_WAIT);

4-10 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

SemWait() attempts to wait on a list of event semaphores. Semaphore waiting can take one of three
forms:

o SEM_ANY: Wait for any of the listed semaphores to be in the "set" state.

o SEM_ALL: Wait until all of the listed semaphores have been in the "set" state at
least once since the start of the SemWait() operation. All semaphores must have
been in the "set" state once, but they are not required to stay "set."

o SEM_ATOMIC: Wait until all of the listed semaphores are concurrently in the
"set" state (i.e., atomically).

In the above example, the SidList has one element (DBFullSid). It is therefore
inconsequential which wait type is specified, as they are all equivalent when applied to a
single-element list.
When SemWait() succeeds, RetSid is returned with the Sid of the last semaphore
waited for. For single-semaphore operations, this is not very useful information. For
SemWait() operations involving multiple semaphores, this information can be important.
It is acceptable to specify a NULL RetSid argument.
When SemWait() fails and the cause of the failure is related to one of the listed
semaphores, "RetSid" is assigned the Sid of the problematic semaphore.

Now consider the following example:
/*
 * Block until any of the following crisis situations arise:
 * Excessive temperature, humidity or pressure. Clear the set
 * semaphore after the SemWait() operation completes.
 */

RetCode = SemWait(SEM_ANY,
 SemList(TempSid, HumidSid,
 PressureSid, SEM_EOL),
 &RetSid,
 SEM_CLEAR | SEM_WAIT);

if (RetCode >= 0) /* Success */
{
 /*
 * SemWait has assigned to "RetSid" the Sid
 * of the event semaphore that was set.
 */

 switch(RetSid)
 {
 case TempSid:
 /* react to excessive Temperature */
 ...
 case HumidSid:
 /* react to excessive Humidity */
 ...
 case PressureSid:
 /* react to excessive Pressure */
 ...
 }
}

SemSys 4-11

01/22/2004

Rev. No.: 4

In the above example, we see how RetSid can be used for identifying and reacting to
the event that has occurred. RetSid is also used to determine the identity of an invalid
Sid (e.g., a nonexistent Sid: RetCode = SEM_ER_BADSID) if one is encountered.
Note that the SEM_CLEAR option flag, when specified, must be ORed to the left of
whatever blocking option is designated.

Example:
/*
 * Create two event semaphores that indicate network and
 * database startup status. Wait 60 seconds for the two
 * semaphores to be in the "set" state concurrently
 * indicating that they both have come up and are active.
 */

NetSid = SemCreate("NetworkUpSem", SEM_CLEAR);
DatabaseSid = SemCreate("DatabaseUpSem", SEM_CLEAR);

RetCode = SemWait(SEM_ATOMIC,
 SemList(NetSid, DatabaseSid, SEM_EOL),
 &RetSid,
 SEM_TIMEOUT(60));

if (RetCode >= 0) /* Success */

{
 /*
 * Database and Network are up.
 */
 ...
}
else
if (RetCode == SEM_ER_TIMEOUT)
{
 /*
 * Database and Network have not come up together.
 */
 ...
}

This form of SemWait(SEM_ATOMIC) succeeds only when all of the listed event
semaphores are concurrently in the "set" state. Based on the 60 second timeout value, the
calling user blocks for a maximum of 60 seconds, waiting for this scenario to occur. If the
SemWait() does not succeed within 60 seconds, the function return’s the
SEM_ER_TIMEOUT error code. The program can then react accordingly.
When it is important to react to a certain set of events that occur over a period of time, a
user can be started to wait cumulatively for the list of corresponding event semaphores.
This would be done using the SEM_ALL wait type.

4-12 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

Example:
/*
 * Create event semaphores that are "set" when the machine
 * components they represent are down and otherwise are
 * "clear." Then block and wait until all three components
 * have failed (been in the "set" state) at least once.
 */

Eng1Sid = SemCreate("Engine1Sem", SEM_CLEAR);
Eng2Sid = SemCreate("Engine2Sem", SEM_CLEAR);
HydroSid = SemCreate("HydrolicSem", SEM_CLEAR);

RetCode = SemWait(SEM_ALL,
 SemList(Eng1Sid Eng2Sid,
 HydroSid, SEM_EOL),
 &RetSid,
 SEM_WAIT);
/*
 * React to the unreliable equipment.
 */
...

The above examples demonstrate SemWait() using synchronous blocking options.
Asynchronous blocking is also possible by specifying one of the three asynchronous
blocking options. Refer to the Advanced Topics chapter for a detailed description of the
asynchronous blocking options.

4.3.9 SemCancel() - Cancel Blocked SemSys Operations

The SemCancel() function is useful for cancelling blocked SemAcquire() or SemWait()
operations involving specific semaphores.
This might be necessary if it has been determined that a blocked request can no longer be
satisfied. For example, consider a user that has blocked on acquiring three resources, and
one of the resources has become disabled and is no longer in service. Issuing a
SemCancel() on that resource semaphore interrupts any and all users blocked on
SemAcquire() calls trying to access the no longer available resource.

SemCancel() takes two arguments:

o A SidList holding a prepared list of Sids to cancel blocking on.

o A pointer to a variable that gets assigned by SemCancel().

Example:
/*
 * Cancel any blocked SemAcquire()
 * operations involving a resource Sid.
 */

RetCode = SemCancel(SemList(ResourceSid, SEM_EOL), &RetSid);

SemCancel() can also be used to cancel SemWait() operations involving event
semaphores that will never be "set."
SemCancel()’s "RetSid" is returned with the identity of an invalid Sid, if one is
encountered. It is acceptable to specify a NULL RetSid argument.

SemSys 4-13

01/22/2004

Rev. No.: 4

SemAcquire() and SemWait() calls that are cancelled return with RetCode =
SEM_ER_CANCELLED, and have their RetSid assigned to the Sid of the cancelled
semaphore.

4.3.10 SemDelete() - Deleting a Semaphore

A semaphore should be deleted from its instance when it is no longer needed. This
recycles internal SemSys resources and makes the SemView monitor less cluttered.

SemDelete() takes one argument:

o The Sid of the semaphore to be deleted.

Example:
RetCode = SemDelete(Sid);

SemDelete() will succeed only if the subject semaphore is completely inactive at the
time. Resource semaphores that have copies "held" by users or that are being waited on
cannot be deleted. Event semaphores that are being blocked cannot be deleted.
If a semaphore must be removed regardless of its current status, then SemDestroy()
should be employed.
4.3.11 SemDestroy() - Destroying a Semaphore

A semaphore that must be removed from its instance can be destroyed using
SemDestroy(). SemDestroy() removes the subject semaphore regardless of the
semaphore's current status.

SemDestroy() takes one argument:

o The Sid of the semaphore to be destroyed.

Example:
RetCode = SemDestroy(Sid);

When a semaphore is destroyed, a number of things happen:

o All SemAcquire() or SemWait() operations involving the destroyed semaphore
are cancelled and returned with RetCode = SEM_ER_DESTROYED. Their
RetSid is assigned the Sid of the destroyed semaphore.

o All users holding one or more copies of a destroyed resource semaphore have
these copies removed from their ownership. This occurs silently and it is the
responsibility of the program to adjust to the semaphore's destruction.

For obvious reasons, SemDestroy() should be used sparingly. Its most likely application
would be within the execution of a system's "cleanup" program at which time the above
side-effects are normally of no concern.
4.3.12 SemInfoSys() - Information about an Instance's SemSys

XsIPC provides a set of SemSys functions that can be used to access status information
about various aspects of an instance's SemSys.
The returned data can be used to make run-time decisions about ongoing application
processing.

4-14 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

SemInfoSys() returns with information about the instance's SemSys that the user is logged into.
SemInfoSys() takes one argument:

o A pointer to a SEMINFOSYS structure that is returned filled with the
subsystem's status information.

Example:
SEMINFOSYS SysData;

RetCode = SemInfoSys(&SysData);

A complete description of how to use the Info functions is presented in the Advanced
Topics chapter of the XsIPC User Guide, in the section entitled, "Info Function List
Manipulation."
The definition of the SEMINFOSYS datatype is included in the User Data Structures
chapter of the QueSys/MemSys/SemSys Reference Manual.
4.3.13 SemInfoUser() - Information about a SemSys User

SemInfoUser() returns with information about a specified user. SemInfoUser() takes two arguments:

o The Uid whose status is desired.

o A pointer to a SEMINFOUSER structure that is returned filled with the user's
status information.

Besides statistical data, the SEMINFOUSER structure returns with "list" data related to the specified
user. Each user has an HList, QList and Wlist associated with it.

o The HList is the list of resource Sid copies currently held by the subject user.
The Sids are listed in the order in which they were acquired.

o The QList is the list of Sids currently being requested by the subject user. The
QList will have elements only when the user is blocked on a SemAcquire() or
SemWait() operation.

o The WList is the list of Sids currently being waited on by the subject user. The
WList is the subset of the QList that has not yet been satisfied. It too will only
have elements when the user is blocked on a SemAcquire() or SemWait()
operation.

The lists within SEMINFOUSER are arrays that can accommodate up to
SEM_LEN_INFOLIST elements. The actual lists may, at times, be greater than
SEM_LEN_INFOLIST elements in length. A call to the SemInfoUser() function must
therefore be preceded by the setting of three SEMINFOUSER structure members
(HListOffset, QListOffsetand WListOffset) with values specifying what portions of the
three respective lists are desired.
More specifically, before SemInfoUser() is called, the three list offset variables within the
SEMINFOUSER structure must be set, indicating from what point in each list to return
data. Setting the offsets to zero directs the function to return with list data from the start
of the lists.

SemSys 4-15

01/22/2004

Rev. No.: 4

Example:
SEMINFOUSER UserData;

UserData.HListOffset = 0;
UserData.QListOffset = 0;
UserData.WListOffset = 0;

RetCode = SemInfoUser(Uid, &UserData);

A complete description of how to use the Info functions is presented in the Advanced
Topics chapter of the XsIPC User Guide, in the section entitled, "Info Function List
Manipulation."
The definition of the SEMINFOSYS datatype is included in the User Data Structures
chapter of the QueSys/MemSys/SemSys Reference Manual.
4.3.14 SemInfoSem() - Information about a SemSys Semaphore

SemInfoSem() returns with information about a specified semaphore. SemInfoSem() takes two
arguments:

o The Sid whose status is desired.

o A pointer to a SEMINFOSEM structurethat is returned filled with the
semaphore's status information.

Besides statistical data, the SEMINFOSEM structure returns with "list" data related to the specified
semaphore. Each semaphore has an HList and WList associated with it:

o The HList is the list of Uids currently holding copies of the subject resource
semaphore. The HList of event semaphores is always empty. The Uids are listed
in the order that they acquired the semaphore copies.

o The WList is the list of Uids currently waiting on the subject semaphore. The
Uids are listed in the order that they began waiting.

The lists within SEMINFOSEM are arrays that can accommodate up to
SEM_LEN_INFOLIST elements. The actual lists may, at times, be greater than
SEM_LEN_INFOLIST elements in length. A call to the SemInfoSem() function must
therefore be preceded by the setting of two SEMINFOSEM structure members
(HListOffset and WListOffset) with values specifying what portions of the two respective
lists are desired.
More specifically, before SemInfoSem() is called, the two list offset variables within the
SEMINFOSEM structure must be set, indicating from what point in each list to return
data. Setting the offsets to zero directs the function to return with list data from the start
of the lists.

Example:
SEMINFOSEM SemData;

SemData.HListOffset = 0;
SemData.WListOffset = 0;

RetCode = SemInfoSem(Sid, &SemData);

4-16 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

A complete description of how to use the Info functions is presented in the Advanced
Topics chapter of the XsIPC User Guide, in the section entitled, "Info Function List
Manipulation."
The definition of the SEMINFOSEM datatype is included in the User Data Structures
chapter of the QueSys/MemSys/SemSys Reference Manual.

4.3.15 SemFreeze() - Freezing SemSys

XsIPC provides the user with the ability to attain complete and exclusive control over the
SemSys subsystem of an instance.
This mechanism allows a user to execute a series of SemSys operations, with the
assurance that no other user's SemSys operations are interwoven with his.
Such a capability is of particular importance when a user requires a complete and
consistent view of the state of activity occurring within SemSys. With it, multiple
SemInfoXxx function calls can be executed for collecting status data with the guarantee
that the subsystem's state is unchanged between the SemInfoXxx calls.
SemFreeze() takes no arguments.

Example:
/*
 * Produce SemSys snapshot status report.
 */

SemFreeze();

/*
 * Collect the data.
 */
...
SemInfoSys(...);
...
SemInfoSem(...);
...
SemInfoUser(...);

/*
 * Unfreeze SemSys and report results.
 */

SemUnfreeze();

printf(...);

A further note regarding SemFreeze(): It is an error for a user to issue a blocking
SemSys function call, specifying a blocking option code (i.e., SEM_WAIT or
SEM_TIMEOUT), once the user has frozen the subsystem.

4.3.16 SemUnfreeze() - Unfreezing SemSys

SemUnfreeze() is the bracketing function to SemFreeze(). It returns the SemSys
subsystem to its unfrozen state. Other SemSys users resume normal SemSys operations.

Example:
SemUnfreeze();

SemUnfreeze() will fail if the calling user has not frozen the subsystem.

SemSys 4-17

01/22/2004

Rev. No.: 4

4.4 The SemSys On-Line Monitor: SemView

SemView is the on-line monitor for XsIPC SemSys.

4.4.1 Starting SemView

SemView is started from the command line using the SemView command.

SemView takes two arguments:

o The first argument is the initial "interval" snapshot setting. It defines in
milliseconds the initial update frequency of the monitor. The interval argument
is mandatory.

o The second argument is the instance file name of the instance to be monitored.
This argument is optional. If it is omitted, SemView uses the value of the xipc
environment variable for the instance file name of the instance to start
monitoring.

Example:
semview 100 /usr/demo

The above command starts the SemView monitor for the SemSys subsystem of the
/usr/demo instance. The initial update interval is set to 100 milliseconds.

4.4.2 SemView Layout

SemView's main display is matrix-like in appearance. Users logged into the instance and
existing SemSys semaphores form the axes of the matrix. Interaction between instance
users and semaphores is displayed within the body of the "interaction matrix."
SemSys operations that block asynchronously are treated as pseudo-users of SemSys.
These Asynchronous Users are displayed in the same manner as ordinary users, thus
providing a consistent visual display of all pending SemSys asynchronous operations.

Status
Interva

l

Semaphores...

Users
...
...
...
...
...

User - Semaphore
Interaction

Matrix

Command Capacity

Monitor status and interval setting are shown at the top left portion of the screen. SemSys
capacity data is displayed at the lower right portion of the screen. The command entry
window is at the lower left of the screen.

4-18 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

4.4.2.1 Sample SemView Screen Display

4.4.2.2 User Entries

Users logged into the instance are listed on the left side of the interaction matrix, one line
per user.

Each user entry includes:

o The user's SemSys user ID

o The user's login name

o The user's blocking status (if any)

o The blocking timeout value (if any)

An example (not associated with the screen presented above) follows.
02 StartUp
 03 CommProg ANY
 06 DBProg ALL 24
 39 A039-003 ATM

In this example, four SemSys users are identified--three real users and one asynchronously blocked
operation.

o SemSys user 2 has the login name StartUp. The user is not blocked on any
SemSys operation.

o SemSys user 3 has logged in as CommProg. He is blocked on a SemAcquire()
or SemWait()operation involving SEM_ANY. He is blocked indefinitely and thus
has no timeout value.

SemSys 4-19

01/22/2004

Rev. No.: 4

o SemSys user 6 has logged in as DBProg. He is blocked on a cumulative all
(SEM_ALL) operation and has a timeout pending with 24 seconds remaining on
the blockage.

o SemSys user 39 is a pending asynchronous operation. It is blocked on an atomic
all (SEM_ATOMIC) operation. The user name ASYNC-03 is assigned to the
asynchronous operation to indicate that the operation was initiated by user 3.

4.4.2.3 Semaphore Entries

The instance's semaphores are identified across the top of the interaction matrix.

Each semaphore entry includes:

o The Sid of the semaphore.

o The user-assigned ASCII name of the semaphore.

o The semaphore's current status: for resource semaphores, it is the currently
available and the maximum number of copies; for event semaphores, it is the
current state of the semaphore (CLEAR or SET).

An example (not associated with the screen presented above) follows.
 0 1 4
 CritSect Buffers NetUp
 [0 1] [3 10] [SET] ...

In this example:

o Semaphore CritSect is shown to have an Sid of 0. It is a resource semaphore
with a maximum copy count of 1 and a currently available copy count of 0 (i.e.,
a user is holding the critical section).

o Semaphore Buffers has Sid 1. It has current and maximum copy counts of 3
and 10 respectively (i.e., 7 buffers are currently checked out).

o Semaphore NetUp has Sid 4. It is an event semaphore. It is currently "set."

4.4.2.4 Interaction Matrix Cells

Each cell on the SemView interaction matrix describes the current relationship between a
user and a semaphore. The exact information appearing in the cell depends on the type of
semaphore involved.

For resource semaphores, the cell reports:

o The number of copies of the resource semaphore held by the user.

o The number of copies of the resource semaphore requested by the user.

Examples:
A cell value of " 3 1 " indicates that the user holds three copies of the resource semaphore and is
currently blocked attempting to acquire an additional copy.

A cell containing " . 2 " means that the user does not hold any copies of the semaphore and is
attempting to acquire two.

A cell containing " 1 . " means that the user holds one copy of the semaphore and is not attempting
to acquire any more.

4-20 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

A cell containing " . . " means that the user isn't holding or attempting to acquire any copies of the
semaphore.

For event semaphores, the cell reports:

? Whether or not the user is blocked on the semaphore, i.e., waiting for the event
semaphore to become "set."

Examples:

A cell having " ! " (an exclamation mark) means that the user is waiting for the semaphore to be
"set."

A cell with " . . " means that the user is NOT waiting for the semaphore to be "set."

4.4.3 Monitoring Modes

The topic of monitoring modes–the available options and when they should be used–is
described in detail in the XsIPC User Guide.

4.4.4 SemView Zoom Windows

SemView provides the developer with two zoom capabilities.
4.4.4.1 Zooming in on a User

The SemView user zoom window creates a detailed display of the status of a particular
SemSys user. The command string for user zooming is zuN where N is the Uid to be
zoomed in on.

Example:

The command for opening a zoom window on the user having a Uid of 4 is:
Command> zu4

Status: [NOT BLOCKED]
 Req List :
 Wait List :
 Hold List : 2 2 4

 Uid: 4
 Name: DownLoad
 Pid: 1023
 Login: Dec 23
12:23

User DownLoad holds two copies of the resource Sid 2 and one copy of resource Sid 4.
The user is otherwise not currently blocked on any SemSys semaphores.
Status: [BLOCKED: ALL]
 Req List : 0 1
 Wait List : 0 1
 Hold List : 2 2 4

 Uid: 4
 Name: DownLoad
 Pid: 1023
 Login: Dec 23
12:23

The user is now blocked acquiring a copy of semaphore Sid 0 and Sid 1 (i.e., ALL).

SemSys 4-21

01/22/2004

Rev. No.: 4

Status: [BLOCKED: ALL]
 Req List : 0 1
 Wait List : 1
 Hold List : 2 2 4 0

 Uid: 4
 Name: DownLoad
 Pid: 1023
 Login: Dec 23
12:23

Sid 0 has become available and was acquired. The user continues to block for Sid 1.

Note that the original request is reported as Req List:, and the outstanding part of the request is
identified as Wait List:.

Status: [NOT BLOCKED]
 Req List :
 Wait List :
 Hold List : 2 2 4 0 1

 Uid: 4
 Name: DownLoad
 Pid: 1023
 Login: Dec 23
12:23

The request has been satisfied and the user is no longer blocked.
4.4.4.2 Zooming in on a Semaphore

It is also possible to zoom in on a SemSys semaphore. The information contained in the
zoom window depends on the type of semaphore being watched.
The SemView semaphore zoom window creates a detailed display of the status of a
particular SemSys semaphore. The command string for semaphore zooming is zsN
where N is the Sid to be zoomed on.

Example:

The command for opening a zoom window on the semaphore having Sid of 6 is:
Command> zs6

If Sid 6 is a resource semaphore, the zoom window will appear as:

Maximum Value: 5 Current Value: 1
 Last Uid : 3
 Wait List :
 Hold List : 2 2 1 3

 Sid: 6 [Resource]
 Name: BufferSem
 CreateUid: 2
 Login: Dec 23 12:23

BufferSem is a resource semaphore with a maximum copy value of five. It currently has
only one copy available. The remaining four copies are held by Uid 2 (holding two
copies), Uid 1 and Uid 3. There are currently no users blocked on the semaphore. The
Last Uid: field identifies the user that most recently acquired or released the
semaphore.

Maximum Value: 5 Current Value: 0
 Last Uid : 4
 Wait List : 6
 Hold List : 2 2 1 3 4

 Sid: 6 [Resource]
 Name: BufferSem
 CreateUid: 2
 Login: Dec 23 12:23

4-22 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

Uid 4 has acquired the last copy of Sid 4. Uid 6 has also attempted to access a semaphore
copy and is currently blocked.

If Sid 7 is an event semaphore, the zoom window will appear as:

Status: [CLEAR]
 Last Uid : 1
 Wait List : 4 2 12 1

 Sid: 7 [Event]
 Name: RadiationLeak
 CreateUid: 13
 Login: Dec 23 12:23

The event semaphore window is very similar to the resource zoom window. The main
difference is that there is no Hold List: line. That is because event semaphores are
not held.
Here, event semaphore RadiationLeak is being monitored by four Uids (i.e., users).
If a radiation leak is detected, prescribed steps will be taken (e.g., containing the accident,
shutting access to the accident's location, notifying plant personnel, etc.).
4.4.5 Panning within SemView

Panning within SemView lets the developer observe different sections of the interaction
matrix. This is especially useful when a zoom window is open and parts of the matrix are
not visible.
All panning commands start with p.
Vertical panning (up and down) to observe other users is done by specifying a u (for
user) and a Uid to pan to.

Example:
Command> pu8

The above command scrolls the interaction matrix so that Uid 8 is at the top of the
display.
Horizontal panning (right and left) to monitor other semaphores is accomplished by
specifying an s (for semaphore), and a Sid to pan to.

Example:
Command> ps4

The above command scrolls the interaction matrix so that Sid 4 is the first displayed (left-
most).

Example:
Command> po

The command po returns the display to the origin of the interaction matrix.
4.4.6 Stopping SemView

SemView monitoring is terminated via the q command.

Example:
Command> q

SemSys 4-23

01/22/2004

Rev. No.: 4

Bringing down SemView has no effect on the underlying activities of the SemSys
instance. It continues to function unaffected. Any overhead incurred by monitoring is
eliminated.

Advanced Topics 5-1

01/22/2004

Rev. No.: 4

5. ADVANCED TOPICS

5.1 Asynchronous Operations

5.1.1 Introduction

XsIPC operations that can block can complete synchronously or asynchronously. The WAIT
and TIMEOUT synchronous blocking options actually block the program that initiated the
XsIPC operation until the operation completes–either successfully or in failure–at which
time the program becomes unblocked and continues its processing.
XsIPC asynchronous options provide a more powerful set of alternatives. Unlike the
synchronous options, asynchronous options indicate that the subject XsIPC operation
should complete in the background, without blocking the calling program. The program
is allowed to proceed. When the operation completes, some form of notification is given
by XsIPC, depending on the asynchronous option specified at the start of the operation.
XsIPC supports three asynchronous options. Each describes a different form of notification
to be given by XsIPC at the completion of the operation.

o The CALLBACK option directs XsIPC to execute a user-specified callback function
upon completion.

o The POST option directs XsIPC to set a SemSys event semaphore when the
operation completes.

o The IGNORE option directs XsIPC to allow the operation to complete "silently"
with no explicit form of notification.

The three options are described in more detail below. An operation that is invoked
asynchronously returns the MOM_ER_ASYNC, QUE_ER_ASYNC return code as
appropriate.
5.1.2 The Asyncresult Control Block (ACB)

Tracking of an asynchronous XsIPC operation is achieved using an Asynchronous Result
Control Block (ACB). An ACB is a user-declared structure (of type ASYNCRESULT)
that is associated with an asynchronous XsIPC operation. Each XsIPC operation that is coded
with an asynchronous blocking option is required to specify an ACB (actually, a pointer
to an ACB) along with the option. (Examples are provided below.) The ACB is the
vehicle by which XsIPC transmits return data when the operation completes.
An ACB also contains a number of fields that support the tracking of asynchronous
operations while they are still pending.
When an XsIPC operation executes asynchronously, the operation's ACB is set with
information for tracking the operation.

o An asynchronously blocked operation is treated as a pseudo-user within the
subsystem that it blocked. As such, the pending operation is recorded as an
entry in the subsystem's user table and is assigned its own User ID–or, more
precisely, an Asynchronous User Id (AUid). The AUid field of the ACB is set
with the blocked operation's AUid.

5-2 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

 User information functions that accept a Uid as an argument, such as
SemInfoUser(), accept an AUid as well. XsIPC 's subsystem monitors present
status on AUid's in the same manner as for ordinary Uid's. This provides the
developer with the means for tracking all pending asynchronous operations
occurring within an instance, without having to "invent" specialized async
monitoring tools.

 Asynchronous operations that succeed without blocking have the AUid field of
their associated ACB set to zero.

o The AsyncStatus field remains set as XIPC_ASYNC_INPROGRESS as long
as the operation is pending completion. When the operation completes, the field
is set to XIPC_ASYNC_COMPLETED. This is most useful for asynchronous
operations started with the IGNORE option. In that case, the AsyncStatus field
being set to XIPC_ASYNC_COMPLETED is the only direct indication given by
XsIPC that the operation has completed.

o The User Data fields are useful for passing application information between
the point where the asynchronous operation is initiated, and the logic that
handles its notification of completion. The information passed is application
dependent.

o The OpCode field is set to the appropriate XIPC_OPCODE_APINAME macro
value that identifies the XsIPC function call associated with the ACB. Examples
include XIPC_OPCODE_SEMWAIT, XIPC_OPCODE_QUESEND, etc.

The remaining elements within the ACB are a union of structures, one structure per
blockable XsIPC API. The appropriate structure is set with return data from the completing
asynchronous operation with which it is associated.
The ASYNCRESULT structure is defined as:

/*
 * The ASYNCRESULT Control Block (ACB) structure is used for examining the
 * results of an asynchronous operation. The structure contains a union
 * that defines returned fields for every XIPC operation that may block.
 */

/***
** Macros
***/

#define XIPC_ASYNC_INPROGRESS 1
#define XIPC_ASYNC_COMPLETED 2

#define ACB_FIELD(AcbPtr, Function, Field) AcbPtr->Api.Function.Field

/***
** 'ACB' - ASYNCRESULT Control Block ---
***/

struct _ASYNCRESULT /* Result of Async API call */
{
 XINT AUid; /* Async Uid "receipt" */
 XINT AsyncStatus; /* XIPC_ASYNC_INPROGRESS or
XIPC_ASYNC_COMPLETED*/
 XINT UserData1; /* --- user defined usage ---- */

Advanced Topics 5-3

01/22/2004

Rev. No.: 4

 XINT UserData2; /* --- user defined usage ---- */
 XINT UserData3; /* --- user defined usage ---- */

 XINT OpCode; /* Async operation, key to union */

 union
 {

 struct
 {
 XINT RetSid;
 XINT RetCode; /* of completed async operation */
 }
 SemWait;

 struct
 {
 XINT RetSid;
 XINT RetCode; /* of completed async operation */
 }
 SemAcquire;

 struct
 {
 MSGHDR MsgHdr; /* The resultant MsgHdr */
 CHAR FAR *MsgBuf;
 XINT RetCode; /* of completed async operation */
 }
 QueWrite;

 struct
 {
 MSGHDR MsgHdr; /* The resultant MsgHdr */
 XINT RetQid;
 XINT RetCode;
 }
 QuePut;

 struct
 {
 MSGHDR MsgHdr; /* The resultant MsgHdr */
 XINT Priority;
 XINT RetQid;
 XINT RetCode;
 }
 QueGet;

 struct
 {
 CHAR FAR *MsgBuf;
 XINT RetQid;
 XINT RetCode;
 }
 QueSend;

 struct
 {
 CHAR FAR *MsgBuf;
 XINT MsgLen;
 XINT Priority;
 XINT RetQid;
 XINT RetCode;
 }

5-4 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

 QueReceive;

Advanced Topics 5-5

01/22/2004

Rev. No.: 4

 struct
 {
 /*
 * Only used for passing error info re
 * failed QueBurstSend() operation.
 /
 XINT SeqNo; /* of burst-send message that failed */
 XINT TargetQid;
 XINT Priority;
 XINT RetQid;
 XINT RetCode;
 }
 QueBurstSend;

 struct
 {
 /*
 * Only used for handling an asynchronous
 * QueBurstSendSync() operation.
 */
 XINT SeqNo; /*of last burst-send msg enqueued */
 XINT RetCode;
 }
 QueBurstSendSync;

 struct
 {
 XINT Mid; /* of target */
 XINT Offset; /* of target */
 XINT Length; /* of target */
 CHAR FAR *Buffer;
 XINT RetCode;
 }
 MemWrite;

 struct
 {
 XINT Mid; /* of target */
 XINT Offset; /* of target */
 XINT Length; /* of target */
 CHAR FAR *Buffer;
 XINT RetCode;
 }
 MemRead;

 struct
 {
 SECTION RetSec;
 XINT RetCode;
 }
 MemSecOwn;

 struct
 {
 SECTION RetSec;
 XINT RetCode;
 }
 MemLock;

5-6 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

struct
 {
 MOM_MSGID MsgId;
 XINT RetCode;
 }
 MomSend;

struct
 {
 CHAR FAR *MsgBuf;
 XINT MsgLen;
 MOM_MSGID MsgId;
 XINT ReplyAppQueue;
 XINT RetCode;
 XINT TrackingLevel;
 }
 MomReceive;

struct
 {
 XINT RetCode; /* of completed async operation */
 }
 MomEvent

 }
 Api;

};

5.1.3 ACB Return Values

The results of an asynchronously blocked operation are returned within the ACB of the
completed operation. The one important exception to this is the treatment of what can be
generalized as "text data."
When an XsIPC operation that specifies a text buffer as an argument blocks asynchronously and then
subsequently completes, the originally specified user text buffer is used when the operation
completes. So, for example, a completing QueReceive() operation receives data into the text data
buffer that was specified when the QueReceive() was initially called. This is true for all of the XsIPC
functions that manipulate "text data." They are: MomSend(), MomReceive(), QueWrite(),
QueSend(), QueReceive(), MemWrite() and MemRead().
It is therefore a dangerous practice to pass stack space variables as text data arguments to
asynchronously blocking XsIPC functions calls. Static or heap storage variables should be
used instead.

5.1.4 The Callback Option

The CALLBACK option directs XsIPC to interrupt the calling program when the
asynchronously blocked operation completes by having it execute a user specified
callback function. This form of completion notification is the most severe in terms of
"rudeness" and should be used in situations where the indicated urgency is called for.
Example:

Advanced Topics 5-7

01/22/2004

Rev. No.: 4

/*
 * Wait for any one of three event semaphores to become set.
 * A callback function will execute when the operation completes.
 */

ASYNCRESULT Acb;
VOID Funct();
XINT RetSid;
XINT RetCode;

RetCode = SemWait (SEM_ANY,
 SemList(Sid1, Sid2, Sid3, SEM_EOL),
 &RetSid,
 SEM_CALLBACK(Funct, &Acb)
);

if (RetCode == SEM_ER_ASYNC)
{
 /*
 * Operation executing asynchronously.
 */

 printf ("SemWait executing asynchronously, AUid = %d\n",
 Acb.AUid);
}
else
{
 /*
 * Error !!
 */
}
...
...

VOID
Funct (Acb)
ASYNCRESULT *Acb;
{
 printf ("SemWait completed.\n");
 printf ("RetCode = %d\n", Acb->Api.SemWait.RetCode);
 printf ("RetSid = %d\n", Acb->Api.SemWait.RetSid);
 ...
}

Because it is sometimes important that an operation return synchronously if it can
complete without blocking, resort to the asynchronous option only when the operation
cannot immediately complete.
The above example could be modified as follows to force such behavior:

/*
 * Wait for any one of three events semaphores to become set.
 * Block asynchronously, if necessary. Otherwise, return
 * immediately with the operation's result.
 */

5-8 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

ASYNCRESULT Acb;
VOID Funct();
XINT RetSid;
XINT RetCode;

RetCode = SemWait (SEM_ANY,
 SemList(Sid1, Sid2, Sid3, SEM_EOL),
 &RetSid,
 SEM_RETURN | SEM_CALLBACK(Funct, &Acb)
);

if (RetCode == SEM_ER_ASYNC)
{
 /*
 * Operation blocked asynchronously.
 */

 printf ("SemWait blocked asynchronously, AUid = %d\n",
 Acb.AUid);
}
else
{
 /*
 * Operation completed immediately. Process results in-line.
 */
 ...
 ...
}
...
...

VOID
Funct (Acb)
ASYNCRESULT *Acb;
{
 printf ("SemWait completed.\n");
 printf ("RetCode = %d\n", Acb->Api.SemWait.RetCode);
 printf ("RetSid = %d\n", Acb->Api.SemWait.RetSid);
 ...
}

It is often convenient to have a single callback function serve multiple pending
asynchronous operations. The application could then use the various ACB User Data
fields to discern between the pending operations as they complete. One option: assign an
identifying code to each ACB, using one of the User Data fields.
5.1.5 The Post Option

The POST option directs XsIPC to set the specified SemSys event semaphore upon
completion of the specified operation. This form of completion notification is less
intrusive than the CALLBACK option in that no program is directly interrupted as a result
of the operation's completion.
Example:

/*
 * Receive message having Priority = 100.
 * Semaphore "PostSid" is to be set when the message is received.
 */

Advanced Topics 5-9

01/22/2004

Rev. No.: 4

RetCode = QueReceive (QUE_Q_ANY,
 QueList(QUE_M_PREQ(Qid1, 100), QUE_EOL),
 MsgBuf,
 MsgLen,
 &RetPrio,
 &RetQid,
 QUE_POST(PostSid, &Acb)
);

if (RetCode == QUE_ER_ASYNC)
{
 /*
 * Operation executing asynchronously.
 */

 printf ("QueReceive executing asynchronously, AUid = %d\n",
 Acb.AUid);
}
 ...
 ...
}
else
{
 /*
 * Error !!
 */
}

This example may also be modified to return synchronously if the operation succeeds
without blocking:

5-10 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

/*
 * Receive message having Priority = 100. Block
 * asynchronously if necessary. Otherwise, operation
 * results are returned immediately.
 */

RetCode = QueReceive (QUE_Q_ANY,
 QueList(QUE_M_PREQ(Qid1, 100), QUE_EOL),
 MsgBuf,
 MsgLen,
 &RetPrio,
 &RetQid,
 QUE_RETURN | QUE_POST(PostSid, &Acb)
);

if (RetCode == QUE_ER_ASYNC)
{
 /*
 * Operation blocked asynchronously.
 */

 printf ("QueReceive blocked asynchronously, AUid = %d\n",
 Acb.AUid);
}
else
{
 /*
 * Operation Completed immediately. Process results in-line.
 */
 ...
 ...
}

Reacting to a completed asynchronous operation that specified the POST option can be
handled by the original calling program at some later point in its logic when it is
convenient for it to issue a SemWait() call regarding the post semaphore, or possibly by a
second program waiting for the post semaphore to become set.
In fact, the wait for the post semaphore can be asynchronous as well. It is plain to see
how a domino-effect can very easily be created between processes.

5.1.6 The Ignore Option

The IGNORE option directs XsIPC to complete the subject operation silently, if it blocks
asynchronously. This form of notification is the most passive of the asynchronous options
in that no explicit notice of the operation's completion is given by XsIPC. The ACB's
AsyncStatus field is set to XIPC_ASYNC_COMPLETED when the operation it represents
completes. The field may be examined periodically to determine when this has occurred.
Consider the following example: If segment Mid is locked at the time of the MemWrite()
calls, then the two operations will remain pending asynchronously until the segment is
unlocked and the MemWrite() operations are permitted to complete. No explicit notice is
given by XsIPC when the operations complete. The two ACB's can be examined later to
confirm completion.
Example:

Advanced Topics 5-11

01/22/2004

Rev. No.: 4

/*
 * Write two records to a shared memory table.
 * The operations complete silently in the background.
 */

XINT Mid, Offset1, Offset2;
XINT Size1, Size2, RetCode;
ASYNCRESULT Acb1, Acb2;

RetCode = MemWrite (Mid, Offset1, Size1, MEM_IGNORE(&Acb1));

if (RetCode != MEM_ER_ASYNC)
 /*
 * Error !!
 */
...
...

RetCode = MemWrite (Mid, Offset2, Size2, MEM_IGNORE(&Acb2));

if (RetCode != MEM_ER_ASYNC)
 /*
 * Error !!
 */

...
...

Here again the MemWrite() function calls could have been coded to return
synchronously, if they complete without blocking, by specifying the MEM_RETURN flag
logically ORed with the MEM_IGNORE option.
Example:

RetCode = MemWrite(..., MEM_RETURN | MEM_IGNORE(...));

5.1.7 Aborting a Pending Asynchronous Operation

It is occasionally necessary for a program to abort a pending asynchronous operation
before it completes. The functions MomAbortAsync(), QueAbortAsync(),
SemAbortAsync() and MemAbortAsync() can be used to cancel blocked asynchronous
operations in their respective subsystems.

The functions take one argument:

o The AUid of the asynchronous operation to abort.
Example:

5-12 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

if (SemWait(SEM_ANY,
 SidList,
 &RetSid,
 SEM_IGNORE(&Acb)) == SEM_ER_ASYNC)
{
 /*
 * Do other work ...
 */

 ...
 ...

 /*
 * If operation is still pending, then
 * abort it.
 */

 if (Acb.AsyncStatus == XIPC_ASYNC_INPROGRESS)
 SemAbortAsync(Acb.AUid);
}

5.1.8 Mixing Asynchronous and Synchronous Operations

The current version of X(IPC employs an interrupt mechanism for implementing
asynchronous functionality on most of its supported platforms. Exceptions include MS-
Windows 3.x, Windows NT and X-Windows. This means that a process that issues an
XsIPC asynchronous operation must be prepared to be silently interrupted by XsIPC when the
operation completes. At that time XsIPC internally reacts to the operation's completion.
This is an important consideration if the process can block synchronously at points within
its logic. Calls to such synchronous operations should be coded so that they are restarted
if interrupted.
The interrupt mechanisms employed are platform-specific. Information about each
mechanism can be found within the relevant Platform Notes.
5.1.9 Conclusion

Using XsIPC ‘s asynchronous blocking options, it is possible to have a single program
initiate multiple parallel XsIPC operations and to react to them individually as they
complete. When used in conjunction with XsIPC ‘s asynchronous trigger mechanism, it
becomes possible to build elaborate event-driven network applications of immense
capability–and to do so with relative ease.

Advanced Topics 5-13

01/22/2004

Rev. No.: 4

5.2 X♦IPC Triggers

XsIPC triggers provide a means for asynchronously monitoring ongoing activity within an
instance's QueSys and MemSys subsystems.

5.2.1 QueTrigger() - Defining a QueSys Trigger

A QueSys trigger is a logical link between a QueSys event and a SemSys event
semaphore. The semaphore becomes set when the QueSys event occurs.
A QueSys trigger definition has two components:

o The Sid of the event semaphore that is to be set when the monitored QueSys
event occurs.

o A specification of the QueSys event that is to be monitored.
The list of QueSys events that can be specified is quite extensive and allows for a wide
range of possible trigger specifications. The entire list is given below.
Defining a new QueSys trigger is accomplished using the QueTrigger() function.
QueTrigger() takes two arguments:

o The trigger's Sid

o The trigger's QueSys event specification.
Example:

/*
 * Create a trigger that will set Sid1 when the number
 * of messages on Qid1 exceeds 75% of its message capacity.
 */

QueTrigger (Sid1, QUE_T_MSG_HIGH(Qid1, 75));

The above example creates a trigger that will set Sid1 when the message capacity rises
above the 75% full mark. This can be used for automatically starting a queue's spooling.
A process or thread can wait for Sid1 to be set at which point it could start spooling for
Qid1. It may also spawn additional message consuming programs.
It is also possible to create a second trigger that will "fire" when the queue's message
capacity dips below 50% full.
Example:

/*
 * Set a second trigger to "fire" when the queue drops
 * below 50% message capacity. This trigger uses Sid2.
 */

QueTrigger (Sid2, QUE_T_MSGS_LOW(Qid1, 50));

This second trigger can similarly be used to automatically turn a queue's spooling off
when the queue has emptied below 50%.

5-14 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

The complete list of QueSys event specifications is:
Trigger Description

QUE_T_BYTES_HIGH(Qid, N) Trigger event when number of bytes written to queue Qid
becomes higher than N percent of queue bytes capacity.

QUE_T_BYTES_LOW(Qid, N) Trigger event when number of bytes written to queue Qid
becomes lower than N percent of queue bytes capacity.

QUE_T_MSGS_HIGH(Qid, N) Trigger event when number of messages written to queue Qid
becomes higher than N percent of queue messages capacity.

QUE_T_MSGS_LOW(Qid, N) Trigger event when number of messages written to queue Qid
becomes lower than N percent of queue messages capacity.

QUE_T_PUT(Qid) Trigger event when a message is put onto queue Qid.

QUE_T_GET(Qid) Trigger event when a message is removed from queue Qid.

QUE_T_PUT_PREQ(Qid, P) Trigger event when a message of priority P is put onto queue
Qid.

QUE_T_GET_PREQ(Qid, P) Trigger event when a message of priority P is removed from
queue Qid.

QUE_T_PUT_PRGT(Qid, P) Trigger event when a message of priority greater then P is put
onto queue Qid.

QUE_T_GET_PRGT(Qid, P) Trigger event when a message of priority greater then P is
removed from queue Qid.

QUE_T_PUT_PRLT(Qid, P) Trigger event when a message of priority less then P is put
onto queue Qid.

QUE_T_GET_PRLT(Qid, P) Trigger event when a message of priority less then P is
removed from queue Qid.

QUE_T_USER_PUT(Qid, Uid) Trigger event when a message is put onto queue Qid by user
Uid.

QUE_T_USER_GET(Qid, Uid) Trigger event when a message is removed from queue Qid by
user Uid.

QUE_T_POOL_HIGH(N) Trigger event when the allocated size of the message text pool
becomes higher than N percent of its capacity.

QUE_T_POOL_LOW(N) Trigger event when the allocated size of the message text pool
becomes lower than N percent of its capacity.

QUE_T_HEADER_HIGH(N) Trigger event when the number of allocated message headers
becomes higher that N percent of the capacity.

QUE_T_HEADER_LOW(N) Trigger event when the number of allocated message headers
becomes lower that N percent of the capacity.

5.2.2 QueUntrigger() - Undefining a QueSys Trigger

A program can undefine a previously defined QueSys trigger by issuing a call to the
QueUntrigger() function.
The QueUntrigger() function takes the same pair of arguments as the QueTrigger()
function:

o The trigger's Sid

Advanced Topics 5-15

01/22/2004

Rev. No.: 4

o The trigger's QueSys event specification.
The value of the two arguments must match those that were specified when the trigger
was initially defined.
Example:

/*
 * Undefine the two triggers defined above.
 */

QueUntrigger (Sid1, QUE_T_MSG_HIGH(Qid1, 75));
QueUntrigger (Sid2, QUE_T_MSG_LOW (Qid1, 50));

5.2.3 MemTrigger() - Defining a MemSys Trigger

A MemSys trigger is a logical link between a MemSys event and a SemSys event
semaphore. The semaphore becomes set when the MemSys event occurs.
A MemSys trigger definition has two components:

o The Sid of the event semaphore that is to be set when the monitored MemSys
event occurs.

o A specification of the MemSys event that is to be monitored.
The list of MemSys events that can be specified is quite extensive and allows for a wide
range of possible trigger specifications. The entire list is given below.
Defining a new MemSys trigger is accomplished using the MemTrigger() function.
MemTrigger() takes two arguments:

o The trigger's Sid

o The trigger's MemSys event specification.
Example:

/*
 * Create a Trigger that will set Sid1 when any data is
 * written to the first 1K bytes of segment Mid1.
 */

MemTrigger (Sid1, MEM_T_WRITE(Mid1, 0, 1024));

The complete list of MemSys event specifications follows:

Trigger Description

MEM_T_READ(Mid, Offset, Size) Trigger event when data is read from the shared
memory area specified by Mid, Offset and Size (or
any part of it).

MEM_T_WRITE(Mid, Offset, Size) Trigger event when data is written into the shared
memory area specified by Mid, Offset and Size (or
any part of it).

MEM_T_LOCK(Mid, Offset, Size) Trigger event when the shared memory area
specified by Mid, Offset and Size (or any part of it)
is locked.

MEM_T_UNLOCK(Mid, Offset, Size) Trigger event when the shared memory area specified
by Mid, Offset and Size (or any part of it) is unlocked.

5-16 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

MEM_T_USER_READ(Mid, Offset, Size, Uid)
Trigger event when user Uid reads data from the
shared memory area specified by Mid, Offset and Size
(or any part of it).

MEM_T_USER_WRITE(Mid, Offset, Size, Uid)
Trigger event when user Uid writes data into the
shared memory area specified by Mid, Offset and Size
(or any part of it).

MEM_T_USER_LOCK(Mid, Offset, Size, Uid)
Trigger event when user Uid locks the shared
memory area specified by Mid, Offset and Size (or
any part of it).

MEM_T_USER_UNLOCK(Mid, Offset, Size, Uid)
Trigger event when user Uid unlocks the shared
memory area specified by Mid, Offset and Size (or
any part of it).

MEM_T_POOL_HIGH(N) Trigger event when the allocated size of the shared
memory pool becomes higher than N percent of its
capacity.

MEM_T_POOL_LOW(N) Trigger event when the allocated size of the shared
memory pool becomes lower than N percent of its
capacity.

MEM_T_SECTION_HIGH(N) Trigger event when the number of allocated sections
becomes higher than N percent of the capacity.

MEM_T_SECTION_LOW(N) Trigger event when the number of allocated sections
becomes lower than N percent of the capacity.

5.2.4 MemUntrigger() - Undefining a MemSys Trigger

A program can undefine a previously defined MemSys trigger by issuing a call to the
MemUntrigger() function.
The MemUntrigger() function takes the same pair of arguments as the MemTrigger()
function.
o The trigger's Sid
o The trigger's MemSys event specification.

The value of the two arguments must match those that were specified when the trigger
was initially defined.
Example:

/*
 * Undefine the trigger defined above.
 */

MemUntrigger (Sid1, MEM_T_WRITE(Mid1, 0, 1024));

5.2.5 Trigger Performance Considerations

There is certain overhead incurred when using XsIPC triggers within an application. This
penalty is proportional to the number of trigger definitions in the system.

Advanced Topics 5-17

01/22/2004

Rev. No.: 4

The correct approach for minimizing overhead is to undefine triggers when they are no
longer necessary. Dormant triggers (i.e., triggers that are monitoring events that will
never happen) should not be left defined as they can accumulate to slow an application's
performance.

5-18 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

5.3 Using Message Select Codes and Queue Select Codes

QueSys provides the systems developer with great flexibility in sending and receiving
messages. It is this feature that most sets QueSys apart from existing message queuing
facilities. The key to successful utilization of QueSys is a good understanding of when
and how to use the various message and queue select codes. This section offers a brief
tutorial that describes these 'whens and hows'.
All QueSys operations that dispatch or retrieve messages to and from QueSys queues
require a QueSelectCode and a QidList argument. It is the combination of these two
arguments that determines the destination queue of dispatched messages, as well as the
identity of retrieved messages. It is therefore essential to understand the function of these
two arguments and how they interact.
This document uses a shorthand notation for writing QueSelectCode and QidList
argument specifications. Using this shorthand it is possible to examine and explore the
open-ended possibilities afforded to the systems developer. Instead of formally
describing the shorthand notation, the document demonstrates via examples.
5.3.1 Dispatching Messages onto QueSys Queues

Dispatching messages via QueSend() and QuePut() is presented first, since it is less
complex than the retrieval of messages.
Dispatching messages onto QueSys message queues can be viewed as occurring in two
steps:
o First, a list of one or more queues is defined.
o Then, the message is placed onto one of the queues in the list, depending on

some criteria.
As an example, consider a programmer who wishes to send a message onto the shortest
queue of the list of queues a, b and c (perhaps to guarantee balanced queue loads). The
programmer would first define the queue list {a, b, c}, and then specify the 'Shortest
Queue' criteria together with the queue list when dispatching the message using the
QueSend() or QuePut() function calls. This can be easily expressed as:

QUE_Q_SHQ{a, b, c}

Similarly, the expression for sending a message onto the longest queue in the list would
be:

QUE_Q_LNQ{a, b, c}

The syntax for such dispatch expressions is thus of the form:
QueSelectCode{QidList}

The QueSelectCodes that may be used to dispatch a message using QuePut or QueSend
are:
QUE_Q_SHQ The shortest queue
QUE_Q_LNQ The longest queue
QUE_Q_HPQ The queue having the highest priority message
QUE_Q_LPQ The queue having the lowest priority message
QUE_Q_EAQ The queue having the earliest arrived (oldest) message
QUE_Q_LAQ The queue with the latest arrived (most recent) message
QUE_Q_ANY The first queue in the list that has room (not full)

Advanced Topics 5-19

01/22/2004

Rev. No.: 4

Examples of their usage include:
QUE_Q_LPQ{x, y, z} Place the outgoing message on one

of the queues x, y or z, having the lowest priority
message.

QUE_Q_EAQ{q, r, s} Place the outgoing message on one
of the queues q, r or s, having the earliest arrived
(oldest) message. This selects queues in a 'least recently
accessed' manner.

QUE_Q_LAQ{m, n} Place the outgoing message on one of the queues m or n,
having the latest arrived (most recent) message.

QUE_Q_SHQ{j, k, m} Place the outgoing message on the
shortest of the three queues j, k or m. This achieves
queue balancing.

QUE_Q_ANY{a, b, c} Place the message on the first of the
queue a, b or c that has room for another message. The
queues are examined in the order of specification.

5.3.2 Retrieving Messages from QueSys Queues

Retrieving messages in the QueSys system can similarly be viewed as occurring in two
steps, but with a minor variation:

o First, the program defines a list of message queues. As part of this definition,
one message is designated as the 'candidate message' for each of the listed
queues, using a MsgSelectCode. For example, the specification

 {QUE_M_HP(a), QUE_M_EA(b), QUE_M_LA(c)}
defines a list of three queues a, b, and c, where the candidate messages are:

QUE_M_HP(a), the highest priority message on queue a.
QUE_M_EA(b), the earliest arrived message on queue b.
QUE_M_LA(c), the latest arrived message on queue c.

o A message then gets selected from the list of candidate messages using a
QueSelectCode. The selected message is retrieved and returned to the calling
function. Thus, for example, the specification

 QUE_Q_HP{QUE_M_EA(a), QUE_M_EA(b)}
compares the oldest (earliest arrived) messages on queue a and queue b and
returns the one with the higher priority. Similarly, the specification

 QUE_Q_EA{QUE_M_HP(x), QUE_M_HP(y), QUE_M_HP(z)}
returns the oldest of the highest-priority messages from queues x, y and z.
Now consider another retrieval example having a slightly different twist:

 QUE_Q_LNQ{QUE_M_HP(a), QUE_M_HP(b), QUE_M_HP(c)}
The interpretation of this expression is as follows: First, the highest priority
message on the three respective queues a, b and c are designated as candidate
messages. The returned message is that candidate message which resides on the
longest queue.
Note that the 'QUE_Q_LNQ' QueSelectCode when used in a candidate
message selection capacity chooses the candidate message that resides on the
longest queue of a, b, and c. This is a departure from the message retrieval
examples demonstrated until now where the candidate message selection
process was based on a QueSelectCode that compared the designated candidate
messages from each queue directly, one with the other. Here, by contrast, the

5-20 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

message selection is performed based on characteristics of the underlying
queues.

The possible MsgSelectCodes follow.
QUE_M_EA(Q) The earliest arrived (oldest) message on the queue Q.
QUE_M_LA(Q) The latest arrived (most recent) message on the queue Q.
QUE_M_HP(Q) The highest priority message on the queue Q.
QUE_M_LP(Q) The lowest priority message on the queue Q.
QUE_M_PREQ(Q, n) The first message on queue Q having a priority of n.
QUE_M_PRNE(Q, n) The first message on queue Q not having a priority of n.
QUE_M_PRGT(Q, n) The first message on queue Q with a priority greater than n.
QUE_M_PRGE(Q, n) The first message on queue Q with a priority greater than or

equal to n.
QUE_M_PRLT(Q, n) The first message on queue Q having a priority less than n.
QUE_M_PRLE(Q, n) The first message on queue Q with a priority less than or

equal to n.
QUE_M_PRRNG(Q, n,
m)

The first message on queue Q with a priority in the range [n,
m].

QUE_M_SEQEQ(Q,
seqn)

The first message on queue Q with a value equal to sequence
number seqn.

QUE_M_SEQGE (Q,
seqn)

The first message on queue Q with a value greater than or equal
to sequence number seqn.

QUE_M_SEQLE(Q,
seqn)

The first message on queue Q with a value less than or equal to
sequence number seqn.

QUE_M_SEQGT(Q,
seqn)

The first message on queue Q with a value greater than
sequence number seqn.

QUE_M_SEQLT(Q,
seqn)

The first message on queue Q with a value less than sequence
number seqn.

The possible QueSelectCodes that can be used for selecting a candidate message from
one of the listed queues during retrieval operations are listed below. Beware of some of
their differing interpretations as compared to their usage within message dispatch
operations.

QUE_Q_EA The earliest arrived (oldest) candidate message.
QUE_Q_LA The latest arrived (most recent) candidate message.
QUE_Q_HP The highest priority candidate message.
QUE_Q_LP The lowest priority candidate message.
QUE_Q_LNQ The candidate message from the longest queue in the

list.
QUE_Q_SHQ The candidate message from the shortest queue in the list.
QUE_Q_HPQ The candidate message from the queue having the highest

priority msg.
QUE_Q_LPQ The candidate message from the queue having the lowest

priority msg.
QUE_Q_EAQ The candidate message from the queue having the earliest

arrived msg.
QUE_Q_LAQ The candidate message from the queue having the latest

arrived msg.
QUE_Q_ANY The first candidate message.

Advanced Topics 5-21

01/22/2004

Rev. No.: 4

5.3.3 Expression Simplification

Expression simplification can be employed in certain cases. Simplification is straight
forward, involving simple defaults.
Whenever a message retrieval QidList has an entry in which a MsgSelectCode is not
provided for a given queue (i.e., only the Qid is given), then the retrieval operation's
QueSelectCode is employed as the message select criteria for that given queue.
The following examples demonstrate this concept. The following two message retrieval
expressions are equivalent:

QUE_Q_HP{QUE_M_HP(x), QUE_M_EA(y), QUE_M_HP(z)}
QUE_Q_HP{x, QUE_M_EA(y), z}

They both consider three candidate messages:
The highest priority message on queue x.
The earliest arrived message on queue y.
The highest priority message on queue z.

The candidate message having the highest priority is the one retrieved.
Note that the first and third Qids of the simplified expression lack a MsgSelectCode. As a
result they inherit the criteria of the expression's QueSelectCode (Highest Priority).
Similarly:

QUE_Q_HP{QUE_M_HP(q), QUE_M_HP(r), QUE_M_HP(s)}
QUE_Q_HP{q, r, s}

Both of these retrieval expressions return the overall highest priority message found on
the three queues q, r and s.
How the expression QUE_Q_HP{q, r, s} returns the highest priority message of all
three queues q, r and s is accomplished as follows (considering the unsimplified form of
the expression):

QUE_Q_HP{QUE_M_HP(q), QUE_M_HP(r), QUE_M_HP(s)}

First, the candidate messages from the three queues q, r and s are designated. They are
the highest priority message of their respective queues. These three candidate messages
are then compared and the highest priority message of the three candidates is chosen.
Note, therefore, that a QidList of the form {q, r, s} can be used interchangeably within
message dispatch and retrieval functions.

5.3.4 Priority Specification During Retrieval

A number of the MsgSelectCodes deal with priorities. A variety of priority values or
ranges can be specified.
For example:

QUE_Q_EA{QUE_M_PREQ(a, 100), QUE_M_PRLT(b, 50)}

designates the first message on queue a having a priority of 100 as the candidate message
of queue a, and the first message on queue b having a priority less than 50 as the
candidate message of queue b. It then returns the earliest arrived (oldest) of these two
candidate messages.
Similarly:

QUE_Q_LNQ{QUE_M_PRRNG(a, 100, 200), QUE_M_PRRNG(b, 100, 200)}

5-22 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

considers the first message on queue a having a priority in the range [100,200], and does
the same for queue b. It then returns the candidate message from the longer of the two
queues.
5.3.5 Conclusion

This presentation has outlined a few guidelines and examples of how to dispatch and
retrieve messages to and from queues within the XsIPC QueSys subsystem. The possible
combinations are far more numerous than can be presented in a manual. These examples
and the shorthand used to express them should provide a good starting point for using the
system correctly and to its full potential.

Advanced Topics 5-23

01/22/2004

Rev. No.: 4

5.4 Understanding QueSys Message Sequence Numbers

QueSys messages are assigned sequence numbers when they are sent onto a queue. These
numbers serve two purposes:

1. To allow an application to compare the relative times that messages were sent, and

2. To allow an application to check that is has not missed any messages coming through
a particular queue.

These two objectives are made possible by two distinct sequence number values that are
assigned to each message when it is inserted onto a QueSys queue: the QueSys Sequence
Number and the Queue Sequence Number. These two values, their usage and
interpretations are now described.
5.4.1 The QueSys Sequence Number

Each message that is sent via a call to QuePut() or QueSend() is assigned a unique
positive integer value that stamps the sequence, or relative “time,” that the message was
sent. The QueSys subsystem assigns a QueSys Sequence Number to each QueSys
message that is sent within an instance, starting with the value ‘1’ from when the instance
is started. The QueSys Sequence Number assigned to a message is accessible at the
message-header level via the MSGHDR.TimeVal field.
The MSGHDR.TimeVal value of a message is guaranteed to be unique within an
instance’s QueSys from the time the instance was started. It is thus possible to use this
value to compare two retrieved messages and determine which message was sent first.
Example:

/*
 * QueGet() two messages from two queues and determine
 * which one was sent earlier.
 */

QueGet(&Msghdr1, QidList(QidA...), ..., QUE_WAIT);
QueGet(&Msghdr2, QidList(QidB...), ..., QUE_WAIT);

if (MsgHdr1.TimeVal < MsgHdr2.TimeVal)
{
 /* MsgHdr1 message is older */
 /* (i.e., it was sent earlier) */
}

else
if (MsgHdr1.TimeVal > MsgHdr2.TimeVal)
{
 /* MsgHdr2 message is older */
 /* (i.e., it was sent earlier) */
}

else
if (MsgHdr1.TimeVal == MsgHdr2.TimeVal)
{
 /* IMPOSSIBLE case */
 }

5-24 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

5.4.2 The Queue Sequence Number

Each message is additionally stamped with a second sequence number that marks the
sequential position of the message within the specific queue that it is sent. This is referred
to as the message’s Queue Sequence Number. A separate sequence count is kept for each
queue created within QueSys.
QueSys assigns a queue-specific sequence numbers to each message that is sent to a
queue, starting with the value ‘1’ from when the queue is created. The Queue Sequence
Number that was assigned to a message is accessible at the message-header level in the
MSGHDR.SeqNum field.
The MSGHDR.SeqNum value of messages placed onto a queue is guaranteed to be
unique within that queue from when the queue was created. This allows an application to
check that is has received all messages sent through that queue. This is particularly
important when the queue is being used as a multicasting channel that has multiple
programs reading its messages. (See Section 5.5, “QueSys Message Multicasting,” for
details on this QueSys usage.)
Example:

/*
 * QueGet() two messages from a single queue and check
 * that no messages were received off the queue
 * between the two QueGet() calls.
 */

QueGet(&Msghdr1, QueList(QidA...), ..., QUE_WAIT);
QueGet(&Msghdr2, QueList(QidA...), ..., QUE_WAIT);

if (MsgHdr2.SeqNo == MsgHdr1.SeqNo +1)
{
 /* No messages missed. */
}

else
{
 /*
 * Yes, messages missed.
 * The number of missed messages is:
 * MsgHdr2.SeqNo – MsgHdr1.SeqNo + 1
 */
}

5.4.2.1 Sequence Number - Message Select Codes

The QueSys API provides a means for an application to receive a message based on its
Queue Sequence Number value. This is accomplished using one of the sequence number
message select codes.
Example:

Advanced Topics 5-25

01/22/2004

Rev. No.: 4

/*
 * Receive the message from queue QidA
 * having a queue sequence number of 2.
 */

QueReceive (QUE_Q_ANY,
 QueList(QUE_M_SEQEQ(QidA,2), QUE_EOL),
 ...
 QUE_WAIT);

The complete list of sequence number message select codes is found in Section 5.3.2 of
the QueSys/MemSys/SemSys User Guide and Section 5.2.2 of the
QueSys/MemSys/SemSys Reference Manual.
5.4.2.2 Sequence Number – Using the QUE_RETSEQ Flag

The QueSys message retrieval functions––QueGet() and QueReceive()––allow an
application to receive either the retrieved message’s priority or its Queue Sequence
Number value within the call’s *RetVal parameter. In truth, this is not very important
when using QueGet(), since in that case the entire message header is returned containing
both values.
This is important, however, when using QueReceive() since in this case the message
header is not returned. By default the *RetVal parameter is set with the retrieved
message’s priority. It is possible to override this default by issuing the QueReceive() call
specifying the QUE_RETSEQ flag as follows:
Example:

/* * Receive a message. Get its queue
 * sequence number returned as RetVal.
 */

XINT RetVal;

QueReceive(..., &RetVal, ..., QUE_RETSEQ | QUE_WAIT);

5-26 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

5.5 QueSys Message Multicasting

XsIPC Version 3.0.0 introduces support for two forms of message multicasting over
QueSys queues. The two methods address distinct forms of multicast application
requirements, described in the following pages.
5.5.1 The “QUE_REPLICATE” Approach

The first form of QueSys message multicasting is the simplest form to code and is geared
toward applications where the messages being multicast may occasionally be missed by
some of the listeners, depending on the processing speed of received messages. Typical
of such applications is that the sent data is constantly being updated, so that the
occasional missing of a multicast message is tolerable. Examples include: stock-ticker
applications; wind-speed reading applications, etc.
The QUE_REPLICATE option to QuePut() and QueSend() supports this capability. This
option, when specified, directs the function to send message copies to multiple (zero or
more) users waiting on the specified queue for the sent message. In this case, the
messages are never actually placed on the queue. Message copies are sent to those users

that are waiting for the message at the time of the sender’s QueSend() or QuePut() call.
This feature has the following general coding approach: The multicaster sends messages
using either the QuePut() or QueSend() calls, specifiying the QUE_REPLICATE option
as the call’s blocking option. Receiving programs can receive messages in several ways,
some of which are depicted below.
The advantage of the above approach is that:
♦ It does not require any message selection to be specified by the receiver programs.

They simply issue requests for the next message on the queue, and that is what they
get. In fact, they get whatever is the next message to be multicast.

The disadvantage of the above approach is that:
♦ It is possible for receiver programs that are processing messages at a slower rate than

the multicaster is sending messages to occasionally miss a multicast message. Unlike
the next approach, this method does not provide for slow clients, as no message
history is kept.

5.5.2 The “Sliding Queue Window” Approach

This method is a bit more involved than the simple replication approach described above.
It employs a number of the QueSys features to create the desired functional effect.

QueGet(…); QuePut(…);

QueReceive(…);

QueGet(…); QueCopy(…);

QueGet(…); QueRead(…);

 QueSend or
 QuePut (..., QUE_REPLICATE)

Advanced Topics 5-27

01/22/2004

Rev. No.: 4

An abbreviated coding description of this approach is as follows.

With this method, the multicaster creates a well-known queue having some significant
capacity. This capacity is a key to this approach. Multicast messages are sent to the queue
by the multicaster via a QuePut() or QueSend() call. In this case, the sender specifies one
of the QUE_REPLACE_XX codes as the call's blocking option. This directs XsIPC to make
room for the message being sent, if necessary, by replacing existing message(s) from one
of the queue’s end-points. Typically the QUE_REPLACE_EA is specified indicating that
the oldest (earliest arrived) message is deleted to make room.
Meanwhile, message receivers receive their messages by maintaining a “cursor” within
the queue denoting where they are up to. This is accomplished by specifying the
QUE_M_SEQEQ(Qid, SeqNo) message select code as part of their QueReceive() call,
where SeqNo is incremented with each message received. This allows a slower receiver
to “catch up” to the multicast, without missing any messages. In this case, the queue is in
fact being used to maintain the most recent messages multicast.
It should by now be apparent why the capacity of the queue is significant: The larger the
queue, the more depth of message history that can be kept for supporting slow receivers.
The advantage of this approach is that:
♦ It provides for slow clients who can catch missed messages within the limits defined

by the message depth of the queue.
The disadvantage of this approach is that:
♦ It requires more programming work on the receiver side for maintaining some form

of “cursor” within the history of multicast messages.

 QueSend(...QUE_REPLACE_XX)

QueReceive(...SeqNo, NOREMOVE | …);

QueReceive(...SeqNo, NOREMOVE | …);

QueReceive(...SeqNo, NOREMOVE | …);

5-28 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

5.6 Using Messages That Have No Text – i.e., Headers Only

Until this point, all QueSys messaging operations that have been described had text-pool
data associated with each message. This is usually the case, as messages typically have
text-pool data. There are however situations when it is useful to move messages that have
no text-pool data associated with them.
XsIPC QueSys supports the ability to move message headers that have no text-pool data.
This ability is a performance feature in that its use allows an application to move
messages through theQueSys subsystem without needing to access the subsystem’s text-
pool with each messaging operation.
There are two application situations where this feature is useful:
q Moving messages having small amounts (16 bytes or less) of data
q Moving messages that represent “events”
5.6.1 Small Data Messages

High-performance applications that move messages having 16 bytes or less of data
should do so using the user Data field within the MSGHDR data structure instead of using
the text-pool. This is accomplished as follows:
Example:

/*
 * Send “Hello World” message header only message
 */

MSGHDR MsgHdr;

MsgHdr.TextOffset = 0;
MsgHdr.Size = 0;
strcpy(MsgHdr.Data, “Hello World”);

QuePut (&MsgHdr, ...);

The receiving program retrieves the message using QueGet(), as follows:
Example:

/*
 * Receive and print “Hello World” message header
 * only message
 */

MSGHDR MsgHdr;
QueGet (&MsgHdr, ...);

printf(“%s”, MsgHdr.Data);

Notice that the above examples make no calls to QueWrite() or QueRead(). That is
because they are moving header-only messages by means of message text that is inserted
directly into the message header (i.e., its Data field).

Advanced Topics 5-29

01/22/2004

Rev. No.: 4

5.6.2 “Event” Messages

A second class of applications that can benefit from this feature are those that use
messages as “events” where each message sent represents a discrete application event,
where the events are occurring repeatedly, and where each occurrence is significant.
Using an event semaphore would not be useful in this case, since it provides no “depth”
to record the multiple times that it may have been set. Text-less messages on a queue,
however, provide a perfect solution.
Example:

/*
 * Send an “event” message.
 */

MSGHDR MsgHdr;
QuePut (&MsgHdr, ...);

The receiving program retrieves the message using QueGet(), as follows:
Example:

/*
 * Receive the next “event”
 */

MSGHDR MsgHdr;
QueGet (&MsgHdr, ...);

5.6.3 Programming Semantics

The semantics of QuePut() and QueGet() remain unchanged when working with
messages having no text-pool data. All other header-manipulation verbs operate as
expected.

5-30 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

5.7 The Queue-Burst Facility for Very High Throughput Message Queuing

Computer applications with high-performance and high throughput requirements are in
ever increasing demand as the appetite for computer-generated data increases. General
purpose software tools for developing distributed computer applications (i.e.,
middleware) are often not equipped with the functionality needed for building such high-
performance applications. As a result, their development cannot benefit from the
advantages offered by middleware technology including: API portability, API
interoperability, network-transparency and many others.
The XsIPC Queue Burst mechanism is an addition to the general XsIPC API that enables XsIPC
users to build high-throughput applications while still benefiting from the high-level
programming abstraction provided by XsIPC . The queue-burst mechanism defines a set of
function calls that can be used for establishing and sustaining message queuing channels
("bursts") between application processes and XsIPC message queues.
As with XsIPC generally, the XsIPC Queue-Burst functions are portable and interoperable on
and between all XsIPC -supported environments. Working with the API, the Queue-Burst
facility requires virtually no additional network-programming skills.
5.7.1 The Send-Burst

An XsIPC "send-burst" is a mechanism used for supporting application processes that must
send messages onto one or more remote XsIPC message queues at a very high rate, as in the
following diagram:

An XsIPC user process may start a send-burst between itself and queues in a remote
instance for carrying out the desired message communication and subsequent enqueuing.
Viewed from a more technical perspective, an XsIPC send-burst is implemented as a
relationship between a user process and an XsIPC instance, during which time the method
of communication between the two is optimized using a specialized high-performance
protocol.

Advanced Topics 5-31

01/22/2004

Rev. No.: 4

A send-burst has a well-defined beginning and end. Burst communication is possible only
while the send-burst is active. A function for establishing synchronization points during a
send-burst is provided as well.
It is instructive to examine message queuing using the QueSend() verb in order to
appreciate the advantages of employing a send-burst. QueSend() semantics define an
acknowledgment return code that describes the results (success or error) of the enqueuing
operation. A return code is returned synchronously to the application - one for each
QueSend() operation. While this synchronous ACK provides a certain level of reliability,
it has the effect of limiting network utilization to one message "in flight" at a time, where
the message is followed by an opposite-direction ACK.
A send-burst provides the basic enqueuing capabilities of QueSend() without the above
performance drawback. Multiple messages are sent in flight over the network,
asynchronous to enqueue operation return codes.

An asynchronous mechanism for reporting, for enqueue acknowledgments and for error
notifications is provided for tracking message transfer progress.
5.7.1.1 Stand-Alone Functionality

The Queue-Burst API is primarily directed at solving a networking problem.
Nonetheless, the definition of the API is portable to stand-alone environments as well.
Specifically, it is possible to write and test programs that employ the Queue-Burst
functionality within a stand-alone setting by using XsIPC ‘s Stand-Alone or Combined API
libraries. The definition of the API does not depend on the presence of a network.
It is worth noting, though, that the notion of latency as described at various points within
the API definition, is not a practical consideration within a stand-alone setting.
5.7.2 Send-Burst Functions

5.7.2.1 QueBurstSendStart() - Starting A Send-Burst

The parameters to QueBurstSendStart() pre-position message enqueuing parameters at
the instance for usage during the subsequent burst enqueuing operations.
QueBurstSendStart()'s six arguments are:

o A QueSelectCode to be used for enqueuing messages during the send-burst.

5-32 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

o A QidList to be used for enqueuing message during the send-burst.

o The size of the largest message to be sent in the upcoming burst.

o The size of an internal network read-ahead buffer to be used in the upcoming
burst.

o An XsIPC blocking option to be used when enqueuing messages during the
upcoming burst.

o An XsIPC asynchronous callback option for handling error reporting during the
burst.

A send-burst is started by an XsIPC user is using a QueBurstSendStart() function call. A
user that has logged into multiple instances, or that has multiple logins to a single
instance, should first connect to the login that will support the burst.
Example:

/*
 * Start a send-burst that will enqueue messages onto QidA.
 * Messages will not exceed 64 bytes.
 */

QueBurstSendStart (QUE_Q_ANY,
 QueList(QidA, QUE_EOL),
 64,
 QUE_BURST_DEFAULT_READAHEADSIZE,
 QUE_WAIT,
 QUE_CALLBACK(ErrorFunction, &ErrorAcb)
);

In the above example, the calling user is defining all enqueuing operations of the
upcoming send-burst to use QUE_Q_ANY as the QueSelectCode, QueList(QidA,
QUE_EOL) as the QidList, and QUE_WAIT as the blocking option. These parameters are
pre-positioned at the instance for use in all QueBurstSend() operations in the burst.
The callback option identifies the user function (i.e., ErrorFunction) that is to be called in
the event of an error during any of the burst's enqueuing operations. The accompanying
ACB (i.e., ErrorAcb) passes details of the error to the error function.
5.7.2.2 QueBurstSend() - Send A Burst Message To A Queue

Once a send-burst has been started it is possible to enqueue messages using the burst. The
parameters to QueBurstSend() are:

o A possible alternate target Qid.

o A pointer to the message buffer being sent.

o The length, in bytes, of the message being sent.

o The priority to be assigned the message, once enqueued.
QueBurstSend() is a streamlined version of QueSend(). As indicated by its parameter list,
only the most basic information regarding the message is required. Details regarding the
actual enqueuing operation are not specified. They were prepositioned at the instance via
the call to QueBurstSendStart().
Example:

Advanced Topics 5-33

01/22/2004

Rev. No.: 4

/*
 * Send a message for enqueuing. Priority is 1000.
 * Target Qid is selected based on QueSelectCode and
 * QidList specified in QueBurstSendStart() call.
 */

QueBurstSend(QUE_NULL_QID, "Hello World" , 12, 1000);

Had the above call to QueBurstSend() followed the earlier call to QueBurstSendStart(),
the sent message would be enqueued on message queue QidA, based on the parameters
specified in the call to QueBurstSendStart(). It is possible to override the burst's queue
selection criteria by specifying a valid Qid as the first parameter to QueBurstSend(). It is
thus possible to individually target each sent message, when necessary, as in the
following example.
Example:

/*
 * Send a message for enqueuing. Priority is 1000.
 * Target Qid, "QidB" overrides the QueSelectCode and
 * QidList criteria specified in QueBurstSendStart() call.
 */

QueBurstSend(QidB, "Hello World" , 12, 1000);

QueBurstSend() returns a sequence number (starting with 1), uniquely identifying the
sent message, within the current send-burst. The sequence number is used for notifying
the user about enqueuing errors. In the event of an enqueuing error, the sequence number
of the message involved is asynchronously sent to the user, via the error handling ACB.
The number is additionally used for synchronizing a send-burst via QueBurstSendSync().
This is demonstrated in the next section.
5.7.2.3 QueBurstSendSync() - Synchronize a Send-Burst

Enqueuing messages using QueBurstSend() does not provide a per message return code
indicating whether sent messages were successfully enqueued. Error reporting, being
asynchronous, can suffer from some latency. A situation can arise when an application
needs to confirm, in a synchronous manner, that all messages sent during the current
send-burst have been successfully enqueued. The QueBurstSendSync() operation
provides such a synchronization point.
QueBurstSendSync() returns the sequence number of the last send-burst message that
was sent and successfully enqueued.
QueBurstSendSync() takes as its single argument either the QUE_WAIT or the
QUE_CALLBACK blocking option. See the detailed description of QueBurstSendSync()
in the QueSys/MemSys/SemSys Reference Manual for more information.
Example:

5-34 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

/*
 * Send 10,000 burst messages. Then confirm that they have
 * all been successfully enqueued.
 */

CHAR *Message = "Sample message";
XINT SeqNo;

for (i=0; i<10000; i++)
{
 QueBurstSend(QUE_NULL_QID, Message, strlen(Message), 2000);
}

SeqNo = QueBurstSendSync(QUE_WAIT);

if (SeqNo != 10000)
{
 /*
 * Messages not enqueued are numbers (SeqNo + 1) to 10,000.
 * One possible remedy is to restart the burst from message
 * SeqNo + 1.
 */

 ...
 ...
}

Once synchronized, the send-burst can be restarted by sending additional burst messages.
5.7.2.4 QueBurstSendStop() - Stop A Send Burst

QueBurstSendStop() marks the end of a send-burst. As such, it breaks the relationship
between the user process and the instance that supported the burst. It is therefore
incorrect to issue any QueBurstSend() calls following the call to QueBurstSendStop()
until a new send-burst is started.
Like QueBurstSendSync(), QueBurstSendStop() also returns the sequence number of the
last send-burst message that was sent and successfully enqueued. The difference is that
the latter additionally terminates the burst.
QueBurstSendStop() takes no arguments.
Example:

/*
 * Send 20,000 messages.
 */

CHAR *Message = "Another sample message";
XINT SeqNo;

for (i=0; i<20000; i++)
{
 QueBurstSend(QUE_NULL_QID, Message, strlen(Message), 3000);
}

SeqNo = QueBurstSendStop();

Index 6-1

01/22/2004

Rev. No.: 4

6. INDEX

ACB, 5-1

Return values, 5-5
User data field, 5-7

Asynchronous Activity, 2-10, 2-12
Asynchronous blocking, 2-25
Asynchronous operations, 5-1
Asynchronous Result Control Block. See

ACB
Browsing, 2-53

Memory segment, 3-46
Burst

Zoom window, 2-52
CALLBACK, 5-1, 5-5
Configuration parameters

MemSys, 3-10
QueSys, 2-10
SemSys, 4-2

Documentation Roadmap, 1-2
Event messages, 5-27
Event semaphores, 4-1, 4-7, 4-8, 4-12, 4-

19
Fragmentation. See Message text pool
Header. See Message header
HList, 3-31, 4-13, 4-14
IGNORE, 5-1, 5-9
MAX_HEADERS, 2-10, 2-12
MAX_NODES, 2-10, 2-12, 3-10, 4-2
MAX_QUEUES, 2-10, 2-12
MAX_SECTIONS, 3-10
MAX_SEGMENTS, 3-10
MAX_SEMS, 4-2
MAX_USERS, 2-10, 2-12, 3-10, 4-2
MEM_ALL, 3-22
MEM_ANY, 3-22
MEM_ATOMIC, 3-22
MEM_FILL, 3-14
MEM_PRIVATE, 3-13
MEM_WAIT, 3-14
MemAbortAsync(), 5-9
MemAccess(), 3-13
MemCreate(), 3-12

MemDelete(), 3-30
MemDestroy(), 3-30
MemFreeze(), 3-36
MEMINFOMEM, 3-32
MEMINFOSEC, 3-33
MemInfoSec(), 3-33
MEMINFOSYS, 3-31
MemInfoSys(), 3-31
MEMINFOUSER, 3-31
MemInfoUser(), 3-31
MemList(), 3-18, 3-22
MemListBuild(), 3-18
MemLock(), 3-2, 3-8, 3-19, 3-21, 3-24,

3-26, 3-27, 3-30, 3-31, 3-36
Memory section

Primitive functions, 3-24
Section window, 3-43

Memory segment, 3-1, 3-13, 3-40
Browsing, 3-46
Watch window, 3-41

Memory text pool
Zooming, 3-41

MemPointer(), 3-33
MemRead(), 3-8, 3-16, 3-30, 3-33
MemSecDef(), 3-1, 3-24
MemSecOwn(), 3-24, 3-26, 3-30, 3-31
MemSecPriv(), 3-27
MemSecRel(), 3-29
MemSection(), 3-17
MemSectionBuild(), 3-17
MemSecUndef(), 3-29
MemSys, 1-1, 3-1

Blocking, 3-9
Configuration, 3-10
Memory pool, 3-9
Monitoring, 3-36

MemTrigger(), 5-13
MemUnfreeze(), 3-36
MemUnlock(), 3-2, 3-8, 3-19, 3-23, 3-

36
MemUntrigger(), 5-14
MemView, 3-30, 3-36

6-2 XsIPC Version 3.4.0: QueSys/MemSys/SemSys User Guide

01/22/2004

Rev. No.: 4

MemWrite(), 3-13, 3-30, 3-33
Message header, 2-1

Small data messages, 5-26
Without text, 5-26

Message multicasting. See Multicasting
Message queue, 2-1

Priority ordering, 2-1
Priority strand, 2-4
Time ordering, 2-1
Time strand, 2-4

Message select code, 2-8, 2-20, 2-22, 2-
24, 2-28, 5-16

Message text, 2-3
Message text pool, 2-2, 2-6

Blocking, 2-17
Fragmentation, 2-6
Zoom window, 2-52

MIDLIST, 3-18, 3-22
MOM_NOREMOVE, 2-29
MomAbortAsync(), 5-9
MomSys, 1-1
Monitor

MemView, 3-36
QueView, 2-46
SemView, 4-16

MSGHDR, 2-16
Multicasting, 2-6, 5-24
Multiplexing, 2-7
Panning, 2-56, 4-21

MemView, 3-48
Pattern searching, 2-55, 3-47
POST, 5-1, 5-7
Priority sequence, 2-54
QidList, 2-18, 2-24, 2-28

Message dispatch, 2-19
Message retrieval, 2-20

Priority specification, 2-23
Simplification, 2-21

QList, 3-31, 4-13
QUE_NOREMOVE, 2-26, 2-29, 2-37
QUE_NOWAIT, 2-17
QUE_PRIVATE, 2-15, 2-33
QUE_REPLACE_XX, 5-25
QUE_REPLICATE, 2-4, 2-25, 2-30, 5-
24

QUE_RETSEQ, 5-23

QUE_TRUNCATE, 2-18
QUE_WAIT, 2-29
QueAbortAsync(), 5-9
QueAccess(), 2-15, 2-16
QueBrowse(), 2-26, 2-29, 2-37
QueBurst(), 2-6
QueBurstSend(), 5-30
QueBurstSendStart(), 5-29
QueBurstSendStop(), 5-31
QueBurstSendSync(), 5-31
QueCopy(), 2-3, 2-34
QueCopy()., 2-25
QueCreate(), 2-14
QueDelete(), 2-43
QueDestroy(), 2-43
QueGet(), 2-17, 2-20, 2-25, 2-29, 2-31,

2-32, 2-37, 2-43, 2-44, 2-45, 2-48, 5-
26

QUEINFOQUE, 2-45
QueInfoQue(), 2-45
QUEINFOSYS, 2-44
QueInfoSys(), 2-44
QUEINFOUSER, 2-45
QueInfoUser(), 2-44
QueList(), 2-18
QueListAdd(), 2-19, 3-20
QueListBuild(), 2-18, 2-21
QueMsgHdrDup(), 2-4
QuePointer(), 2-3, 2-25, 2-34
QuePurge(), 2-42
QuePut(), 2-4, 2-16, 2-19, 2-24, 2-26, 2-

29, 2-30, 2-31, 2-35, 2-41, 2-43, 2-44,
2-45, 2-48, 5-24

QueRead(), 2-17, 2-26, 2-31, 2-32, 2-34
QueReceive(), 2-20, 2-23, 2-28, 2-31, 2-

32, 2-43, 2-44, 2-45, 5-25
QueRemove(), 2-29
QueSend(), 2-4, 2-16, 2-19, 2-24, 2-30,

2-31, 2-32, 2-41, 2-43, 2-44, 2-45,
5-24
Send burst, 5-28

QueSendReceive(), 2-7, 2-32
QueSpool(), 2-40
QueSys, 1-1, 2-1

Configuration, 2-10, 2-12
Queue burst facility, 5-28

Index 6-3

01/22/2004

Rev. No.: 4

Select codes, 5-16
Sequence numbers, 5-21

QueTrigger(), 5-11
Queue. See Message queue

Capacity, 2-5
Spooling, 2-5

Queue burst, 5-28
Queue select code, 2-7, 2-19, 2-22, 2-26,

5-16
Queue spooling. See Spooling
QueUnget(), 2-29, 2-35
QueUntrigger(), 5-12
QueView, 2-4, 2-43, 2-46
QueWrite(), 2-16, 2-24, 2-30, 2-31, 2-
44, 2-45, 2-48, 2-52

Request-response inquiry, 2-7, 2-32
Resource semaphores, 4-1, 4-5, 4-7, 4-

12, 4-18
RPC, 2-7, 2-32
Section. See Section overlay

Access, 3-2
SECTION, 3-17
Section overlay, 3-1
Section window, 3-43
Segment. See Memory segment

Access, 3-3
Segment data

Atomic operations], 3-9
Locking/Unlocking, 3-8

SEM_ALL, 4-6, 4-9
SEM_ANY, 4-6, 4-9
SEM_ATOMIC, 4-6, 4-9
SEM_PRIVATE, 4-3
SemAbortAsync(), 5-9
SemAccess(), 4-3
SemAcquire(), 4-1, 4-4, 4-5, 4-11, 4-13
SemCancel(), 4-11
SemClear(), 4-8
SemCreate(), 4-2
SemDelete(), 4-12
SemDestroy(), 4-12
SemFreeze(), 4-15
SEMINFOSEM, 4-14
SemInfoSem(), 4-14
SEMINFOSYS, 4-13
SemInfoSys(), 4-13

SEMINFOUSER, 4-13
SemInfoUser(), 4-13
SemList(), 4-3
SemListAdd(), 4-4
SemListBuild(), 4-3
SemListRemove(), 4-4
SemRelease(), 4-3, 4-4, 4-5, 4-7
SemSet(), 4-7, 4-8
SemSys, 1-1, 4-1

Configuration, 4-1
SemUnfreeze(), 4-16
SemView, 4-16
SemWait(), 4-1, 4-8, 4-11, 4-13
SIDLIST, 4-3
SIZE_MEMPOOL, 3-10
SIZE_MEMTICK, 3-11
SIZE_MSGPOOL, 2-10, 2-13
SIZE_MSGTICK, 2-10, 2-13
SIZE_SPLTICK, 2-11, 2-13
SList, 3-32
Spooling, 2-40. See Queue

Mechanism, 2-41
Zoom window, 2-51

Synchronous blocking, 2-32
Text pool. See Message text pool
Time sequence, 2-54
Triggers, 5-11
Ultra-high message throughput. See

QueBurst()
User zoom window, 2-49
Watch window, 3-41
WList, 2-44, 2-45, 3-31, 3-32, 4-13,
4-14

xipc, 3-37, 4-16
Zooming, 2-49, 3-40, 4-19

Burst mode, 2-52
Memory segment, 3-40
Memory text pool, 3-41
Semaphore, 4-20
Spool, 2-51

