

Envoy Connect XIPC Connector
Version 3.4.0

QueSys/SemSys/MemSys
Reference Manual

Envoy Technologies Inc.
555 Route 1 South
Iselin, NJ 08830

http://www.envoytech.com

Copyright © 2004 Envoy Technologies Inc. All rights reserved

This document and the software supplied with this document are the property of Envoy Technologies Inc. and are furnished
under a licensing agreement. Neither the software nor this document may be copied or transferred by any means, electronic
or mechanical, except as provided in the licensing agreement. The information in this document is subject to change without
prior notice and does not represent a commitment by Envoy Technologies Inc. or it's representatives.

Printed in the United States of America.

Envoy XIPC, Envoy Connect XIPC are either trademarks or registered trademarks of Envoy Technologies Inc. Other
product and company names mentioned herein might be the trademarks of their respective owners.

Envoy Connect XIPC is represented throughout the documentation as X IPC.

Date: 01/20/2004 - Revision: 4

X © IPC VERSION 3.4.0

QUESYS/MEMSYS/SEMSYS

REFERENCE MANUAL

TABLE OF CONTENTS

1. UTILITY PROGRAMS ...1—1

1.1 xipc - X©IPC Interactive Command Processor...1—1

1.1.1 The X©IPC Interactive Language...1—1

1.1.2 General Interactive Commands ...1—4

1.1.3 X©IPC Interactive Commands..1—7

1.2 queview - View an Instance's QueSys ..1—16

1.3 memview - View an Instance's MemSys...1—19

1.4 semview - View an Instance's SemSys ..1—22

2. QUESYS PARAMETERS, FUNCTIONS AND MACROS2—1

2.1 XsIPC Instance Configuration - QueSys Parameters...2—1

2.2 Functions..2—4

2.2.1 QueAbortAsync() - ABORT AN ASYNCHRONOUS OPERATION2—4

2.2.2 QueAccess() - ACCESS AN EXISTING QUEUE..2—6

2.2.3 QueBrowse() - BROWSE A MESSAGE QUEUE...2—8

2.2.4 QueBurstSend() - SEND A BURST MESSAGE TO A QUEUE2—10

2.2.5 QueBurstSendStart() - START A SEND-BURST ..2—13

2.2.6 QueBurstSendStop() - STOP A SEND-BURST...2—17

2.2.7 QueBurstSendSync() - SYNCHRONIZE A SEND-BURST...............................2—19

2.2.8 QueCopy() - COPY PORTION OF MESSAGE TEXT FROM TEXT POOL ...2—21

2.2.9 QueCreate() - CREATE A NEW QUEUE..2—23

2.2.10 QueDelete() - DELETE A QUEUE...2—25

2.2.11 QueDestroy() - DESTROY A QUEUE...2—27

2.2.12 QueFreeze() - FREEZE QUESYS...2—29

2.2.13 QueGet() - GET A MESSAGE HEADER FROM A QUEUE2—31

2.2.14 QueInfoQue() - GET QUEUE INFORMATION...2—35

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

II

2.2.15 QueInfoSys() - GET SUBSYSTEM INFORMATION ..2—39

2.2.16 QueInfoUser() - GET QUESYS USER INFORMATION.....................................2—42

2.2.17 QueList(), QueListBuild - BUILD LISTS OF QIDS...2—46

2.2.18 QueListAdd(), QueListRemove() – UPDATE LIST OF QIDS............................2—49

2.2.19 QueListCount() - GET NUMBER OF ELEMENTS IN A LIST OF QIDS2—51

2.2.20 QueMsgHdrDup() - CREATE COPY OF MESSAGE HEADER.......................2—52

2.2.21 QuePointer() - GET POINTER TO A MESSAGE'S TEXT2—54

2.2.22 QuePurge() - PURGE A QUEUE ...2—56

2.2.23 QuePut() - PUT A MESSAGE HEADER ON A QUEUE.....................................2—58

2.2.24 QueRead() - READ MESSAGE TEXT FROM MESSAGE TEXT POOL........2—62

2.2.25 QueReceive() - RECEIVE AND READ A MESSAGE FROM A QUEUE2—64

2.2.26 QueRemove() - REMOVE MESSAGE HEADER FROM A QUEUE2—68

2.2.27 QueSend() - WRITE AND SEND A MESSAGE TO A QUEUE.........................2—70

2.2.28 QueSendReceive() - PERFORM GENERIC REQUEST/RESPONSE...........2—74

2.2.29 QueSpool() - START AND STOP SPOOLING FOR A QUEUE2—78

2.2.30 QueTrigger() - DEFINE A QUESYS TRIGGER ...2—80

2.2.31 QueUnfreeze() - UNFREEZE QUESYS ...2—83

2.2.32 QueUnget() - UNGET A MESSAGE BACK TO A QUEUE2—85

2.2.33 QueUntrigger() - UNDEFINE A QUESYS TRIGGER ...2—87

2.2.34 QueWrite() - WRITE MESSAGE TEXT TO MESSAGE TEXT POOL2—89

2.2.35 ADDITIONAL QUESYS INTERACTIVE COMMAND..2—92

2.3 Macros..2—93

2.3.1 MsgSelectCodes - MESSAGE SELECT CODES USED FOR MESSAGE
RETRIEVAL ..2—93

2.3.2 QueSelectCodes - QUEUE SELECT CODES USED FOR MESSAGE
DISPATCH AND RETRIEVAL ...2—94

3. MEMSYS PARAMETERS, FUNCTIONS AND MACROS..................................3—1

3.1 XsIPC Instance Configuration - MemSys Parameters ...3—1

3.2 Functions..3—3

3.2.1 MemAbortAsync() - ABORT AN ASYNCHRONOUS OPERATION...................3—3

3.2.2 MemAccess() - ACCESS AN EXISTING MEMORY SEGMENT.......................3—5

Date: 01/20/2004 - Revision: 4

III

3.2.3 MemCreate() - CREATE A NEW MEMORY SEGMENT.....................................3—7

3.2.4 MemDelete() - DELETE A MEMORY SEGMENT..3—9

3.2.5 MemDestroy() - DESTROY A MEMSYS MEMORY SEGMENT3—11

3.2.6 MemFreeze() - FREEZE MEMSYS ..3—13

3.2.7 MemInfoMem() - GET MEMORY SEGMENT INFORMATION3—15

3.2.8 MemInfoSec() - GET SECTION INFORMATION..3—19

3.2.9 MemInfoSys() - GET SUBSYSTEM INFORMATION...3—21

3.2.10 MemInfoUser() - GET USER MEMSYS INFORMATION..................................3—23

3.2.11 MemList(), MemListBuild() - BUILD LiSTS OF MEMORY SECTIONS3—27

3.2.12 MemListAdd(), MemListRemove() - UPDATE LIST OF MEMORY SECTIONS3—28

3.2.13 MemListCount() – GET NUMBER OF SECTIONS IN A LIST OF SECTIONS3—30

3.2.14 MemLock() - LOCK MEMORY SECTION(S)...3—31

3.2.15 MemPointer() - GET POINTER TO MEMSYS SEGMENT...............................3—34

3.2.16 MemRead() - READ DATA FROM A MEMORY SEGMENT3—36

3.2.17 MemSecDef() - DEFINE A MEMORY SECTION..3—39

3.2.18 MemSecOwn() - BECOME OWNER OF MEMORY SECTION(S)...................3—41

3.2.19 MemSecPriv() - SET A MEMORY SECTION'S PRIVILEGES..........................3—44

3.2.20 MemSecRel() - RELEASE OWNED MEMORY SECTION(S)3—46

3.2.21 MemSection() - INITIALIZE A SECTION VARIABLE ...3—48

3.2.22 MemSectionBuild() - BUILD A SECTION VARIABLE..3—50

3.2.23 MemSecUndef() - UNDEFINE A MEMORY SECTION3—51

3.2.24 MemTrigger() - DEFINE A MEMSYS TRIGGER...3—53

3.2.25 MemUnfreeze() - UNFREEZE MEMSYS ..3—56

3.2.26 MemUnlock() - UNLOCK MEMORY SECTION(S)...3—58

3.2.27 MemUntrigger() - UNDEFINE A MEMSYS TRIGGER.......................................3—60

3.2.28 MemWrite() - WRITE DATA INTO A MEMORY SEGMENT..............................3—62

3.2.29 ADDITIONAL MEMSYS INTERACTIVE COMMAND.......................................3—65

4. SEMSYS PARAMETERS, FUNCTIONS AND MACROS4—1

4.1 XsIPC Instance Configuration - SemSys Parameters..4—1

4.2 Functions..4—2

4.2.1 SemAbortAsync() - ABORT AN ASYNCHRONOUS OPERATION4—2

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

IV

4.2.2 SemAccess() - ACCESS AN EXISTING SEMAPHORE4—4

4.2.3 SemAcquire() - ACQUIRE RESOURCE SEMAPHORES4—6

4.2.4 SemCancel() - CANCEL BLOCKED OPERATIONS...4—9

4.2.5 SemClear() - CLEAR EVENT SEMAPHORES ..4—11

4.2.6 SemCreate() - CREATE A NEW SEMAPHORE...4—13

4.2.7 SemDelete() - DELETE A SEMAPHORE ..4—15

4.2.8 SemDestroy() - DESTROY A SEMAPHORE ..4—17

4.2.9 SemFreeze() - FREEZE SEMSYS..4—19

4.2.10 SemInfoSem() - GET SEMAPHORE INFORMATION.......................................4—21

4.2.11 SemInfoSys() - GET SUBSYSTEM INFORMATION ...4—24

4.2.12 SemInfoUser() - GET SEMSYS USER INFORMATION4—26

4.2.13 SemList(), SemListBuild() - BUILD LiSTS OF SIDS ..4—30

4.2.14 SemListAdd(), SemListRemove() - UPDATE LIST OF SIDS4—31

4.2.15 SemListCount() – GET NUMBER OF SIDS IN A LIST OF SIDS4—33

4.2.16 SemRelease() - RELEASE RESOURCE SEMAPHORES4—34

4.2.17 SemSet() - SET EVENT SEMAPHORES..4—36

4.2.18 SemUnfreeze() - UNFREEZE SEMSYS..4—38

4.2.19 SemWait() - WAIT ON EVENT SEMAPHORES...4—40

4.3 Macros..4—44

5. APPENDICES..5—1

5.1 Appendix A: Using Blocking X©IPC Functions..5—1

5.1.1 BLOCKING OPTIONS...5—1

5.1.2 ASYNCHRONOUS RESULT CONTROL BLOCK (ACB)...................................5—2

5.1.3 CALLBACK ROUTINE..5—2

5.2 Appendix B: Using Message Select Codes and Queue Select Codes...............5—3

5.2.1 DISPATCHING MESSAGES ONTO QUESYS QUEUES...................................5—3

5.2.2 RETRIEVING MESSAGES FROM QUESYS QUEUES.....................................5—4

5.2.3 EXPRESSION SIMPLIFICATION ...5—6

5.2.4 PRIORITY SPECIFICATION DURING RETRIEVAL ...5—7

5.2.5 CONCLUSION..5—7

5.3 Appendix C: X©IPC User Data Structures ..5—8

Date: 01/20/2004 - Revision: 4

V

5.3.1 X©IPC GENERAL DATA STRUCTURES..5—8

5.3.2 QUESYS DATA STRUCTURES...5—13

5.3.3 MEMSYS DATA STRUCTURES ..5—18

5.3.4 SEMSYS DATA STRUCTURES...5—22

5.4 Appendix D: QueSys/SemSys/MemSys Error Codes...5—25

5.4.1 QueSys Error Codes: By Symbolic Error Name..5—25

5.4.2 QueSys Error Codes: By Message Number ...5—27

5.4.3 SemSys Error Codes: By Symbolic Error Name...5—30

5.4.4 SemSys Error Codes: By Message Number ...5—32

5.4.5 MemSys Error Codes: By Symbolic Error Name..5—34

5.4.6 MemSys Error Codes: By Message Number ..5—36

Utility Programs 1—1

Date: 01/20/2004 - Revision: 4

1. UTILITY PROGRAMS

1.1 xipc - X©IPC Interactive Command Processor

NAME
xipc - XsIPC Interactive Command Processor

SYNTAX
xipc

PARAMETERS
None

RETURNS
Not Applicable

DESCRIPTION
xipc is a command interpreter that provides the user with interactive access to XsIPC API
capabilities.
Most of the interpreter's commands correspond to XsIPC API's, and their arguments are the same,
except for necessary adjustments to the interactive environment. To find a full description of a command
and its arguments, refer to the description of the corresponding API.

1.1.1 THE X©IPC INTERACTIVE LANGUAGE

1.1.1.1 SYNTAX

Each command starts with a command verb, usually an XsIPC API name. The command name is
followed by the command arguments separated by one or more spaces.
Arguments that consist of a list of values, such as SidList, use a comma as a separator between the
values.
Text arguments are entered either as a string of characters delimited by spaces or as a string delimited
by double quotes. When quotes are used as delimiters, a quote character can also be specified as part
of the string by preceding it with a back-slash (\) character.
A line starting with the character "#" is treated as a comment line and its contents are ignored.

1.1.1.2 Variables

xipc provides four sets of built-in variables:
o ACB's - xipc defines 26 ACB variables identified by the letters a through z.
o Message Headers - xipc defines 26 message header variables identified by the

 letters a through z.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

1—2

o Memory Sections - xipc defines 26 memory section variables identified by the letters a
through z.

o MomSys Message Ids - xipc defines 26 message id variables identified by the letters a
through z.

1.1.1.3 Callback Routines

xipc has two groups of callback routines that can be used in conjunction with asynchronous
operations:

o Six callback routines named cb1 through cb6 that display the results of the completing
operation.

o Twenty-six callback routines named cba through cbz. Each of these callback routines can
be assigned an xipc command to execute when the asynchronous operation completes.

1.1.1.4 Blocking Options

Many of xipc's commands have a blocking option parameter. This parameter corresponds to the
blocking option of XsIPC API's. The syntax of the blocking option is one of the following:

o wait

o nowait

o timeout(Seconds)

Seconds - Timeout length in seconds.

o callback(CallbackAction, AcbId)

CallbackAction - Either a name of a predefined callback routine (cb1-cb6 or
cba-cbz) or an xipc command enclosed in double quotes to be executed when the
asynchronous operation completes.

AcbId - ACB variable (a-z).

o post(Sid, AcbId)

Sid - Semaphore Id to be set when the operation completes.

AcbId - ACB variable (a-z).

o ignore(AcbId)

AcbId - ACB variable (a-z).
Note that all flags must be specified before (to the left of) the blocking option.

1.1.1.5 Conventions Used In This Section

The following conventions are used in the description of xipc command syntax:

? Text in bold is to be entered as specified;

Utility Programs 1—3

Date: 01/20/2004 - Revision: 4

? Items in italics represents values to be provided by the user;

? Items between brackets [] designate an optional choice.

? Items between braces{} designate a mandatory choice.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

1—4

1.1.2 GENERAL INTERACTIVE COMMANDS

1.1.2.1 ! - Execute Operating System Command

SYNTAX
! Command

ARGUMENTS
Command Native operating system command.

EXAMPLES
xipc> # Unix example of operating system command
xipc> !date
Thu May 21 10:58:20 EDT 2003

xipc> # VMS example of operating system command
xipc> !show time
21-May-2003 10:58:20

xipc> # Windows example of operating system command
xipc> !date
The current date is: Thu 5-21-2003
Enter the new date: (mm-dd-yy)

__

1.1.2.2 acb - Display Contents of ACB

SYNTAX
acb AcbId

ARGUMENTS
AcbId One letter identification of the ACB.

EXAMPLES
xipc> acb a
 AUid = 33
 AsyncStatus = XIPC_ASYNC_INPROGRESS
 UserData1 = 000000000
 .
 .
 .

Utility Programs 1—5

Date: 01/20/2004 - Revision: 4

1.1.2.3 callback - Assign Callback Command

SYNTAX
callback CallbackName XipcCommand

ARGUMENTS
CallbackName The name of a callback routine (cba-cbz).

XipcCommand An xipc command enclosed in double quotes.

EXAMPLES
xipc> # Start spooling when queue fills up
xipc> callback cba "quespool 2 /usr/tmp/spl"
 Command saved

__

1.1.2.4 help - Display List Of Arguments

SYNTAX
help Command
? Command

ARGUMENTS
Command Name of xipc command.

EXAMPLES
xipc> help xipclogin
 xipclogin
 InstanceName
 UserName

__

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

1—6

1.1.2.5 quit - Logout And Quit

SYNTAX
q[uit]

ARGUMENTS
None.

EXAMPLES
xipc> q
 Logging out user 11 from: @Server
 Logging out user 31 from: @DBServer

__

1.1.2.6 uid - Display Current User Id

SYNTAX
uid

ARGUMENTS
None.

EXAMPLES
xipc> uid
 Uid = 11

__

Utility Programs 1—7

Date: 01/20/2004 - Revision: 4

1.1.3 X©IPC INTERACTIVE COMMANDS

1.1.3.1 xipcabort - Abort a User

SYNTAX
xipcabort UserId

ARGUMENTS
UserId User id of user to be aborted

EXAMPLES
xipc> xipcabort 11
 RetCode = 0

__

1.1.3.2 xipcconnect - Connect to a Login

SYNTAX
xipcconnect [InstanceName] [UserId]

ARGUMENTS
InstanceName Name of instance to connect to: Either an instance configuration file name or an

instance name (local or network) starting with the character '@'. Instance name
can be specified as '*' in which case the value of the environment variable
XIPC will be used. The instance name must be specified exactly as it was
specified in the xipclogin command.

UserId User id as returned by xipclogin

EXAMPLES
xipc> # Log into stand-alone instance.
 # Disconnect from the login.
 # Then reconnect to the login.
xipc> xipclogin /usr/xipc/test Joe
 Uid = 11
xipc> xipcdisconnect
 RetCode = 0
xipc> xipcconnect /usr/xipc/test 11
 RetCode=0

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

1—8

1.1.3.3 xipcdisconnect - Disconnect from a Login

SYNTAX
xipcdisconnect

ARGUMENTS
None

EXAMPLES
xipc> xipclogin /usr/xipc/test Joe
 Uid = 11
xipc> xipcdisconnect
 RetCode = 0
xipc> xipclogin /usr/xipc/test2 Joe
 Uid = 7

__

1.1.3.4 xipcerror - Display Error Message

SYNTAX
xipcerror ErrorCode

ARGUMENTS
ErrorCode XsIPC error code

EXAMPLES
xipc> xipcerror -1003
 Configuration capacity limit exceeded

__

1.1.3.5 xipcfreeze - Freeze Instance

SYNTAX
xipcfreeze

ARGUMENTS
None.

EXAMPLES
xipc> xipcfreeze
 RetCode = 0

Utility Programs 1—9

Date: 01/20/2004 - Revision: 4

1.1.3.6 xipcgetopt – Get Parameters

SYNTAX
xipcgetopt [Option]

ARGUMENTS
[Option] One from the following options: CONNECTTIMEOUT, RECVTIMEOUT,

PINGTIMEOUT, PINGRETRIES, PINGFUNCTION,
PRIVATEQUEUE, MAXTEXTSIZE, ASYNCFD

EXAMPLES
xipc> xipcgetopt pingtimeout
 Parameter [pingtimeout] –> : [5]

__

1.1.3.7 xipcidlewatch - Control Idle Watch Monitoring

SYNTAX
Xipcidlewatch [Option]

ARGUMENTS
Option One of “start,” “stop” or “mark.”

EXAMPLES
xipc> xipcidlewatch start
 RetCode = 0

__

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

1—10

1.1.3.8 xipcinfologin - Get Login Information

SYNTAX
xipcinfologin

ARGUMENTS
None

EXAMPLES
xipc> xipcinfologin
 Uid Instance
 --- --------
 11 /usr/xipc/test
 7 @Server
 31 @DBServer

__

1.1.3.9 xipcinfoversion - Get XIPC Version Information

SYNTAX

xipcinfoversion | xipcver

ARGUMENTS
None

EXAMPLES
xipc> xipcinfoversion
 XIPC Version 3.4.0aa[Build 5012] - Windows NT 4.0

__

1.1.3.10 xipcinit – Initiate Platform Environment

SYNTAX
xipcinit

ARGUMENTS
None

EXAMPLES
xipc> xipcinit
 xipcinit: XIPC Platform Environment Initiated
 Win32 – XIPC 3.4.0aa [Build 5012]
 RetCode = 0

Utility Programs 1—11

Date: 01/20/2004 - Revision: 4

__

1.1.3.11 xipclist - List Active Network Instances

SYNTAX
xipclist [NodeName]

ARGUMENTS
NodeName Name of node about which xipclist’s reporting should be limited.

EXAMPLES
xipc> xipclist
 Machine.................[grumpy]
 Instance Name...........[server]
 Instance File Name......[/xipc/server]
 Maximum Text Size.......[1024]

__

1.1.3.12 xipclogin - Log Into An Instance

SYNTAX
xipclogin [InstanceName] [UserName]

ARGUMENTS
InstanceName Name of instance to log into: Either an Instance File Name or an instance

name (local or network) starting with the character '@'. Instance name can be
specified as '*' in which case the value of the environment variable XIPC will
be used.

UserName Name to be assigned to the XsIPC user. If omitted, the string XIPC will be
used. If the name "superuser" is used, the user is logged in as a superuser.

EXAMPLES
xipc> xipclogin /tmp/config George
 Uid = 11

xipc> # Log into instance “Server”. “xipc” is default user name
xipc> xipclogin @Server
 Uid = 1

xipc> # Log into network instance on node “dopey”
xipc> xipclogin @dopey:Server George
 Uid = 1

__

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

1—12

1.1.3.13 xipclogout - Log Out Of Instance

SYNTAX
xipclogout

ARGUMENTS
None.

EXAMPLES
xipc> xipclogout
 RetCode = 0

1.1.3.14 xipcmasktraps - Activate Trap Mask

SYNTAX
xipcmasktraps

ARGUMENTS
None.

EXAMPLES
xipc> xipcmasktraps
 RetCode = 0

__

1.1.3.15 xipcsetopt - Set Parameters

SYNTAX
xipcsetopt [Option]

ARGUMENTS
[Option] One from the following options: CONNECTTIMEOUT, RECVTIMEOUT,

PINGTIMEOUT, PINGRETRIES, PINGFUNCTION,
PRIVATEQUEUE, MAXTEXTSIZE, ASYNCFD

EXAMPLES
xipc> xipcsetopt pingtimeout 5
 Parameter [pingtimeout] –> New value [5]

Utility Programs 1—13

Date: 01/20/2004 - Revision: 4

1.1.3.16 xipcstart - Start An Instance

SYNTAX
xipcstart InstFileName InstName [Options]

ARGUMENTS
InstFileName The instance configuration file name of instance to be started (i.e., the path name

of its instance configuration file). The Instance File Name can be omitted, in
which case the value of the environment variable XIPC will be used.

InstName Name to be assigned to the instance. The Instance Name can be omitted, in
which case the optional value (LOCALNAME or NETNAME) in the [XIPC]
section of the Instance Configuration File may be used. Note that, should the
Instance Name be omitted, and if local is not specified, network is the
default (as shown in the example below). (See [Options] below for setting
an instance as local or network.)

Note that XsIPC instances that are started with an assigned name (either a Local
or a Network name) are visible to the xipclist utility command. It is
sometimes desirable that an instance’s existence not be visible to xipclist.
This can be accomplished by assigning the instance a name starting with the ‘_’
(underscore) character. So for example: an instance named foo would be
visible to xipclist, while an instance named _foo would not.

[Options] One or more of the following: initialize, network, local,
report, test or 0. When listing multiple options, they are listed and
separated by commas.

Note: Asterisks (*) can be used as "place holders," with the defaults noted
above, if the arguments preceding [Options] are not specified. See the
example below.

 EXAMPLES
xipc> # Start a Network instance
xipc> xipcstart /tmp/config Server
 XipcStart(SemSys):
 .
 .
 XipcReg: Network Instance [Server] Registered.
 RetCode = 0

xipc> # Start a Stand-Alone Instance.
xipc> # Use XIPC environment variable to specify instance name.
xipc> # Do not output report.
xipc> xipcstart * * 0
 RetCode = 0

__

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

1—14

1.1.3.17 xipcstop - Stop An Instance

SYNTAX
xipcstop InstanceName [Options]

ARGUMENTS
InstanceName Name of instance to be stopped: Either an Instance File Name or an instance

name (local or network) starting with the character '@'. The instance name can
be omitted and specified as '*', in which case the value of the environment
variable XIPC will be used.

Options One of: report, force or 0.

EXAMPLES
xipc> # Use XIPC environment variable to specify instance name.
xipc> # Do not output report.
xipc> xipcstop * 0
 RetCode = 0

__

1.1.3.18 xipcterm – Terminate Platform Environment

SYNTAX
xipcterm

ARGUMENTS
None

EXAMPLES
xipc> xipcterm
 xipcterm:XIPC Platform Environment Terminated
 RetCode = 0

Utility Programs 1—15

Date: 01/20/2004 - Revision: 4

1.1.3.19 xipcunfreeze - Unfreeze Instance

SYNTAX
xipcunfreeze

ARGUMENTS
None.

EXAMPLES
xipc> xipcunfreeze
 RetCode = 0

__

1.1.3.20 xipcunmasktraps - Deactivate Trap Mask

SYNTAX
xipcunmasktraps

ARGUMENTS
None.

EXAMPLES
xipc> xipcunmasktraps
 RetCode = 0

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

1—16

1.2 queview - View an Instance's QueSys

NAME
queview - View an Instance's QueSys

SYNTAX
queview [Interval] [InstName]

PARAMETERS

Name Description

Interval The initial time interval between screen updates (in milliseconds). The default value is
1000.

InstName The instance file name of the instance or the registered name of the instance to be
monitored.

RETURNS

Value Description

No return value.

DESCRIPTION
This program is used for real-time monitoring of the activities occurring within an instance's QueSys.
The specified InstName identifies the instance to be monitored. If InstName is not specified, the value
of the "XIPC" environment variable is used as the instance file name of the instance to be monitored.
While queview is running, it is possible to control its operation by entering commands. The
"command key" is operating system dependent and is defined in the respective Platform Notes. (As an
example, on most Unix platforms, the terminal "interrupt" key is the "command" key.)
At the Command> prompt, one of the following commands can be entered. (Text in bold is to be
typed in as specified; items in italics represent values to be provided by the user.)

in Set time interval to n milliseconds. Example: i100.

zun Zoom in on user n. Example: zu15.

zqn Zoom in on queue n. Example: zq7.

zmn Zoom in on the messages on queue n, display by time strand. Example: zm8.

zmnt Zoom in on the messages occurring on queue n, display by time strand. Example: zm8t.

zmnp Zoom in on the messages occurring on queue n, display by priority strand. Example: zm4p.

zsn Zoom in on the spool activity of queue n. Example: zs9.

zp Zoom in on message text pool. Example: zp.

uz Un-zoom, close the zoom window.

pun Pan view to user n. Example: pu3

pqn Pan view to queue n. Example: pq10

tf Enter Trace Flow mode.

Utility Programs 1—17

Date: 01/20/2004 - Revision: 4

ts Enter Trace Step mode.

to Turn Trace off.

bn Browse the messages on queue n, following the time strand. See below for browse commands.
Example: b8.

bnt Browse the messages on queue n, following the time strand. See below for browse commands.
Example: b8t.

bnp Browse the messages on queue n, following the priority strand. See below for browse commands.
Example: b4p.

q Quit.

Browse facility commands:
p Switch display to follow the priority strand.

t Switch display to follow the time strand.

f Move to the first message on the current strand.

l Move to the last message on the current strand.

bn Browse the messages on queue n, following the time strand. Example: b8.

bnt Browse the messages on queue n, following the time strand. Example: b8t.

bnp Browse the messages on queue n, following the priority strand. Example: b4p.

q Quit.

Navigating on a Queue:

⇒ (right arrow) Move to the next message on the current strand.
⇐ (left arrow) Move to the previous message on the current strand.
n Move to the nth message on the current strand.
+n Move forward n messages.
-n Move backward n messages.

Navigating within a message:

⇑ (up arrow) Scroll the current message up one line.
⇓ (down arrow) Scrolls the current message down one line.
PAGE-UP Scroll the current message one page up.
PAGE-DOWN Scroll the current message one page down.
HOME Scroll the current message to its top.
END Scroll the current message to its bottom.

ASCII pattern searching:

/IBM/ Search forward in the current message for the ASCII string "IBM".
// Repeat the search.
/ Same.
\IBM\ Search backwards in the current message for the ASCII string "IBM".
\\ Repeat the search.
\ Same.
g/IBM/ Search forward for "IBM" through all messages to the end of the queue.
g// Repeat the search.
g/ Same.
g\IBM\ Search backwards for "IBM" through all messages to the start of the queue.
g\\ Repeat the search.
g\ Same.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

1—18

Hexadecimal pattern searching:

/4f37/x Search forward for the hex pattern "4f37" within the current message.
g/4f37/x Same search, but forward through all messages on the queue.
g//x Same.
\4f37\x Searches backwards for the hex pattern "4f37" within the current message.
g\4f37\x Same search, but backwards through all messages on the queue.
g\\x Same.

ERRORS
Display messages.

Utility Programs 1—19

Date: 01/20/2004 - Revision: 4

1.3 memview - View an Instance's MemSys

NAME
memview - View an Instance's MemSys

SYNTAX
memview [Interval] [InstName]

PARAMETERS

Name Description

Interval The initial time interval between screen updates (in milliseconds). The default value is
1000.

InstName The instance file name of the instance or the registered name of the instance to be
monitored.

RETURNS

Value Description

No return value.

DESCRIPTION
This program is used for real-time monitoring of the activities occurring within an instance of MemSys.
The specified InstName identifies the instance to be monitored. If InstName is not specified, the value
of the "XIPC" environment variable is used as the instance file name of the instance to be monitored.
While memview is running, it is possible to control its operation by entering commands. The
"command key" is operating system dependent and is defined in the respective Platform Notes. (As an
example, on most Unix platforms, the terminal "interrupt" key is the "command" key.)
At the Command> prompt, one of the following commands can be entered. (Text in bold is to be
typed in as specified; items in italics represent values to be provided by the user.)

in Set interval to n milliseconds. Example: i100.

zun Zoom in on user n. Example: zu15.

zmn Zoom in on memory segment n. Example: zm7.

zp Zoom in on memory text pool. Example: zp.

uz Un-zoom, close the zoom window.

sn Monitor section activity on memory segment n. Example: s0

wn Watch memory segment n. Example: w2

pun Pan view to user n. Example: pu3

pmn Pan view to memory segment n. Example: pm10

tf Enter Trace Flow mode.

ts Enter Trace Step mode.

to Turn Trace off.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

1—20

bn Browse memory segment n. Example: b8.

q Quit.

Section window commands:
in Set time interval to n milliseconds. Example: i100.

sn Monitor section activity on memory segment n. Example: s0.

wn Watch memory segment n. Example: w2

tf Enter Trace Flow mode.

ts Enter Trace Step mode.

to Turn Trace off.

bn Browse memory segment n. Example: b8.

q Quit.

Navigating within the section monitor window:

⇑ (up arrow) Scroll up one line.
⇓ (down
arrow)

Scroll down one line.

PAGE-UP Scroll up one page.
PAGE-DOWN Scroll down one page.
HOME Scroll to the top of the section data.
END Scroll to the bottom of the section data.

Watch window commands:
in Set time interval to n milliseconds. Example: i100.

sn Monitor section activity on memory segment n. Example: s0

wn Watch memory segment n. Example: w2

tf Enter Trace Flow mode.

ts Enter Trace Step mode.

to Turn Trace off.

bn Browse memory segment n. Example: b8.

q Quit.

Navigating within the segment watch window:
⇑ (up arrow) Scroll up one line (20 Bytes).
⇓ (down arrow) Scroll down one line (20 Bytes).
PAGE-UP Scroll up one page (260 Bytes).
PAGE-DOWN Scroll down one page (260 Bytes).
HOME Scroll to the top of the memory segment.
END Scroll to the bottom of the memory segment.

Browse facility commands:

bn Browse memory segment n. Example: b8.

q Quit.

Navigating within a memory segment:

⇑ (up arrow) Scrolls up one line (20 Bytes).

Utility Programs 1—21

Date: 01/20/2004 - Revision: 4

⇓ (down arrow) Scrolls down one line (20 Bytes).
PAGE-UP Scrolls up one page (260 Bytes).
PAGE-DOWN Scrolls down one page (260 Bytes).
HOME Scrolls to the top of the memory segment.
END Scrolls to bottom of the memory segment.

ASCII pattern searching:

/IBM/ Search forward for the ASCII string "IBM".
// Repeat the search.
/// Same.
\IBM\ Search backwards for the ASCII string "IBM".
\\ Repeat the search.
\\\ Same.

Hexadecimal pattern searching:

/4f37/x Search forward for the hex pattern "4f37".
\4f37\x Searches backwards for the hex pattern "4f37".

ERRORS
Display messages.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

1—22

1.4 semview - View an Instance's SemSys

NAME
semview - View an Instance's SemSys

SYNTAX
semview [Interval] [InstName]

PARAMETERS

Name Description

Interval The initial time interval between screen updates (in milliseconds). The default value is
1000.

InstName The instance file name of the instance or the registered name of the instance to be
monitored.

RETURNS

Value Description
No return value.

DESCRIPTION
This program is used for real-time monitoring of the activities occurring within an instance's SemSys.
The specified InstName identifies the instance to be monitored. If InstName is not specified, the value
of the "XIPC" environment variable is used as the instance file name of the instance to be monitored.
While semview is running, it is possible to control its operation by entering commands. The
"command key" is operating system dependent and is defined in the respective Platform Notes. (As an
example, on most Unix platforms, the terminal "interrupt" key is the "command" key.)
At the Command> prompt, one of the following commands can be entered. (Text in bold is to be
typed in as specified; items in italics represent values to be provided by the user.)

in Set time interval to n milliseconds. Example: i100.

zun Zoom in on user n. Example: zu15.

zsn Zoom in on semaphore n. Example: zs7.

uz Un-zoom, close the zoom window.

pun Pan view to user n. Example: pu3

psn Pan view to semaphore n. Example: ps10

tf Enter Trace Flow mode.

ts Enter Trace Step mode.

to Turn Trace off.

q Quit.

ERRORS
Display messages.

QueSys Parameters, Functions and Macros 2—1

Date: 01/20/2004 - Revision: 4

2. QUESYS PARAMETERS, FUNCTIONS AND MACROS

2.1 XsIPC Instance Configuration - QueSys Parameters

NAME
XsIPC Instance Configuration - QueSys parameter definitions for .cfg files

SYNTAX
[QUESYS]
General QueSys parameters, defined below

PARAMETERS
The table below lists the general QueSys configuration parameters, including the parameter name,
description and default value. The order in which parameters appear within the [QUESYS]section of
the configuration is not significant. The default values shown do not represent limits for the values that
any particular user may require.

Parameter Name Description Default

Value

MAX_QUEUES The number of concurrent queues. It should be set based on the
requirements of the programs using the instance.

16

MAX_USERS The maximum number of concurrent QueSys users (real users and
pending asynchronous operations) that can be supported by the
subsystem. It should be set based on the requirements of the
programs using the instance.
Note that asynchronously blocked QueSys operations are treated
as QueSys users. The expected level of QueSys asynchronous
activity should therefore be factored into this parameter.

32

MAX_NODES The maximum number of nodes. QueSys nodes are used
internally for tracking users that block on QueSys operations. The
value depends largely on the nature of the program that will use the
instance. A conservative estimate can be calculated with the
following formula:
MAX_NODES = MAX_QUEUES + (MAX_USERS*3)
+(MAX_USERS*MAX_QUEUES)
The default value was calculated using the MAX_QUEUES and
MAX_USERS defaults.

624

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—2

Parameter Name Description Default

Value

MAX_HEADERS The maximum number of concurrent message headers (i.e.,
messages) that can be circulating within an instance at any one
time. A conservative estimate can be calculated with the following
formula:
MAX_HEADERS = MAX_QUEUES + (MAX_QUEUES *
AverageQueueLength)
where: AverageQueueLength is the expected average
queue length
 (in terms of messages) within the instance.
The default value was calculated using the above default values
and an AverageQueueLength of 5.

96

SIZE_MSGPOOL The size of the message text pool (K-Bytes). QueSys provides
optional blocking when accessing the message pool.
Consequently, a less conservative approach can be applied when
configuring the message text pool. A starting value can be
calculated with the following formula:
SIZE_MSGPOOL = (MAX_QUEUES *
AverageQueueLength) *
(AverageMessageSize+16)
where: AverageQueueLength is as defined above, and
 AverageMessageSize is the expected average
message size
 occurring within the instance.
The default value was calculated using the default values above, an
AverageQueueLength of 5 and an
AverageMessageSize of 256.
SIZE_MSGPOOL is expressed in terms of K-bytes. As such
the calculated value should be rounded up to the next K-byte
multiple. (E.g., if the calculation equals 1948 bytes, then 2K
bytes should be specified.)

22

SIZE_MSGTICK The message text pool allocation size unit. This value specifies the
multiple by which all text pool allocations are made. A proper
value can have a noticeable effect in reducing fragmentation in the
message pool. SIZE_MSGTICK should be rounded up to a
multiple of 4. A starting value can be calculated with the following
formula:
SIZE_MSGTICK=25PercentileMessageSize
where: 25PercentileMessageSize is defined as the size
value for which it is expected that 75% of the instance's messages
will be larger in size and 25% will be smaller.

32

QueSys Parameters, Functions and Macros 2—3

Date: 01/20/2004 - Revision: 4

Parameter Name Description Default

Value

SIZE_SPLTICK The spool tick file size limit (K-bytes). It defines the file size limit
used in queue overflow spooling. The QueSys spooling
mechanism uses one or more files to handle each queue's message
spooling. SIZE_SPLTICK sets the maximum size of these files
(in K-bytes). Too large a value could result in wasted file system
space, holding a queue's old spooled data; too small a value will
generally cause a greater number of spool files to be created for
each queue. The selection of a value depends on which of the
competing concerns is more important. If the value for
SIZE_SPLTICK is being chosen to meet a system-wide file
size limit, then a smaller value (less than the system file size limit)
should be chosen. If the concern is to limit spool file proliferation,
then a large value will be appropriate. In either case,
SIZE_SPLTICK must be at least 32 bytes larger than the
largest message to be spooled by any queue in the instance.

32

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—4

2.2 Functions

2.2.1 QueAbortAsync() - ABORT AN ASYNCHRONOUS OPERATION

NAME
QueAbortAsync() - Abort An Asynchronous Operation

SYNTAX
#include "xipc.h"

XINT
QueAbortAsync(AUid)

XINT AUid;

PARAMETERS

Name Description

AUid The asynchronous operation User ID of the operation to be aborted.

RETURNS

Value Description

RC >= 0 Abort successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
QueAbortAsync() aborts a pending asynchronous operation.
If the aborted asynchronous operation was issued by the same XsIPC user, the BlockOpt of the aborted
operation is ignored and the Asynchronous Result Control Block is not set.
If the aborted operation was issued by a different user, a return code of QUE_ER_ASYNCABORT is
placed in the RetCode field of the operation's Asynchronous Result Control Block and the action
specified in the BlockOpt of the aborted operation is carried out, i.e., a callback routine is invoked or a
semaphore is set.

ERRORS
Code Description

QUE_ER_BADUID Invalid AUid parameter.
QUE_ER_NOSUBSYSTEM QueSys is not configured in the instance.
QUE_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).
QUE_ER_SYSERR An internal error has occurred while processing the request.

QueSys Parameters, Functions and Macros 2—5

Date: 01/20/2004 - Revision: 4

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

__

INTERACTIVE COMMAND

SYNTAX
queabortasync AsyncUserId

ARGUMENTS
AsyncUserId Asynchronous user id of the asynchronous QueSys operation to be

aborted

EXAMPLES
xipc> quereceive hp 0 callback(cb1,q)
 RetCode = -1097
 Operation continuing asynchronously
xipc> acb q
 AUid = 35
 .
 .
xipc> queabortasync 35
......Callback function CB1 executing......
 RetCode = -1098
 Asynchronous operation aborted
 .
 .
 .

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—6

2.2.2 QueAccess() - ACCESS AN EXISTING QUEUE

NAME
QueAccess() - Access an Existing Queue

SYNTAX
#include "xipc.h"

XINT
QueAccess(Name)

CHAR *Name;

PARAMETERS

Name Description

Name A pointer to a string that contains the symbolic name identifying the desired queue. The
Name must be null terminated, must not exceed QUE_LEN_XIPCNAME characters,
must identify an existing queue and cannot be QUE_PRIVATE.

RETURNS

Value Description

RC >= 0 Access successful. RC is Queue ID (Qid). Qid is to be used in all subsequent QueSys
calls that refer to this queue.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
QueAccess() accesses an existing queue in QueSys. Name is used for identifying the desired queue.
The function returns Qid of the accessed queue.

ERRORS
Code Description

QUE_ER_BADQUENAME Invalid Name parameter.
QUE_ER_NOSUBSYSTEM QueSys is not configured in the instance.
QUE_ER_NOTFOUND Queue with Name does not exist.
QUE_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).

QueSys Parameters, Functions and Macros 2—7

Date: 01/20/2004 - Revision: 4

XIPCNET_ER_CONNECTLOST

Connection to instance lost.

XIPCNET_ER_NETERR Netwo rk transmission error.
XIPCNET_ER_SYSERR Operating system error.

__

INTERACTIVE COMMAND

SYNTAX
queaccess QueName

ARGUMENTS
QueName Name of queue

EXAMPLES
xipc> queaccess ServerQ
 Qid = 7

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—8

2.2.3 QueBrowse() - BROWSE A MESSAGE QUEUE

NAME
QueBrowse() - Browse a Message Queue

SYNTAX
#include "xipc.h"

XINT
QueBrowse(MsgHdr, Direction)

MSGHDR *MsgHdr;
XINT Direction;

PARAMETERS

Name Description

MsgHdr A pointer to a message header variable that contains a copy of a message header still
residing on a queue.

Direction The direction of the browse operation.

RETURNS

Value Description

RC >= 0 Browse successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
QueBrowse() returns with a copy of the message header one position in the specified Direction,
relative to the message header identified by the MsgHdr parameter. MsgHdr must reference a message
header that has not been dequeued. MsgHdr may have been accessed through a call to QueGet(),
specifying the QUE_NOREMOVE option (to the left of the blocking option) or through a previous call to
QueBrowse().
Possible values for the direction parameter are:

QUE_PRIO_NEXT Access the next header on the priority strand (decreasing priority).
QUE_PRIO_PREV Access the previous header on the priority strand (increasing priority).
QUE_TIME_NEXT Access the next header on the time strand (more recent).
QUE_TIME_PREV Access the previous header on the time strand (less recent).

QueBrowse() will fail, returning QUE_ER_ENDOFQUEUE if no additional message headers exist in
the specified direction.

QueSys Parameters, Functions and Macros 2—9

Date: 01/20/2004 - Revision: 4

ERRORS
Code Description

QUE_ER_BADDIRECTION Invalid Direction parameter.
QUE_ER_BADTEXT MsgHdr has invalid text pointer.
QUE_ER_ENDOFQUEUE An end of the queue has been reached.
QUE_ER_MSGHDRREMOVED MsgHdr has been removed from queue.
QUE_ER_NOSUBSYSTEM QueSys is not configured in the instance.
QUE_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

__

INTERACTIVE COMMAND

SYNTAX
quebrowse MsgHdr Direction

ARGUMENTS
MsgHdr A one letter message header variable.

Direction One of: time+, time-, prio+, prio-.

EXAMPLES
xipc> queget a hp 0 noremove,wait
 RetCode = 0, Qid = 0, Seq# = 1221, Prio = 100, HdrStatus = NOT-REMOVED
xipc> quebrowse a time+
 RetCode = 0, Qid = 0, Seq# = 1233, Prio = 100, HdrStatus = NOT-REMOVED
xipc> quebrowse a time+
 RetCode = -1625
 An end of the queue has been reached

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—10

2.2.4 QueBurstSend() - SEND A BURST MESSAGE TO A QUEUE

NAME
QueBurstSend() - Send a Burst Message to a Queue

SYNTAX
#include "xipc.h"

XINT
QueBurstSend(TargetQid, MsgBuf, MsgLength, Priority)

XINT TargetQid;
XANY *MsgBuf;
XINT MsgLength;
XINT Priority;

PARAMETERS

Name Description

TargetQid Identifies a target Qid for this QueBurstSend() operation. TargetQid overrides any
queue targeting specified at the start of the send-burst, via QueBurstSendStart().
Specifying QUE_NULL_QID directs XsIPC to use the original queue targeting.

MsgBuf A pointer to the message text to be sent.

MsgLength The size (in bytes) of the message in MsgBuf. MsgLength must be greater than 0.

Priority An integer to be designated as the message's priority. Priority must be greater than 0.

RETURNS

Value Description

RC > 0 Sequence number of message within current send-burst.

RC < 0 Error (see error codes below).

DESCRIPTION
QueBurstSend() sends a message onto a queue as part of a send-burst. The send-burst must have been
previously started using the QueBurstSendStart() function call.
QueBurstSend() selects a target queue based on the QueSelectCode and QidList parameters specified
at the start of the send-burst (i.e., within the QueBurstSendStart() function call). It is possible to
override that targeting mechanism by specifying a valid TargetQid within the QueBurstSend() call.
Otherwise, TargetQid should be specified as QUE_NULL_QID.
QueBurstSend() will attempt to enqueue the message pointed at by MsgBuf. MsgLength must not
exceed the MaxMsgLength value specified in the burst's initiating call to QueBurstSendStart(). Should
the enqueuing operation need to block (e.g., due to a queue capacity limitation), then QueBurstSend()
will perform the BlockingOption as specified at the start of the send-burst (i.e., within the

QueSys Parameters, Functions and Macros 2—11

Date: 01/20/2004 - Revision: 4

QueBurstSendStart() function call). The QueBurstSend() operation returns a burst sequence number
that uniquely identifies the sent message within the current send-burst.
Error reporting within a send-burst can occur in one of two ways, depending on the error:

o Synchronous errors are those that are detected within the call to QueBurstSend(), and are
reported on immediately within the return code value returned by QueBurstSend(). These
errors are identified below with an [S] notation to indicate their synchronous nature.

o Messages passed to QueBurstSend() may not be immediately enqueued. This is especially the
case when a network is involved. Because of this latency between the delivery step and the
enqueuing step, errors that occur during the enqueuing step are reported asynchronously using
the asynchronous ErrorOption specified within the QueBurstSendStart() call at the start of the
burst. Error information is returned within the ACB specified as part of the ErrorOption.

 Information within the error reporting ACB are the burst message sequence number of the
message that failed to be enqueued and an XsIPC error code describing the enqueuing error.

 Errors that are reported asynchronously are identified below with an [A] notation to indicate
their asynchronous nature. Note that certain errors may be reported in either way, depending
on the specific nature of the error.

If an error occurs, the send-burst is terminated. It is an error to issue subsequent QueBurstSend()
operations without starting a new send-burst.
For a more detailed discussion of QueBurstSend(), refer to the presentation in the Advanced Topics
chapter of the QueSys/MemSys/SemSys User Guide.

ERRORS
Note: [S] preceding the error code description indicates an error that is reported synchronously;
 [A] preceding the error code description indicates an error that is reported asynchronously.

Certain errors, with both [A] and [S], may be reported in either way, depending on the
specified nature of the error.

Code Description

QUE_ER_BADBUFFER [S] MsgBuf is NULL.
QUE_ER_BADLENGTH [S] Invalid MsgLength parameter.
QUE_ER_BADQID [A] Bad TargetQid, or QUE_NULL_QID was specified

when valid Qid is required.
QUE_ER_CAPACITY_ASYNC_
USER

[S] QueSys async user table full

QUE_ER_CAPACITY_HEADER [S] QueSys header table full
QUE_ER_CAPACITY_NODE [S] QueSys node table full
QUE_ER_DESTROYED [A]Another user destroyed a queue that a blocked

QueBurstSend() call was waiting to enqueue onto. The
blocked QueBurstSend() operation was canceled. No
message was enqueued.

QUE_ER_INTERRUPT [S] A QueBurstSend() operation that had blocked due to
the underlying protocol’s flow-control, was interrupted by a
signal. The message was not sent.

QUE_ER_ISFROZEN [A] User froze instance or QueSys since starting send-
burst. A QueBurstSend() operation was about to block
based on the burst's originally specified BlockingOption of
QUE_WAIT or QUE_TIMEOUT.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—12

QUE_ER_NOSUBSYSTEM [A] QueSys is not configured in the instance.
QUE_ER_NOTINSENDBURST [S] User not in send-burst.
QUE_ER_NOTLOGGEDIN [S] [A] User not logged into instance (User never logged

in, was aborted or disconnected).
QUE_ER_NOWAIT [A] The originally specified BlockingOption for this send-

burst was QUE_NOWAIT. The enqueuing step of a
QueBurstSend() operation could not be immediately satisfied
(e.g., queue was full).

QUE_ER_PURGED [A] Another user purged a queue that the blocked
QueBurstSend() call was waiting on. The blocked
QueBurstSend() operation was canceled. No message was
enqueued.

QUE_ER_TIMEOUT [A] The originally specified BlockingOption for this send-
burst was QUE_TIMEOUT. The enqueuing step of a
QueBurstSend() operation could not be satisfied during the
timeout period (e.g., queue was full).

QUE_ER_TOOBIG [S] The size of the message exceeds the MaxMsgLength in
the burst's originating call to QueBurstSendStart().

XIPCNET_ER_CONNECTLOST [S] Connection to instance lost.
XIPCNET_ER_NETERR [S] Network transmission error.
XIPCNET_ER_SYSERR [S] Operating system error.

__

INTERACTIVE COMMAND

SYNTAX
{queburstsend | qbs} TargetQid Message Priority

ARGUMENTS
TargetQid Identifies a target Qid for this QueBurstSend operation. TargetQid overrides any queue

targeting specified at the start of the send-burst, via QueBurstSendStart. Specifying
null directs XsIPC to use the original queue targeting.

MsgBuf Message text to be sent.

Priority An integer to be designated as the message's priority. Priority must be greater than 0.

EXAMPLES
xipc> queburstsend 3 hello 123
 SeqNo = 556
xipc> qbs 1 “hello again” 456
 SeqNo = 557

QueSys Parameters, Functions and Macros 2—13

Date: 01/20/2004 - Revision: 4

2.2.5 QueBurstSendStart() - START A SEND-BURST

NAME
QueBurstSendStart() - Start a Send-Burst

SYNTAX
#include "xipc.h"

XINT
QueBurstSendStart(QueSelectCode, QidList, MaxMsgLength,
 ReadAheadBufSize, BlockingOption, ErrorOption)

XINT QueSelectCode;
QIDLIST QidList;
XINT MaxMsgLength;
XINT ReadAheadBufSize;
... BlockingOption;
... ErrorOption;

PARAMETERS

Name Description

QueSelectCode A code indicating the queue selection criteria to be used for targeting
QueBurstSend() operations during the upcoming send-burst. The selected
queue is one of the Qids in QidList. Possible values for QueSelectCode are
provided in the companion User Guide. It is also possible to specify
QUE_NULL_QUESELECTCODE. Doing soindicates that all QueBurstSend()
calls within the upcoming send-burst will specify a non-null TargetQid. (Refer
to the QueBurstSend() function call for details.)

QidList A list of Qids for consideration as target queue of QueBurstSend() operations
within the upcoming send-burst. A QIDLIST is constructed using QueList() or
QueListBuild() and is updated using QueListAdd(). A pointer to a QIDLIST
(type PQIDLIST) may be passed as well. It is additionally possible to specify
QUE_NULL_QIDLIST. Doing so indicates that all QueBurstSend() calls
within the upcoming send-burst will specify a non-null TargetQid. (Refer to the
QueBurstSend() function call for details.)

MaxMsgLength The maximum size (in bytes) of messages to be sent in the upcoming
send - burst.

ReadAheadBufSize The size in bytes of the read- ahead buffer used by XsIPC to read- ahead
messages off the network. This value may be set to
QUE_BURST_DEFAULT_READAHEADSIZE, in which case XsIPC uses
determines a value based on underlying protocol configuration settings.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—14

BlockingOption The blocking option to be used when enqueuing messages during
QueBurstSend() operations of the upcoming send-burst. Valid options are:
QUE_WAIT, QUE_NOWAIT and QUE_TIMEOUT. Asynchronous
blocking options are not allowed. Refer to the Advanced Topics section of the
companion Reference Manual for a description of these options.

ErrorOption The QUE_CALLBACK() option specifying how enqueue error conditions
should be reported during the upcoming send-burst. Error information is
reported asynchronously within the specified option's associated ACB structure.

RETURNS

Value Description

RC >= 0 Burst initialization and start was successful.

RC < 0 Error (see error codes below).

DESCRIPTION
QueBurstSendStart() starts a send-burst. QueBurstSendStart() must be called before any burst
messages can be sent. Once a send-burst is started, messages are sent via the QueBurstSend()
operation. The send-burst is eventually terminated by a call to the QueBurstSendStop() function, or
when an error condition is encountered.
The QueSelectCode and QidList, specified within the call to QueBurstSendStart(), are evaluated
subsequently by each QueBurstSend() operation for determining the target queue of those operations. It
is possible to specify QUE_NULL_QUESELECTCODE and QUE_NULL_QIDLIST for
QueSelectCode and QidList respectively. Doing so indicates that all QueBurstSend() calls within the
upcoming send-burst will specify a non-null (i.e., valid) TargetQid. (Refer to QueBurstSend() for
details.)
The ReadAheadBufSize parameter is used to specify the size of the buffer used to read ahead network
messages. This value may be set to QUE_BURST_DEFAULT_READAHEADSIZE, in which case
XsIPC determines a value based on underlying protocol configuration settings. Larger values for this
parameter will generally produce higher message throughput, at the cost of additional memory utilization
on the instance node.
The MaxMsgLength parameter is used to specify the maximum length for all messages in the upcoming
send-burst. If a longer message is encountered, an error status is returned and the send-burst is
terminated.
The BlockingOption specifies the blocking option to be used when enqueuing burst messages during
the upcoming send-burst. Note that when QUE_NOWAIT or QUE_TIMEOUT is specified, and a
subsequent send-burst message cannot be enqueued (e.g., because of a queue capacity limitation), an
error condition results and the send-burst is terminated.
The ErrorOption specifies the error reporting callback function to be invoked if an error occurs during
any of the QueBurstSend() enqueuing operations within the upcoming send-burst. Enqueuing errors are
not returned synchronously by the QueBurstSend() operation but instead are reported asynchronously.
The ErrorOption must specify QUE_CALLBACK(Function, Acb), where Function is called for
handling enqueuing errors, and details of enqueuing errors are reported within Acb. Included within Acb
are: the burst message sequence number of the message that was not successfully enqueued, and the
cause of the error. Refer to QueBurstSend() for more details.
Error reporting by the QueBurstSendStart() function call is synchronous in nature. The function returns
an error code indicating any error encountered while attempting to start a send-burst. The error codes
and their interpretations are listed below.
For a more detailed discussion of QueBurstSendStart(), refer to the Advanced Topics chapter in the
QueSys/MemSys/SemSys User Guide.

QueSys Parameters, Functions and Macros 2—15

Date: 01/20/2004 - Revision: 4

ERRORS
Code Description

QUE_ER_BADBLOCKOPT Invalid BlockingOption parameter.
QUE_ER_BADERROROPT Invalid ErrorOption parameter.
QUE_ER_BADLENGTH Invalid MaxMsgLength parameter.
QUE_ER_BADQID Bad Qid in QidList.
QUE_ER_BADQIDLIST Invalid QidList parameter.
QUE_ER_BADQUESELECTCOD
E

Invalid QueSelectCode parameter.

QUE_ER_BADREADAHEAD Invalid ReadAheadBufSize parameter.
QUE_ER_INRECEIVEBURST User is in a receive-burst.
QUE_ER_INSENDBURST User already in a send-burst.
QUE_ER_ISFROZEN A BlockingOption of QUE_WAIT or QUE_TIMEOUT

was specified after the instance or QueSys was frozen by the
calling user.

QUE_ER_NOASYNC Asynchronous environment not present.
QUE_ER_NOSUBSYSTEM QueSys is not configured in the instance.
QUE_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).
QUE_ER_SYSERR Send-burst not started due to system error.

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.
XIPCNET_ER_TOOBIG MaxMsgLength exceeds instance's network size limit.

__

INTERACTIVE COMMAND

SYNTAX
{queburstsendstart|qbsstart} QueSelectCode QidList

MaxMsgLength ReadAheadBufSize BlockingOpt
ErrorOption

ARGUMENTS
QueSelectCode A message dispatch queue select code. (See later in this chapter, under

Macros.) The prefix "QUE_Q_" of the queue select code should be omitted,
e.g., instead of QUE_Q_ANY, use any.

QidList A list of queue Ids

MaxMsgLength The maximum size (in bytes) of messages to be sent in the upcoming send-burst.

ReadAheadBufSiz The size, in bytes, of the read-ahead buffer used by XsIPC to read-
ahead messages off the network. This value may be set to default, in which
case XsIPC uses determines a value based on underlying protocol configuration
settings.

BlockingOpt The blocking option to be used when enqueuing messages during the burst. See
the Blocking Options discussion in section 2.8.1.4 of the XsIPC Reference

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—16

Manual. Only one of the three synchronous values (wait, nowait or
timeout) is permitted

ErrorOption The callback option specifying how enqueue error conditions should be
reported during the upcoming send-burst. See the Callback Routines discussion
in section 2.8.1.3 of the XsIPC Reference Manual. Error information is
reported asynchronously within the specified option's associated ACB.

EXAMPLES
xipc> queburstsendstart any 0 64 1024 wait callback(cb1, a)
 RetCode = 0

xipc> qbsstart shq 0,1 64 default timeout(15) callback(cb1, a)
 RetCode = 0

QueSys Parameters, Functions and Macros 2—17

Date: 01/20/2004 - Revision: 4

2.2.6 QueBurstSendStop() - STOP A SEND-BURST

NAME
QueBurstSendStop() - Stop a Send-Burst

SYNTAX
#include "xipc.h"

XINT
QueBurstSendStop()

PARAMETERS
None

RETURNS

Value Description

RC > 0 Sequence number of last message successfully enqueued.

RC < 0 Error (see error codes below).

DESCRIPTION
QueBurstSendStop() stops a send-burst. QueBurstSendStop() returns the sequence number of the last
message that was sent and successfully enqueued.
It is not permitted to issue a QueBurstSend() call following a call to QueBurstSendStop() and before a
new send-burst has been started.
For a more detailed discussion of QueBurstSendStop(), refer to the Advanced Topics chapter in the
QueSys/MemSys/SemSys User Guide.

ERRORS
Code Description

QUE_ER_NOTINSENDBURST User not in send-burst.
QUE_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—18

__

INTERACTIVE COMMAND

SYNTAX
{queburstsendstop | qbsstop}

ARGUMENTS
None.

EXAMPLE
xipc> qbsstop
 SeqNo = 104408

QueSys Parameters, Functions and Macros 2—19

Date: 01/20/2004 - Revision: 4

2.2.7 QueBurstSendSync() - SYNCHRONIZE A SEND-BURST

NAME
QueBurstSendSync() - Synchronize A Send-Burst

SYNTAX
#include "xipc.h"

XINT
QueBurstSendSync(Mode)

PARAMETERS

Name Description

Mode Either QUE_WAIT or QUE_CALLBACK(UserCallBack, AcbPtr). See
Description below for details.

RETURNS

Value Description

RC > 0 Mode was specified as QUE_WAIT. RC is the burst sequence number of the last
send-burst message sent and successfully enqueued.

RC < 0 RC is set as QUE_ER_ASYNC when Mode was QUE_CALLBACK() and the
operation successfully went async. Otherwise, RC indicates an error situation (see error
codes below).

DESCRIPTION
Enqueuing messages in burst mode, using QueBurstSend(), does not provide a per message return code
indicating whether sent messages were successfully enqueued. Error reporting during a send-burst,
being asynchronous, can suffer from some latency. The situation can arise when an application needs to
confirm, periodically, that all messages sent during the current send-burst have been successfully
enqueued. The QueBurstSendSync() operation provides such a mechanism.
QueBurstSendSync() operates in one of two modes, depending on the specified value of Mode:
o QUE_WAIT - directs QueBurstSendSync() not to return until all messages already in the

send-burst have been successfully enqueued. It then returns the sequence number of the last
enqueued message.

o QUE_CALLBACK(UserCallBack, AcbPtr) - directs QueBurstSendSync() to
return its results asynchronously. The advantage of such a mode is that it provides a means for
receiving sync-point data about enqueued messages during a send-burst without temporarily
interrupting the flow of send-burst data.

For a more detailed discussion of QueBurstSendSync(), refer to the Advanced Topics chapter in the
QueSys/MemSys/SemSys User Guide.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—20

ERRORS
Code Description

QUE_ER_ASYNC Mode was QUE_CALLBACK(). Operation has gone
async.

QUE_ER_BADSYNCMODE Invalid Mode parameter.
QUE_ER_NOSUBSYSTEM QueSys is not configured in the instance.
QUE_ER_NOTINSENDBURST User not in send-burst.
QUE_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

__

INTERACTIVE COMMAND

SYNTAX
{queburstsendsync | qbssync} Mode

ARGUMENTS
Mode Either wait or a callback option. See the Advanced Topics section for a discussion of

Blocking Options.

EXAMPLE
xipc> queburstsendsync wait
 SeqNo = 104408

xipc> qbssync callback(cb1, a)
 RetCode = -1097
 Operation has gone Async

QueSys Parameters, Functions and Macros 2—21

Date: 01/20/2004 - Revision: 4

2.2.8 QueCopy() - COPY PORTION OF MESSAGE TEXT FROM TEXT POOL

NAME
QueCopy() - Copy Portion Of Message Text From Text Pool

SYNTAX
#include "xipc.h"

XINT
QueCopy(MsgHdr, Offset, Length, Buffer)

MSGHDR *MsgHdr;
XINT Offset;
XINT Length;
XANY *Buffer;

PARAMETERS

Name Description

MsgHdr A pointer to a message header. MsgHdr refers to a message whose text is recorded in
the message text pool.

Offset The number of bytes beyond the start of the message's text where the QueCopy()
operation should commence.

Length The number of bytes to copy from the message's text, starting at Offset bytes into
the message.

Buffer A pointer to a buffer for receiving the copied text.

RETURNS

Value Description

RC >= 0 Copy successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
QueCopy() copies a portion of a message's text from the message text pool into a user specified buffer.
QueCopy() accesses the message's text using its message header. Unlike QueRead(), QueCopy() does
not remove the copied text from the text pool and therefore does not decrement the associated text
block’s reference count.
QueCopy() will fail if MsgHdr is invalid or if the specified Offset and Length parameters
target an area that is outside the message's actual text space.
QueCopy() can be used for examining the contents of a message in a manner that is not sensitive to the
instance's physical network location.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—22

ERRORS
Code Description

QUE_ER_BADBUFFER Buffer is NULL.
QUE_ER_BADTARGET Offset and Length designate an invalid message text target

area.
QUE_ER_BADTEXT Invalid MsgHdr text pointer.
QUE_ER_NOSUBSYSTEM QueSys is not configured in the instance.
QUE_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.
XIPCNET_ER_TOOBIG Targeted text exceeds instance's size limit.

__

INTERACTIVE COMMAND

SYNTAX
quecopy MsgHdr Offset Length

ARGUMENTS
MsgHdr A one letter message header variable.

Offset Offset from the start of message text.

Length Length of text to copy, or * to copy the entire message.

EXAMPLES
xipc> queget a hp 0 wait
 RetCode = 0, Qid = 0, Seq# = 1221, Prio = 100, HdrStatus = REMOVED
xipc> quecopy a 0 22
 Text = "Mary had a little lamb"

QueSys Parameters, Functions and Macros 2—23

Date: 01/20/2004 - Revision: 4

2.2.9 QueCreate() - CREATE A NEW QUEUE

NAME
QueCreate() - Create a New Queue

SYNTAX
#include "xipc.h"

XINT
QueCreate(Name, LimitMsgs, LimitBytes)

CHAR *Name;
XINT LimitMsgs;
XINT LimitBytes;

PARAMETERS

Name Description

Name A pointer to a string that contains a symbolic name for publicly identifying the created
queue. The Name must be null terminated and must not exceed
QUE_LEN_XIPCNAME characters. If Name is QUE_PRIVATE then a private
queue is created. Duplicate queue names (other than QUE_PRIVATE) are not
allowed.

LimitMsgs The maximum number of messages that can reside on the queue at any one time. A
value of QUE_NOLIMIT indicates that no limit is to be enforced on the number of
messages allowed on the queue.

LimitBytes The maximum number of message text bytes that can reside on the queue at any
one time. A value of QUE_NOLIMIT indicates that no limit is to be enforced on the
number of message text bytes allowed on the queue.

RETURNS

Value Description

RC >= 0 Create successful. RC is Queue ID (Qid). Qid is to be used in all subsequent QueSys
calls that refer to this queue.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
QueCreate() creates a new queue in QueSys. Name is used for publicly identifying the new queue. A
Name of QUE_PRIVATE directs QueSys to create a private queue (i.e., having no public name).
The function returns the Qid of the created queue.
The queue is created with the capacity to hold up to a maximum of LimitMsgs messages and
LimitBytes bytes, whichever limit occurs first. Setting both limits to QUE_NOLIMIT creates a

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—24

queue which has no enforced size limitation and which will accept messages until overall instance
limitations are encountered (e.g., headers, text pool space, etc.).

ERRORS
Code Description

QUE_ER_BADLIMIT Invalid LimitMsgs or LimitBytes parameter.
QUE_ER_BADQUENAME Invalid Name parameter.
QUE_ER_CAPACITY_HEADER QueSys header table full.
QUE_ER_CAPACITY_NODE QueSys node table full.
QUE_ER_CAPACITY_TABLE Queue table full.
QUE_ER_DUPLICATE Queue with Name already exists.
QUE_ER_NOSUBSYSTEM QueSys is not configured in the instance.
QUE_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

__

INTERACTIVE COMMAND

SYNTAX
quecreate {Name | @PRIVATE} LimitMsgs LimitBytes

ARGUMENTS
Name Name of new queue (or, if @PRIVATE, a private queue indicator).

LimitMsgs Either maximum number of messages in queue or nolimit.

LimitBytes Either maximum number of text bytes in queue or nolimit.

EXAMPLES
xipc> quecreate ServerQueue nolimit 10000
 Qid = 0

QueSys Parameters, Functions and Macros 2—25

Date: 01/20/2004 - Revision: 4

2.2.10 QueDelete() - DELETE A QUEUE

NAME
QueDelete() - Delete a Queue

SYNTAX
#include "xipc.h"

XINT
QueDelete(Qid)

XINT Qid;

PARAMETERS

Name Description

Qid The Queue ID of the queue to be deleted. Qid was obtained by the user via
QueCreate() or QueAccess() function calls.

RETURNS

Value Description

RC >= 0 Delete successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
QueDelete() deletes the Queue identified by Qid from QueSys. QueDelete() will fail if the specified
queue is not empty, or if any users are waiting to dispatch or retrieve messages via queue Qid.

ERRORS
Code Description

QUE_ER_BADQID No queue with Qid.
QUE_ER_NOSUBSYSTEM QueSys is not configured in the instance.
QUE_ER_NOTEMPTY The queue is not empty.
QUE_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).
QUE_ER_WAITEDON A user is waiting for a message on Qid.

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—26

__

INTERACTIVE COMMAND

SYNTAX
quedelete Qid

ARGUMENTS
Qid Queue Id.

EXAMPLES
xipc> quedelete 5
 RetCode = 0

QueSys Parameters, Functions and Macros 2—27

Date: 01/20/2004 - Revision: 4

2.2.11 QueDestroy() - DESTROY A QUEUE

NAME
QueDestroy() - Destroy a Queue

SYNTAX
#include "xipc.h"

XINT
QueDestroy(Qid)

XINT Qid;

PARAMETERS

Name Description

Qid The Queue ID of the queue to be destroyed. Qid was obtained by the user via
QueCreate() or QueAccess() function calls.

RETURNS

Value Description

RC >= 0 Destroy successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
QueDestroy() removes the Queue identified by Qid from QueSys regardless of whether it has
messages on it, or whether other users are waiting to send or receive messages via the queue.
Messages residing on the queue are silently destroyed, reducing the text block count to zero. Users
blocked on QueSys calls involving queue Qid (such as QueSend(), QueReceive(), QuePut() or
QueGet()) are interrupted and are returned an error code of QUE_ER_DESTROYED indicating the
removal of queue Qid from QueSys.

ERRORS
Code Description

QUE_ER_BADQID No queue with Qid.
QUE_ER_NOSUBSYSTEM QueSys is not configured in the instance.
QUE_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—28

__

INTERACTIVE COMMAND

SYNTAX
quedestroy Qid

ARGUMENTS
Qid Queue Id.

EXAMPLES
xipc> quedestroy 5
 RetCode = 0

QueSys Parameters, Functions and Macros 2—29

Date: 01/20/2004 - Revision: 4

2.2.12 QueFreeze() - FREEZE QUESYS

NAME
QueFreeze() - Freeze QueSys

SYNTAX
#include "xipc.h"

XINT
QueFreeze()

PARAMETERS
None.

RETURNS

Value Description

RC >= 0 QueFreeze successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
QueFreeze() freezes all QueSys activity occurring within the logged in instance, and gives the calling
user exclusive access to all QueSys functionality. QueSys remains frozen until a QueUnfreeze(),
XipcUnfreeze() or a XipcLogout() function call is issued.
QueFreeze() prevents all other users, working within the QueSys, from proceeding with QueSys
operations - until a bracketing QueUnfreeze(), XipcUnfreeze() or XipcLogout() is issued. The
subsystem should therefore be kept frozen for as short a period of time as possible.

ERRORS
Code Description

QUE_ER_NOSUBSYSTEM QueSys is not configured in the instance.
QUE_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).
QUE_ER_ISFROZEN Calling user has already frozen QueSys.

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—30

__

INTERACTIVE COMMAND

SYNTAX
quefreeze

ARGUMENTS
None.

EXAMPLES
xipc> quefreeze
 RetCode = 0

QueSys Parameters, Functions and Macros 2—31

Date: 01/20/2004 - Revision: 4

2.2.13 QueGet() - GET A MESSAGE HEADER FROM A QUEUE

NAME
QueGet() - Get a Message Header From a Queue

SYNTAX
#include "xipc.h"

XINT
QueGet(MsgHdr, QueSelectCode, QidList, RetPrio, RetQid,
 Options)

MSGHDR *MsgHdr;
XINT QueSelectCode;
QIDLIST QidList;
XINT *RetPrio;
XINT *RetQid;
... Options;

PARAMETERS

Name Description

MsgHdr A pointer to a message header. MsgHdr is returned with the header
information of the gotten message.

QueSelectCo
de

A code indicating the selection criteria to be used in determining the gotten
message of the QueGet() operation. The selected message is taken from one of
the Qids in QidList. The possible values for QueSelectCode are listed
in Appendix B.

QidList A list of Qids, possibly specified within Message Select Code macros, to be
used in specifying candidate messages for consideration by the QueGet()
operation. QueGet() selects one of the candidate messages based on the value
of QueSelectCode. A QIDLIST is constructed using QueList() or
QueListBuild() and is updated using QueListAdd(). A pointer to a QIDLIST
(type PQIDLIST) may be passed as well.

RetPrio A pointer to a variable that gets set by QueGet(), upon successful return, with
the priority of the retrieved message; or NULL if no return value is desired.

RetQid A pointer to a variable that gets assigned by QueGet() upon its return; or
NULL if no return value is desired. Successful QueGet() operations (RC >= 0)
return with *RetQid equal to the Qid of the selected source queue (from within
QidList) that provided the gotten message. Cancelled QueGet() operations
having RC = QUE_ER_DESTROYED or QUE_ER_PURGED, return with
*RetQid equal to the destroyed or purged Qid. Failed calls with RC =
QUE_ER_BADQID return with *RetQid equal to the invalid Qid. *RetQid is
otherwise undefined.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—32

Options
The Options parameter is of the form:

 [QUE_NOREMOVE |] BlockOpt

The QUE_NOREMOVE flag (placed to the left of the blocking option) is
optional. When specified, the accessed message header is not dequeued.
Rather, a fully functional copy of the message header is retrieved. BlockOpt
specifies the blocking option. See Appendix A, Using Blocking XsIPC
Functions, for a description of BlockOpt.

RETURNS

Value Description

RC >= 0 Get successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
QueGet() attempts to get (and possibly remove) a QueSys message header from one of the Qids in
QidList. The determination of which message header is gotten is based on each Qid's Message Select
Code as listed in QidList, in conjunction with the value of QueSelectCode. QueGet() sets MsgHdr with
header information from the retrieved message header . *RetPrio gets assigned with the retrieved
message's priority.
It is acceptable to have a null RetQid or RetPrio argument; it is not necessary to declare and specify
return variables for acquiring return values that are not desired. In addition, QueGet() can specify
whether the returned RetPrio should be populated with the Priority of the retrieved message or the
Sequence number of the retrieved message. This is accomplished by using one of the two optional
flags, QUE_RETPRIO or QUE_RETSEQ, which determine which value is returned with the
message. The default value is QUE_RETPRIO, in order to preserve backward compatibility.
The retrieved message is removed from the queue unless the QUE_NOREMOVE option is specified. In
that case, a fully functional copy of the gotten message header is returned, and the actual header remains
on the queue. In either case, the message text (if any) remains untouched, in the message text pool. The
returned message header copy may subsequently be used by QueBrowse() as a reference point for
browsing a queue's messages. Alternatively, it can be used via QueRemove() to dequeue the actual
header.
QueGet() is given the potential to block or complete asynchronously by setting BlockOpt appropriately.
The operation will block or complete asynchronously if either all the listed queues are empty, or they
contain messages not matching their respective Message Select Codes. The QueGet() operation will
complete when the reason for not completing is removed, usually by another user's actions. Specifically:
o Another user calling QueSend() or QuePut() to place a message on one of the involved

queues.
See Appendix A, Using Blocking XsIPC Functions, for a description of how to use the blocking
options.
Message headers removed via QueGet() from one queue can be placed via QuePut() onto another
queue. Message transfer can thus be accomplished without any message text copying.
The MSGHDR data structure is defined as follows:

QueSys Parameters, Functions and Macros 2—33

Date: 01/20/2004 - Revision: 4

typedef struct _MSGHDR
{
 XINT GetQid; /* Last Qid msg was on */
 XINT HdrStatus; /* Rmvd or Not Rmvd, etc */
 XINT Priority; /* Message's priority */
 XINT SeqNum; /* Msg sequence # within queue */
 XINT TimeVal; /* Msg sequence number within QueSys */
 XINT Size; /* Numb. of bytes in msg */
 XINT TextOffset; /* Offset of msg's text in text-pool */
 XINT Uid; /* The User-Id of user that sent msg */
 CHAR Data[MSGHDR_DATASIZE]; /* User data field */
}
MSGHDR;

ERRORS
Code Description

QUE_ER_ASYNC Operation is being performed asynchronously.
QUE_ER_ASYNCABORT Asynchronous operation aborted before completion. This

error code is not returned by the function call. It is set in the
Asynchronous Result Control Block RetCode field.

QUE_ER_BADBLOCKOPT Invalid BlockOpt.
QUE_ER_BADMSGSELECTCOD
E

Invalid MsgSelectCode within QidList.

QUE_ER_BADOPTION Invalid Options parameter.
QUE_ER_BADQID Bad Qid in QidList (= *QidPtr).
QUE_ER_BADQIDLIST Invalid QidList parameter.
QUE_ER_BADQUESELECTCOD
E

Invalid QueSelectCode parameter.

QUE_ER_CAPACITY_ASYNC_
USER

QueSys async user table full.

QUE_ER_CAPACITY_NODE QueSys node table full.
QUE_ER_DESTROYED Another user destroyed a queue that the blocked QueGet()

call was waiting on. The blocked QueGet() operation was
cancelled. No message was gotten.

QUE_ER_INTERRUPT Operation was interrupted.
QUE_ER_ISFROZEN A BlockOpt of QUE_WAIT or QUE_TIMEOUT() was

specified after the instance was frozen by the calling user.
QUE_ER_NOASYNC An asynchronous operation was attempted with no

asynchronous environment present.
QUE_ER_NOSUBSYSTEM QueSys is not configured in the instance.
QUE_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).
QUE_ER_NOWAIT BlockOpt of QUE_NOWAIT was specified and request was

not immediately satisfied.
QUE_ER_PURGED Another user purged a queue that the blocked QueGet() call

was waiting on. The blocked QueGet() operation was
cancelled. No message was gotten.

QUE_ER_TIMEOUT The blocked QueGet() operation timed out.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—34

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

__

INTERACTIVE COMMAND

SYNTAX
queget MsgHdr QueSelectCode QidList [noremove,] [retprio, |
retseq,]BlockingOpt

ARGUMENTS
MsgHdr A one letter message header variable.

QueSelectCode A message retrieval queue select code. (This is presented in the QueSys
Functions and Macros chapter, under Macros.) The prefix "QUE_Q_" of the
queue select code should be omitted; e.g., instead of QUE_Q_EA, use ea.

QidList A list of Queue Ids, possibly specified with message select codes. (This is
presented in the QueSys Functions and Macros chapter, under Macros.) The
prefix "QUE_M_" of the message select code should be omitted; e.g., instead
of QUE_M_HP(1), use hp(1).

BlockingOpt See the Blocking Options discussion in the xipc command (Interactive
Command Processor) section at the beginning of this Manual.

EXAMPLES
xipc> queget a ea 0 wait
 RetCode = 0, Qid = 0, Seq# = 1221, Prio = 100, HdrStatus = REMOVED

xipc> queget c lnq hp(0),hp(1) wait
 RetCode = 0, Qid = 1, Seq# = 21221, Prio = 1100, HdrStatus = REMOVED

xipc> queget e hp 1,2,4,8 noremove,nowait
 RetCode = 0, Qid = 4, Seq# = 212, Prio = 1101, HdrStatus = NOT-REMOVED

QueSys Parameters, Functions and Macros 2—35

Date: 01/20/2004 - Revision: 4

2.2.14 QueInfoQue() - GET QUEUE INFORMATION

NAME
QueInfoQue() - Get Queue Information

SYNTAX
#include "xipc.h"

XINT
QueInfoQue(Qid, InfoQue)

XINT Qid;
QUEINFOQUE *InfoQue;

PARAMETERS

Name Description

Qid The queue ID of the queue whose information is desired, or QUE_INFO_FIRST, or
QUE_INFO_NEXT(Qid). Qid can be obtained via QueCreate() or QueAccess()
function calls.

InfoQue Pointer to a structure of type QUEINFOQUE, into which the queue information will be
copied.

RETURNS

Value Description

RC >= 0 Successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
QueInfoQue() fills the specified structure with information about the queue identified by Qid. The Qid
argument can be specified as one of the following:
♦ Qid - a queue id identifying a specific queue
♦ QUE_INFO_FIRST - identifies the first valid queue id
♦ QUE_INFO_NEXT(Qid) - identifies the next valid queue id, following Qid.
A program reviewing the status of all queues within an instance should call QueInfoQue() specifying
QUE_INFO_FIRST, followed by repeated calls to the function specifying QUE_INFO_NEXT until
the QUE_ER_NOMORE error code is returned.
Each QueSys queue has a Wait List (WList) of information associated with it; the elements comprising
a queue's WList depend on the mix of blocked operations occurring at the time of the QueInfoQue call:
o A WList element exists for every blocked QuePut() or QueSend() operation targeting the

subject queue. The list element identifies the nature of the blocked QuePut or QueSend
operation.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—36

o A WList element exists for every blocked QueGet() or QueReceive() operation involving the
subject queue. The list element identifies the details of the blocked QueGet() or QueReceive()
operation.

The QUEINFOQUE data structure is as follows:
/*
 * The QUEINFOQUE structure is used for retrieving status information
 * about a particular QueSys message queue. QueInfoQue() fills the
 * structure with the data about the Qid it is passed.
 */
typedef struct _QUEINFOQUE
{
 XINT Qid;
 XINT CreateTime; /* Time queue was created */
 XINT CreateUid; /* The Uid who created it */
 XINT LastUid; /* Last Uid to use queue */
 LBITS QueType; /* - Not Used - */
 XINT LimitMessages; /* Max message capacity */
 XINT LimitBytes; /* Max byte capacity */
 XINT CountMessages; /* Current number of msgs */
 XINT CountBytes; /* Current number of bytes */
 XINT CountIn; /* Number msgs entered que */
 XINT CountOut; /* Number msgs exited que */
 XINT LastUidGet; /* Last Uid to put a msg */
 XINT LastUidPut; /* Last Uid to get a msg */
 XINT SpoolFlag; /* Spooling: ON or OFF */
 XINT SpoolMessages; /* Number msgs spooled */
 XINT SpoolBytes; /* Number bytes spooled */
 XINT WListTotalLength;
 XINT WListOffset;
 XINT WListLength;
 QUE_QUEWLISTITEM WList[QUE_LEN_INFOLIST];
 CHAR SpoolFileName[QUE_LEN_PATHNAME+1];
 CHAR Name[QUE_LEN_XIPCNAME + 1]; /* Queue name */
}
QUEINFOQUE;

where:
WListTotalLength returns with the total internal length of the WList for this queue.
WListOffset is set by the user, prior to the QueInfoQue() function call, to specify the portion of
the WList that should be returned (i.e. what offset to start from).
WListLength returns with the length of the WList portion returned by the current call to
QueInfoQue(). More specifically, WListLength is the number of elements returned in the WList
array. WListLength will be between 0 and QUE_LEN_INFOLIST.
WList is an array of list elements, where each element is of type QUE_QUEWLISTITEM. The
QUE_QUEWLISTITEM data type is defined in quepubd.h. The data structure follows:
typedef struct _QUE_QUEWLISTITEM
{
 XINT OpCode; /* PUT or GET */
 union
 {
 struct
 {
 XINT Uid; /* User blocked */
 XINT MsgSize; /* Putting Msg */
 XINT MsgPrio; /* Msg Priority */
 }

QueSys Parameters, Functions and Macros 2—37

Date: 01/20/2004 - Revision: 4

 Put;

 struct
 {
 XINT Uid; /* User blocked */
 XINT MsgSelCode; /* Getting Msg */
 XINT Parm1;
 XINT Parm2;
 }
 Get;
 }
 u;
}
QUE_QUEWLISTITEM;

A call to QueInfoQue() should be preceded by the setting of the WListOffset field of the
QUEINFOQUE structure to an appropriate value.

For a full example and more complete information on using the Info functions, refer to the Advanced
Topics chapter of the XsIPC User Guide.

ERRORS
Code Description

QUE_ER_ASYNC Operation is being performed asynchronously.
QUE_ER_ASYNCABORT Asynchronous operation aborted before completion. This

error code is not returned by the function call. It is set in the
Asynchronous Result Control Block RetCode field.

QUE_ER_BADBLOCKOPT Invalid BlockOpt.
QUE_ER_BADMSGSELECTCOD
E

Invalid MsgSelectCode within QidList.

QUE_ER_BADOPTION Invalid Options parameter.
QUE_ER_BADQID Bad Qid in QidList (= *QidPtr).
QUE_ER_BADQIDLIST Invalid QidList parameter.
QUE_ER_BADQUESELECTCOD
E

Invalid QueSelectCode parameter.

QUE_ER_CAPACITY QueSys internal system capacity error.
QUE_ER_DESTROYED Another user destroyed a queue that the blocked QueGet()

call was waiting on. The blocked QueGet() operation was
cancelled. No message was gotten.

QUE_ER_INTERRUPT Operation was interrupted.
QUE_ER_ISFROZEN A BlockOpt of QUE_WAIT or QUE_TIMEOUT() was

specified after the instance was frozen by the calling user.
QUE_ER_NOASYNC An asynchronous operation was attempted with no

asynchronous environment present.
QUE_ER_NOMORE No more queues.
QUE_ER_NOSUBSYSTEM QueSys is not configured in the instance.
QUE_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—38

QUE_ER_NOWAIT BlockOpt of QUE_NOWAIT was specified and request was
not immediately satisfied.

QUE_ER_PURGED Another user purged a queue that the blocked QueGet() call
was waiting on. The blocked QueGet() operation was
cancelled. No message was gotten.

QUE_ER_TIMEOUT The blocked QueGet() operation timed out.

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

__

INTERACTIVE COMMAND

SYNTAX
queinfoque QueId | first | next(QueId)

ARGUMENTS
QueId Print info on the first queue, the queue with Qid QueId or the next higher queue.

EXAMPLES
xipc> queinfoque 5
 Name: 'ServerQue'
 Message limit: 100 Bytes Limit: 10000
 . . .

QueSys Parameters, Functions and Macros 2—39

Date: 01/20/2004 - Revision: 4

2.2.15 QueInfoSys() - GET SUBSYSTEM INFORMATION

NAME
QueInfoSys() - Get Subsystem Information

SYNTAX
#include "xipc.h"

XINT
QueInfoSys(InfoSys)

QUEINFOSYS *InfoSys;

PARAMETERS

Name Description

InfoSys Pointer to a structure of type QUEINFOSYS, into which subsystem information will be
copied.

RETURNS

Value Description

RC >= 0 Successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
QueInfoSys() fills the specified structure with information about the QueSys of the instance that the user
is currently logged into.
The QueSys subsystem has a Wait List (WList) of information associated with it; the elements
comprising the WList are as follows:
o A WList element exists for every blocked QueWrite() operation occurring in the subsystem at

the time of the QueInfoSys() call.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—40

The QUEINFOSYS data structure is as follows:

/*
 * The QUEINFOSYS structure is used for retrieving status information
 * about the QueSys instance. QueInfoSys() fills the structure with the
 * data about the instance.
 */

typedef struct _QUEINFOSYS /* system information */
{
 XINT MaxUsers; /* Max configured users */
 XINT CurUsers; /* Number of current users */
 XINT MaxQueues; /* Max configured queues */
 XINT CurQueues; /* Number of current queues */
 XINT MaxNodes; /* Max configured nodes */
 XINT FreeNCnt; /* Current available nodes */
 XINT MaxHeaders; /* Max configured headers */
 XINT FreeHCnt; /* Current available hdrs */
 XINT SplTickSizeBytes; /* Configured spool tick value */
 XINT MsgPoolSizeBytes; /* Configured text pool size */
 XINT MsgTickSize; /* Configured text tick size */
 XINT MsgPoolTotalAvail; /* Free text pool space */
 XINT MsgPoolLargestBlk; /* Largest contig block */
 XINT MsgPoolMaxPosBlks; /* Max possible tick blocks */
 XINT MsgPoolTotalBlks; /* Number allocated blocks */
 XINT WListTotalLength;
 XINT WListOffset;
 XINT WListLength;
 QUE_SYSWLISTITEM WList[QUE_LEN_INFOLIST];
 CHAR Name[QUE_LEN_PATHNAME + 1]; /* InstanceFileName */
}
QUEINFOSYS;

where:
WListTotalLength returns with the total internal length of the WList.
WListOffset is set by the user, prior to the QueInfoSys() function call, to specify the portion of
the WList that should be returned (i.e. what offset to start from).
WListLength returns with the length of the WList portion returned by the current call to
QueInfoSys(). More specifically, WListLength is the number of elements returned in the WList
array. WListLength will be between 0 and QUE_LEN_INFOLIST.
WList is an array of list elements, where each element is of type QUE_SYSWLISTITEM. The
QUE_SYSWLISTITEM data type is defined in quepubd.h. The data structure follows:
typedef struct _QUE_SYSWLISTITEM
{

 XINT Uid; /* User Blked */
 XINT MsgSize; /* Write size */
}
QUE_SYSWLISTITEM;

A call to QueInfoSys() should be preceded by the setting of the WListOffset field of the
QUEINFOSYS structure to an appropriate value.
For a full example and more complete information on using the Info functions, refer to the Advanced
Topics chapter of the XsIPC User Guide.

QueSys Parameters, Functions and Macros 2—41

Date: 01/20/2004 - Revision: 4

ERRORS
Code Description

QUE_ER_BADLISTOFFSET Invalid offset value specified.
QUE_ER_NOSUBSYSTEM QueSys is not configured in the instance.
QUE_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

__

INTERACTIVE COMMAND

SYNTAX
queinfosys

ARGUMENTS
None.

EXAMPLES
xipc> queinfosys
 Configuration: '/usr/config'
 Maximum Current
 Users: 60 11
 .
 .
 .

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—42

2.2.16 QueInfoUser() - GET QUESYS USER INFORMATION

NAME
QueInfoUser() - Get User Information

SYNTAX
#include "xipc.h"

XINT
QueInfoUser(Uid, InfoUser)

XINT Uid;
QUEINFOUSER *InfoUser;

PARAMETERS

Name Description

Uid The user ID of the user whose information is desired, or QUE_INFO_FIRST, or
QUE_INFO_NEXT(Uid). Uid may be an asynchronous Uid (AUid).

InfoUser Pointer to a structure of type QUEINFOUSER, into which the user information will be
copied.

RETURNS

Value Description

RC >= 0 Successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
QueInfoUser() fills the specified structure with information about the user identified by Uid. The Uid
argument can be specified as one of the following:
♦ Uid - an integer user ID identifying a specific user
♦ QUE_INFO_FIRST - identifies the first valid user ID within the instance
♦ QUE_INFO_NEXT(Uid) - identifies the next valid user ID, following Uid.
A program reviewing the status of all users currently within QueSys would call QueInfoUser() specifying
QUE_INFO_FIRST, followed by repeated calls to the function specifying QUE_INFO_NEXT until
the QUE_ER_NOMORE error code is returned.
Each QueSys user has a Wait List (WList) of information associated with it.
A user can be blocked on one of three QueSys operations: QuePut(), QueGet() or QueWrite(). The
elements comprising the WList depend on the operation involved:
o During a blocked QuePut() operation, the WList identifies the list of Qids targeted by the

blocked QuePut() (or QueSend()) call.
o During a blocked QueGet() operation, the WList identifies the list of Qids, and their respective

Message Select Criteria, targeted by the blocked QueGet() (or QueReceive()) call.

QueSys Parameters, Functions and Macros 2—43

Date: 01/20/2004 - Revision: 4

o During a blocked QueWrite() operation, the WList is a single element list. The list element
identifies the nature of the blocked QueWrite() (or QueSend()) operation.

The QUEINFOUSER data structure is as follows:

/*
 * The QUEINFOUSER structure is used for retrieving status information
 * about a particular QueSys user. QueInfoUser() fills the structure
 * with the data about the Uid it is passed.
 */

typedef struct _QUEINFOUSER
{
 XINT Uid;
 XINT Pid; /* Process ID of user */
 TID Tid; /* Thread ID of user */
 XINT LoginTime; /* Time of login to QueSys */
 XINT TimeOut; /* Remaining timeout secs */
 XINT WaitType; /* One of: QUE_BLOCKEDWRITE,

QUE_BLOCKEDPUT,
QUE_BLOCKEDGET or QUE_USER_NOTWAITING

 */
 XINT CountPut; /* Number of msgs put */
 XINT CountGet; /* Number of msgs gotten */
 XINT LastQidPut; /* Last Qid msg was put on */
 XINT LastQidGet; /* Last Qid msg taken from */
 XINT WListTotalLength;
 XINT WListOffset;
 XINT WListLength;
 QUE_USERWLISTITEM WList[QUE_LEN_INFOLIST];
 CHAR Name[QUE_LEN_XIPCNAME + 1]; /* User login name /
 CHAR NetLoc[XIPC_LEN_NETLOC + 1]; /* Name of Client Node */
}
QUEINFOUSER;
where:

WListTotalLength returns with the total internal length of the WList for the specified user.
WListOffset is set by the user, prior to the QueInfoUser() function call, to specify the portion of
the WList that should be returned (i.e. what offset to start from).
WListLength returns with the length of the WList portion returned by the current call to
QueInfoUser(). More specifically, WListLength is the number of elements returned in the WList
array. WListLength will be between 0 and QUE_LEN_INFOLIST.
WList is an array of list elements, where each element is of type QUE_USERWLISTITEM. The
QUE_USERWLISTITEM data type is defined in quepubd.h. The data structure follows:
typedef struct _QUE_USERWLISTITEM
{
 XINT OpCode; /* PUT, GET or WRITE */

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—44

 union
 {
 struct
 {
 XINT Qid; /* Que Blocked */
 XINT MsgSize; /* Putting Msg */
 XINT MsgPrio; /* Msg Priority */
 }
 Put;

 struct
 {
 XINT Qid; /* Que Blocked */
 XINT MsgSelCode; /* Getting Msg */
 XINT Parm1;
 XINT Parm2;
 }
 Get;
 struct
 {
 XINT MsgSize; /* Write Blocked */
 }
 Write;
 }
 u;
}
QUE_USERWLISTITEM;

A call to QueInfoUser() should be preceded by the setting of the WListOffset field of the
QUEINFOUSER structure to an appropriate value.
For a full example and more complete information on using the Info functions, refer to the Advanced
Topics chapter of the XsIPC User Guide.

ERRORS
Code Description

QUE_ER_BADUID No user with specified Uid.
QUE_ER_BADLISTOFFSET Invalid offset value specified.
QUE_ER_NOSUBSYSTEM QueSys is not configured in the instance.
QUE_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).
QUE_ER_NOMORE No more user entries.

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

QueSys Parameters, Functions and Macros 2—45

Date: 01/20/2004 - Revision: 4

__

INTERACTIVE COMMAND

SYNTAX
queinfouser UserId | first | next(UserId) | all

ARGUMENTS
UserId Print info on the first user, the user with Uid Uid or the next higher user.

QueId

EXAMPLES
xipc> queinfouser 9
 Name: 'QueueServer' Pid: 241 Tid: 0
 Login Time:...
 .
 .
 .

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—46

2.2.17 QueList(), QueListBuild - BUILD LISTS OF QIDS

NAME
QueList() - Create a One-Time List of Qids

QueListBuild() - Build a Reusable List of Qids

SYNTAX
#include "xipc.h"

PQIDLIST
QueList(QidListElement1, QidListElement2, ..., QUE_EOL)

XINT QidListElement1;
XINT QidListElement2;
...

PQIDLIST
QueListBuild(QidList, QidListElement1, QidListElement2, ...,
QUE_EOL)

QIDLIST QidList;
XINT QidListElement1;
XINT QidListElement2;
...

PARAMETERS

Name Description

QidList An area to contain the resultant QIDLIST. A pointer to
a QIDLIST (type PQIDLIST) may be passed as well.

QidListElement1,QidListElement2, The components of the QIDLIST to be built.
Each element is either a Qid or a Message Select Code
macro applied to a Qid. QUE_EOL must be used to
mark the end of the argument list.

RETURNS

Value Description

RC != NULL A pointer to the created QIDLIST. For QueListBuild()it is a pointer to the QidList
specified as an argument. For QueList() it is a pointer to an internal QidList.

RC == NULL QidList exceeded QUE_LEN_QIDLIST elements.

QueSys Parameters, Functions and Macros 2—47

Date: 01/20/2004 - Revision: 4

DESCRIPTION
These functions are used for building QIDLISTs in a format acceptable by QuePut(), QueGet(),
QueSend() and QueReceive(). QUE_EOL must be the last argument to QueListBuild() and QueList().
QueListBuild() builds the list in the area specified by QidList. QueList() creates the list in an internal
static area, and can therefore be safely used only once. The elements specified to QueList() or
QueListBuild() are defined as follows, depending on the function call which will use the QIDLIST:
o Message Dispatch - QuePut() and QueSend().
 The elements that go into QIDLISTs to be used for message dispatch operations are the Qids

of the queues to be targeted by the QuePut() or QueSend() operation.
For example, the construction of a QIDLIST for a message dispatch operation targeting
queues QidA, QidB and QidC would be:

 QueListBuild(QidList1, QidA, QidB, QidC, QUE_EOL);

The constructed QIDLIST (in this case QidList1) could then be used within a QuePut() as
follows:

 QuePut(&MsgHdr, QUE_Q_SHQ, QidList1, Priority, &RetQid, QUE_WAIT);

The above QuePut() would place MsgHdr onto the shortest of the three queues represented
by QidA, QidB and QidC. In fact the very same QIDLIST could then be reused:

 QuePut(&MsgHdr, QUE_Q_LPQ, QidList1, Priority, &RetQid, QUE_WAIT);

This QuePut() would select as its target the queue having the lowest priority message among
QidA, QidB and QidC.

The same rules and usage apply to QueSend().

Note that when QueList() is used, it is usually embedded directly into the called function's
sequence of arguments. The following example is identical to the previous QuePut() statement:

 QuePut(&MsgHdr, QUE_Q_LPQ, QueList(QidA, QidB, QidC, QUE_EOL),
 Priority, &RetQid, QUE_WAIT);

o Message Retrieval - QueGet() and QueReceive().
 Building a QIDLIST for a QueGet() or a QueReceive() operation is slightly more involved.

For these functions the QIDLIST serves two purposes:
- Presenting the list of source Qids to consider for retrieving a message from.
- Identifying a "candidate message" from each of the listed Qids.
As such, the elements are usually Message Select Code macros, as will now be demonstrated.
Consider the following example:

 QueListBuild(QidList2,
 QUE_M_HP(QidA),
 QUE_M_HP(QidB),
 QUE_M_HP(QidC),
 QUE_EOL);

This call builds QidList2 so that it can be used to identify the highest priority messages from
each of the queues QidA, QidB and QidC. QidList2 can then be used as follows:

 QueGet(&MsgHdr, QUE_Q_LNQ, QidList2, &Priority, &RetQid, QUE_WAIT);

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—48

This call retrieves the candidate message from the longest of the three queues. The net effect is
the retrieval of the highest priority message from the longest of the three queues QidA, QidB
and QidC.

QIDLISTs created using QueListBuild() can be reused for different objectives. For example,
QidList2 as created in the previous example can be used again as follows:

 QueGet(&MsgHdr, QUE_Q_EA, QidList2, &Priority, &RetQid, QUE_WAIT);

This call retrieves the oldest ("earliest arrived") of the highest priority messages residing on the
three source queues.

Sections 2.3.1 and 2.3.2 provide a complete and detailed list of the available Message Select Code
and Queue Select Code macros.
Refer to the Appendix "Using Message Select Codes and Queue Select Codes" for a thorough
description of the 'hows and whens' of working with Message Select Codes and Queue Select Codes.

ERRORS
None.

QueSys Parameters, Functions and Macros 2—49

Date: 01/20/2004 - Revision: 4

2.2.18 QueListAdd(), QueListRemove() – UPDATE LIST OF QIDS

NAME
QueListAdd() - Add to a List of Qids

QueListRemove() - Remove from a List of Qids

SYNTAX
#include "xipc.h"

PQIDLIST
QueListAdd(QidList, QidListElement1, QidListElement2, ...,
QUE_EOL)

QIDLIST QidList;
XINT QidListElement1;
XINT QidListElement2;
...

PQIDLIST
QueListRemove(QidList, QidListElement1, QidListElement2,...,
QUE_EOL)

QIDLIST QidList;
XINT QidListElement1;
XINT QidListElement2;
...

PARAMETERS

Name Description

QidList The QIDLIST to be updated. A pointer to a QIDLIST
(type PQIDLIST) may be passed as well.

QidListElement1,QidListElement2, The components to be added to or removed
from the QIDLIST. Each element is either a Qid or a
Message Select Code macro applied to a Qid.
QUE_EOL must be used to mark the end of the
argument list.

RETURNS

Value Description

RC != NULL A pointer to the updated QIDLIST specified as an argument..

RC == NULL The operation failed. The QidList specified as an argument remains unchanged.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—50

DESCRIPTION
These functions are used for modifying QIDLISTs by adding or removing elements. The elemnts
specified to QueListAdd() or QueList Remove() may be plain Qids, or Qids with Message Selecte
Code macros applied, or a combination of both. QUE_EOL must be the last argument to
QueListAdd() and QueListRemove ().
QueListAdd() adds elements to an existing QIDLST. The new elements are added at the end of the
specified QidList. If the number of elements being added, plus the current number of elements in the
QIDLIST, exceeds QUE_LEN_QIDLIST, then the operation fails, NULL is returned and Qidlist
remains unchanged.
QueListRemove() removes elements from an existing QIDLIST. QueList Remove() behaves differently
for elements which are plain Qids than for elements which are Qids with Message Select Code macros
applied.
If a plain Qid is specified, all elements of the QidList containing the Qid are removed. If there are no
such element, no change is made to the QidList, but the operation still succeeds.
If a Qid with Message Select Code macro is specified, it must match an element of the QidList exactly,
and then that element is removed. If it does not match an element of the QidList, the operation fails.
If the operation succeeds, a poitner to the modified argument QidList is returned, otherwise NULL is
returned and the argument QidList remains unchanged.

ERRORS
None.

QueSys Parameters, Functions and Macros 2—51

Date: 01/20/2004 - Revision: 4

2.2.19 QueListCount() - GET NUMBER OF ELEMENTS IN A LIST OF QIDS

NAME
QueListCount() - Get Number of Elements in a List of Qids

SYNTAX
#include "xipc.h"

XINT
QueListCount(QidList)

QIDLIST QidList;

PARAMETERS

Name Description

QidList A QIDLIST or a pointer to a QIDLIST (type
PQIDLIST).

RETURNS

Value Description

RC < 0 The QIDLIST is invalid..

RC > = 0 Number of elements in QidList.

DESCRIPTION
QueListCount() is used for determining the number of elements contained in QIDLIST.

ERRORS
None.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—52

2.2.20 QueMsgHdrDup() - CREATE COPY OF MESSAGE HEADER

NAME
QueMsgHdrDup() - Create Copy of a Message Header

SYNTAX
#include "xipc.h"

QueMsgHdrDup(ExistingMsgHdr, NewMsgHdr)
MSGHDR *ExistingMsgHdr;
MSGHDR *NewMsgHdr

PARAMETERS

Name Description

ExistingMsgHdr A pointer to the message header to be duplicated. ExisitngMsgHdr
refers to a message whose text is in the Message Text Pool (whether or not the
header had been gotten using QUE_NOREMOVE)..

NewMsgHdr A pointer to the new message header.

RETURNS

Value Description

RC >= 0 QueMsgHdrDup successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
QueMsgHdrDup() allows a user to create a copy of a MSGHDR. The critical aspect of this function is
that it does not actually copy the text data, but rather internally increments the affected text-pool block's
reference count by one. The function is passed a pointer to two MSGHDRs, ExistingMsgHdr and
NewMsgHdr.
Following the call, both MSGHDRs reference the same message text-pool block.

QueSys Parameters, Functions and Macros 2—53

Date: 01/20/2004 - Revision: 4

ERRORS
Code Description
QUE_ER_NOSUBSYSTEM QueSys is not configured in the instance.
QUE_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.
XIPCNET_ER_TOOBIG Message text exceeds instance's size limit.

__

INTERACTIVE COMMAND

SYNTAX
quemsghdrdup ExistingMsgHdr NewMsgHdr

ARGUMENTS
ExistingMsgHdr A one letter message header variable containing the existing message header to
copy.

NewMsgHdr A one letter message header variable which will be assigned the duplicated
message header.

EXAMPLES

xipc> quemsghdrdup a b
 Qid = 2, Seq# = 146, Prio = 100, Uid = 10, HdrStatus = DUPLICATED

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—54

2.2.21 QuePointer() - GET POINTER TO A MESSAGE'S TEXT

NAME
QuePointer() - Get Pointer to a Message's Text

SYNTAX
#include "xipc.h"

QuePointer(MsgHdr, RetPtr)

MSGHDR *MsgHdr;
XANY **RetPtr;

PARAMETERS

Name Description

MsgHdr A pointer to a message header. MsgHdr refers to a message whose text is recorded in
the Message Text Pool.

RetPtr A pointer to the pointer variable that is returned with the text pointer; or NULL if no
return value is desired.

RETURNS

Value Description

RC >= 0 QuePointer successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
QuePointer() obtains a pointer to the first byte (offset 0L) of the text associated with the message
header it is passed. The pointer can then be used for directly accessing the message's text
Using QuePointer() to examine the contents of a message's text, without accessing its entire text and
removing it from the message text pool, can be a very useful method for determining the importance of a
message to a program's processing.
Manipulating a message's text space should generally be avoided. If it is necessary, great care should be
employed to prevent against overstepping the boundary of the message's text space. Recall that the size
of a message is stored as part of the message header (i.e., MsgHdr->Size).
QuePointer() will return with a valid pointer to the message's text if the instance involved is local to the
calling program (on the same physical node). Requests for a pointer to a message's text regarding a
network instance that is not local, return a QUE_ER_NOTLOCAL error code.

QueSys Parameters, Functions and Macros 2—55

Date: 01/20/2004 - Revision: 4

ERRORS
Code Description
QUE_ER_BADBUFFER Ptr is NULL.
QUE_ER_BADTEXT The text pointer in MsgHdr is invalid.
QUE_ER_NOTLOCAL Instance is not local.
QUE_ER_NOSUBSYSTEM QueSys is not configured in the instance.
QUE_ER_NOTLOGGEDIN User not logged into instance (User never

logged in, was aborted or disconnected).

__

INTERACTIVE COMMAND

SYNTAX
quepointer MsgHdr

ARGUMENTS
MsgHdr A one letter message header variable.

EXAMPLES
xipc> queget a ea 0 wait
 Qid = 0, Seq# = 1234, Prio = 1000, HdrStatus = REMOVED
xipc> quepointer a
 Pointer = 0000A03C

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—56

2.2.22 QuePurge() - PURGE A QUEUE

NAME
QuePurge() - Purge a Queue

SYNTAX
#include "xipc.h"

XINT
QuePurge(Qid)

XINT Qid;

PARAMETERS

Name Description

Qid The Queue ID of the queue to be Purged. Qid was obtained by the user via
QueCreate() or QueAccess() function calls.

RETURNS

Value Description

RC >= 0 Purge successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
QuePurge() deletes all the messages from the Queue identified by Qid regardless of whether other users
are waiting to send or receive messages via the queue. Users blocked on QueSys calls involving queue
Qid (such as QueSend(), QueReceive(), QuePut() or QueGet()) are interrupted and returned an error
code of QUE_ER_PURGED indicating the queue contents has been purged.
Note that since the queue is not deleted, queue statistics remain intact.

ERRORS
Code Description

QUE_ER_BADQID No queue with Qid.
QUE_ER_NOSUBSYSTEM QueSys is not configured in the instance.
QUE_ER_NOTLOGGEDIN User not logged into instance (User never logged

in, was aborted or disconnected).

XIPCNET_ER_CONNECTLO
ST

Connection to instance lost.

XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

QueSys Parameters, Functions and Macros 2—57

Date: 01/20/2004 - Revision: 4

__

INTERACTIVE COMMAND

SYNTAX
quepurge Qid

ARGUMENTS
Qid Queue Id.

EXAMPLES
xipc> quepurge 2
 RetCode = 0

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—58

2.2.23 QuePut() - PUT A MESSAGE HEADER ON A QUEUE

NAME
QuePut() - Put a Message Header on a Queue

SYNTAX
#include "xipc.h"

XINT
QuePut(MsgHdr, QueSelectCode, QidList, Priority, RetQid, Options)

MSGHDR *MsgHdr;
XINT QueSelectCode;
QIDLIST QidList;
XINT Priority;
XINT *RetQid;
... Options;

PARAMETERS

Name Description

MsgHdr A pointer to a message header.

QueSelectCod
e

A code indicating the selection criteria to be used in determining the target
queue of the QuePut() operation. The selected queue is one of the Qid’s
QidList. The possible values for QueSelectCode are listed in section 2.3.2.

QidList A list of Qids for consideration as the target queue of the QuePut() operation.
A QIDLIST is constructed using QueList() or QueListBuild() and is updated
using QueListAdd(). A pointer to a QIDLIST (type PQIDLIST) may be
passed as well.

Priority The priority to be assigned to the dispatched message.

RetQid A pointer to a variable that gets assigned by QuePut() upon its return; or
NULL if no return value is desired. Successful QuePut() operations (RC >=
0) return with *RetQid equal to the Qid of the selected target queue (from
within QidList) that received the sent message. Cancelled QuePut() operations
having RC = QUE_ER_DESTROYED or QUE_ER_PURGED, return with
*RetQid equal to the destroyed or purged Qid. Failed calls with RC =
QUE_ER_BADQID return with *RetQid equal to the invalid Qid. *RetQid is
otherwise undefined.

Options Options must be one of the following:

 a) valid BlockOpt option. See Appendix A, Using Blocking XsIPC Functions, for a

 description of BlockOpt;

QueSys Parameters, Functions and Macros 2—59

Date: 01/20/2004 - Revision: 4

 OR

b) one of the QUE_REPLACE_XX options (identified in the Description section
which follows). Specifying QUE_REPLACE_XX causes the QuePut operation to
succeed without blocking and without the need for spooling.
QuePut(...,QUE_REPLACE_XX) succeeds by deleting one or more existing
messages from the queue as necessary, if room needs to be made for the new
message. See the Description below for a discussion of which messages are
deleted from the queue in making room for the new message;

OR

 c) QUE_REPLICATE, which sends message copies to those processes that are
waiting for this message at the time of the QuePut operation. (See the Description
below.)

RETURNS

Value Description

RC >= 0 Put successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
QuePut() attempts to put the message header MsgHdr onto one of the queues listed in QidList, based
on the value of QueSelectCode.
It is acceptable to specify NULL for the RetQid argument value; it is not necessary to declare and
specify return variables for acquiring a return value that is not desired.
QuePut() is given the potential to block or complete asynchronously by setting BlockOpt appropriately.
The operation will block or complete asynchronously if all of the queues listed in QidList are currently
filled to their message or byte capacities. The QuePut() operation will complete when one of queues in
QidList releases a message, also freeing up the required bytes, usually through another user's actions.
Specifically:
o Another user calling QueGet() or QueReceive() to take a message off of one of the involved

queues.
Alternatively, the QUE_REPLACE_XX option can be used to specify that the operation should
succeed without blocking and without the need for spooling. Specifying
QuePut(...,QUE_REPLACE_XX) causes the enqueue operation to always succeed by deleting
one or more existing messages from the queue, if room needs to be made for the new message. The
deleted message may come from one of the four open ends of the message queue: Earliest Arrived,
Latest Arrived, Highest Priority , Lowest Priority. Specifying the “end” from where messages are to
be deleted is accomplished by specifying one of four forms of the QUE_REPLACE_XX option:
QUE_REPLACE_HP, QUE_REPLACE_LP, QUE_REPLACE_EA, QUE_REPLACE_LA.
This feature simplifies the construction of applications that have no assigned “remover of old messages,”
(e.g., an application that replicates messages to be sent to multiple users over a single queue).
QUE_REPLACE_XX is a full-fledged completion option; it is not ORed with any of the six regular
XsIPC completion options.
Alternatively, the QUE_REPLICATE option may be specified. This option provides a method for
putting replicated message copies for zero or more users waiting on a message queue for that particular
kind of message. (Note that no special coding is required by the consumer processes.) In this case, the
messages are never actually placed on the queue. Messages are sent to only those processes that are
waiting at the time of the QuePut() operation. All users waiting for the message are given a copy of the
message header. When QuePut() replicates a header, copying to n users, the text-block reference

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—60

count is incremented by n-1. In contrast, when QuePut() moves a header onto a queue, the count is
left unchanged.
As with the QUE_REPLACE_XX option, specifying QUE_REPLICATE causes the QuePut() call
not to block. Similarly, QUE_REPLICATE is a full fledged completion option; it is not ORed with
any of the six regular XsIPC completion options.
See Appendix A, Using Blocking XsIPC Functions, for a description of how to use the blocking options.
The MSGHDR data structure is defined as follows:

typedef struct _MSGHDR
{
 XINT GetQid; /* Last Qid msg was on */
 XINT HdrStatus; /* Rmvd or Not Rmvd, etc */
 XINT Priority; /* Message's priority */
 XINT SeqNum; /* Msg sequence # within queue */
 XINT TimeVal; /* Msg sequence number within QueSys */
 XINT Size; /* Numb. of bytes in msg */
 XINT TextOffset; /* Offset of msg's text in text-pool */
 XINT Uid; /* The User-Id of user that sent msg */
 CHAR Data[MSGHDR_DATASIZE]; /* User data field */
}
MSGHDR;

ERRORS
Code Description

QUE_ER_ASYNC Operation is being performed asynchronously.
QUE_ER_ASYNCABORT Asynchronous operation aborted before completion. This

error code is not returned by the function call. It is set in the
Asynchronous Result Control Block RetCode field.

QUE_ER_BADBLOCKOPT Invalid BlockOpt.
QUE_ER_BADOPTION Invalid Options parameter.
QUE_ER_BADPRIORITY Invalid Priority parameter.
QUE_ER_BADQID Bad Qid in QidList (= *RetQid).
QUE_ER_BADQIDLIST Invalid QidList parameter.
QUE_ER_BADQUESELECTCO
DE

Invalid QueSelectCode parameter.

QUE_ER_CAPACITY_ASYNC
_USER

QueSys async user table full.

QUE_ER_CAPACITY_HEADE
R

QueSys header table full.

QUE_ER_CAPACITY_NODE QueSys node table full.
QUE_ER_DESTROYED Another user destroyed a queue that the blocked QuePut()

call was waiting on (i.e. in its QidList). The blocked
QuePut() operation was cancelled. No message was put on
any queue.

QUE_ER_INTERRUPT Operation was interrupted.
QUE_ER_ISFROZEN A BlockOpt of QUE_WAIT or QUE_TIMEOUT() was

specified after the instance was frozen by the calling user.
QUE_ER_MSGHDRNOTREMOV
ED

MsgHdr references a message header that is still on a
queue.

QUE_ER_NOASYNC An asynchronous operation was attempted with no
asynchronous environment present.

QueSys Parameters, Functions and Macros 2—61

Date: 01/20/2004 - Revision: 4

QUE_ER_NOSUBSYSTEM QueSys is not configured in the instance.
QUE_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).
QUE_ER_NOWAIT BlockOpt of QUE_NOWAIT was specified and request

was not immediately satisfied.
QUE_ER_PURGED Another user purged a queue that the blocked QuePut() call

was waiting on (i.e. in its QidList). The blocked QuePut()
operation was cancelled. No message was put on any
queue.

QUE_ER_TIMEOUT The blocked QuePut() operation timed out.
QUE_ER_TOOBIG The size of the message exceeds the byte capacity of one of

the listed Qids (= *RetQid).

XIPCNET_ER_CONNECTLOS
T

Connection to instance lost.

XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

__

INTERACTIVE COMMAND

SYNTAX
queput MsgHdr QueSelectCode QidList Priority BlockingOpt

ARGUMENTS
MsgHdr A one letter message header variable.

QueSelectCode A message dispatch queue select code. (This is presented in the QueSys
Functions and Macros chapter, under Macros.) The prefix "QUE_Q_" of the
queue select code should be omitted, e.g., instead of QUE_Q_SHQ, use shq.

QidList A list of Queue Ids

Priority The priority to be assigned to the message.

BlockingOpt Either one of the Blocking Options discussed in the xipc command
(Interactive Command Processor) section at the beginning of this Manual, or
one of the special blocking options (REPLICATE, REPLACE_EA,
REPLACE_LA, REPLACE_HP or REPLACE_LP).

EXAMPLES
xipc> quewrite a "Mary had a little lamb" wait
 RetCode = 0
xipc> queput a shq 0,1 100 wait
 RetCode = 0 Qid = 1

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—62

2.2.24 QueRead() - READ MESSAGE TEXT FROM MESSAGE TEXT POOL

NAME
QueRead() - Read Message Text From Message Text Pool

SYNTAX
#include "xipc.h"

XINT
QueRead(MsgHdr, MsgBuf, MsgLength)

MSGHDR *MsgHdr;
XANY *MsgBuf;
XINT MsgLength;

PARAMETERS

Name Description

MsgHdr A pointer to a message header. MsgHdr contains information relating to a message that
has been removed from a queue, but whose text is still in the message text pool.

MsgBuf A pointer to the buffer that is to receive the text of the message referred to by MsgHdr.

MsgLength An integer specifying the maximum number of bytes to be copied from the message's
text area into MsgBuf. QUE_TRUNCATE(MsgLength) must be specified if text
truncation is desired for messages exceeding MsgLength bytes in size. MsgLength
must be greater than 0.

RETURNS

Value Description

RC > 0 Read successful. RC is the number of bytes copied into MsgBuf.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
QueRead() reads the message text referred to by MsgHdr into the buffer pointed at by MsgBuf. (The
message header can have been retrieved using the QUE_NOREMOVE option or a QueCopy() call.)
QueRead() releases the text pool area holding the message text. As such, QueRead() is usually called at
a message's final destination.
QueRead() decrements the text pool count by one; if the count equals zero, then it will release the text
block.
If the size of the message's text is less than or equal to MsgLength bytes, the message is copied in its
entirety into MsgBuf. If the size is larger, then:

o If QUE_TRUNCATE(MsgLength) is specified, the first MsgLength bytes of the text
are copied into MsgBuf. The remaining bytes are truncated.

o Otherwise, QueRead() fails, returning RC = QUE_ER_TOOBIG.

QueSys Parameters, Functions and Macros 2—63

Date: 01/20/2004 - Revision: 4

ERRORS
Code Description

QUE_ER_BADBUFFER MsgBuf is NULL.
QUE_ER_BADLENGTH Invalid MsgLength parameter.
QUE_ER_BADTEXT The text pointer in MsgHdr is invalid.
QUE_ER_MSGHDRNOTREM
OVED

MsgHdr references a message header that has not been
dequeued.

QUE_ER_NOSUBSYSTEM QueSys is not configured in the instance.
QUE_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).
QUE_ER_TOOBIG The size of the message's text exceeds MsgLength and

QUE_TRUNCATE was not specified.

XIPCNET_ER_CONNECTL
OST

Connection to instance lost.

XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.
XIPCNET_ER_TOOBIG Text exceeds instance's size limit.

__

INTERACTIVE COMMAND

SYNTAX
queread MsgHdr

ARGUMENTS
MsgHdr A one letter message header variable.

EXAMPLES
xipc> queget a ea 1 wait
 RetCode = 0, Qid = 1, Seq# = 1211, Prio = 100, HdrStatus = REMOVED
xipc> queread a
 Text = "Mary had a little lamb"

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—64

2.2.25 QueReceive() - RECEIVE AND READ A MESSAGE FROM A QUEUE

NAME
QueReceive() - Receive and Read a Message From a Queue

SYNTAX
#include "xipc.h"

XINT
QueReceive(QueSelectCode, QidList, MsgBuf, MsgLength,
 RetVal, RetQid, Options)

XINT QueSelectCode;
QIDLIST QidList;
XANY *MsgBuf;
XINT MsgLength;
XINT *RetVal;
XINT *RetQid;
... Options;

PARAMETERS

Name Description

QueSelectCode A code indicating the selection criteria to be used in determining the received
message of the QueReceive() operation. The selected message is taken from one
of the Qids in QidList. The possible values for QueSelectCode are listed in
section 2.3.2.

QidList A list of Qids, possibly specified within Message Select Code macros, to be
used in specifying candidate messages for consideration by the QueReceive()
operation. QueReceive() selects one of the candidate messages based on the
value of QueSelectCode. A QIDLIST is constructed using QueList() or
QueListBuild() and is updated using QueListAdd(). A pointer to a QIDLIST
(type PQIDLIST) may be passed as well.

MsgBuf A pointer to the message buffer to receive the message text.

MsgLength An integer specifying the maximum number of bytes to be copied from the
retrieved message into MsgBuf. QUE_TRUNCATE(MsgLength) must be
specified if text truncation is desired for messages exceeding this size.
MsgLength must be greater than 0.

RetVal A pointer to a 32-bit integer variable that gets assigned with either the received
message's priority or its sequence number. It can be NULL if no return value is
desired.

RetQid A pointer to a variable that gets assigned by QueReceive() upon its return; or
NULL if no return value is desired. Successful QueReceive() operations (RC >=
0) return with *RetQid equal to the Qid of the selected source queue (from
within QidList) that provided the received message. Cancelled QueReceive()

QueSys Parameters, Functions and Macros 2—65

Date: 01/20/2004 - Revision: 4

within QidList) that provided the received message. Cancelled QueReceive()
operations having RC = QUE_ER_DESTROYED or QUE_ER_PURGED,
return with *RetQid equal to the destroyed or purged Qid. Failed calls with
RC = QUE_ER_BADQID return with *RetQid equal to the invalid Qid.
*RetQid is otherwise undefined.

Options [OptionFlag | …] BlockOpt

OptionFlags are specified by ORing them to the left of the BlockOpt. An
example will follow below. The possible OptionFlags are:

q QUE_NOREMOVE - When specified, the accessed message is not
dequeued. Rather, a fully functional copy of the message is retrieved. The
actual message remains on the queue.

The following two flags are mutually exclusive; QUE_RETPRIO is the default:

q QUE_RETPRIO - Specifies retrieval of the Priority of the retrieved
message.

q QUE_RETSEQ - Specifies retrieval of the Sequence Number of the
retrieved message.

q BlockOpt specifies the blocking option. See the Using Blocking XsIPC
Functions Appendix for a description of BlockOpt.

Example: QueReceive(…, QUE_RETSEQ | QUE_NOREMOVE |
QUE_WAIT)

RETURNS

Value Description

RC >= 0 Receive successful. RC is the number of bytes copied into MsgBuf.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
QueReceive() attempts to receive a QueSys message from one of the Qids in QidList. The
determination of which message is received is based on each Qid's Message Select Code as listed in
QidList, in conjunction with the value of QueSelectCode. QueReceive() first attempts to access the
chosen message header, and remove it from its queue. It then reads the text of the message from the
message text pool into the buffer pointed at by MsgBuf. RetVal is assigned with the retrieved message's
priority or sequence number. The message's text pool area is then released.
If the size of the selected message is less than or equal to MsgLength bytes, the message is copied in its
entirety into MsgBuf. If the message size is larger, then:
o If QUE_TRUNCATE(MsgLength) is specified, the first MsgLength bytes of the

message are copied into MsgBuf. The remaining bytes are truncated and lost.
o Otherwise, QueReceive() fails, returning RC = QUE_ER_TOOBIG and the message

remains in the queue.
It is acceptable to have a null RetQid or RetVal argument; it is not necessary to declare and specify
return variables for acquiring return values that are not desired. In addition, QueReceive() can specify
whether the returned RetVal should be populated with the priority of the retrieved message or the

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—66

sequence number of the retrieved message. This is accomplished by using one of the two optional flags,
QUE_RETPRIO or QUE_RETSEQ, which determine which value is returned with the message. The
default value is QUE_RETPRIO.
Calling QueReceive() with the QUE_NOREMOVE option flag specified returns a fully functional copy of
the message. The actual message remains on the queue.
QueReceive() is given the potential to block or complete asynchronously by setting BlockOpt
appropriately. The operation will block or complete asynchronously if either all the listed queues are
empty, or contain messages not matching their respective Message Select Codes. A QueReceive()
operation will complete when the cause of it not completing is removed, usually by another user's
actions. Specifically:
o Another user calling QueSend() or QuePut() to place a message on one of the involved

queues.
See Appendix A, Using Blocking XsIPC Functions, for a description of how to use the blocking options.

ERRORS
Code Description

QUE_ER_ASYNC Operation is being performed asynchronously.
QUE_ER_ASYNCABORT Asynchronous operation aborted before completion. This

error code is not returned by the function call. It is set in the
Asynchronous Result Control Block RetCode field.

QUE_ER_BADBLOCKOPT Invalid BlockOpt.
QUE_ER_BADBUFFER MsgBuf is NULL.
QUE_ER_BADLENGTH Invalid MsgLength parameter.
QUE_ER_BADMSGSELECTCOD
E

Invalid MsgSelectCode within QidList.

QUE_ER_BADOPTION Invalid Options parameter.
QUE_ER_BADQID Bad Qid in QidList (= *RetQid).
QUE_ER_BADQIDLIST Invalid QidList parameter.
QUE_ER_BADQUESELECTCOD
E

Invalid QueSelectCode parameter.

QUE_ER_CAPACITY_ASYNC_
USER

QueSys async user table full.

QUE_ER_CAPACITY_NODE QueSys node table full.
QUE_ER_DESTROYED Another user destroyed a queue that the blocked

QueReceive() call was waiting on. The blocked
QueReceive() operation was cancelled. No message was
received.

QUE_ER_INTERRUPT Operation was interrupted.
QUE_ER_ISFROZEN A BlockOpt of QUE_WAIT or QUE_TIMEOUT() was

specified after the instance was frozen by the calling user.
QUE_ER_NOASYNC An asynchronous operation was attempted with no

asynchronous environment present.
QUE_ER_NOSUBSYSTEM QueSys is not configured in the instance.
QUE_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).
QUE_ER_NOWAIT BlockOpt of QUE_NOWAIT was specified and request was

not immediately satisfied.
QUE_ER_PURGED Another user purged a queue that the blocked QueReceive()

call was waiting on. The blocked QueReceive() operation
was cancelled. No message was received.

QueSys Parameters, Functions and Macros 2—67

Date: 01/20/2004 - Revision: 4

QUE_ER_TIMEOUT The blocked QueReceive() operation timed out.
QUE_ER_TOOBIG The size of the message exceeds MsgLength and

QUE_TRUNCATE was not specified.

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.
XIPCNET_ER_TOOBIG Message text exceeds instance's size limit.

__

INTERACTIVE COMMAND

SYNTAX
quereceive QueSelectCode QidList
[noremove,][retprio,|retseq,] BlockingOpt

ARGUMENTS
QueSelectCode A message retrieval queue select code. (This is presented in the QueSys

Functions and Macros chapter, under Macros.) The prefix "QUE_Q_" of the
queue select code should be omitted, e.g., instead of QUE_Q_EA, use ea.

QidList A list of queue Ids, possibly specified with message select codes. (This is
presented in the QueSys Functions and Macros chapter, under Macros.) The
prefix "QUE_M_" of the message select code should be omitted, e.g., instead
of QUE_M_PRGT(2,100), use prgt(2,100).

BlockingOpt See the Blocking Options discussion in the xipc command (Interactive
Command Processor) section at the beginning of this Manual.

EXAMPLES
xipc> quereceive ea 0 timeout(10)
 Qid = 0, Priority = 120, Length = 22
 Text = "Mary had a little lamb"

xipc> quereceive hpq prgt(0,1000),prgt(1,900) wait
 Qid = 1, Priority = 950, Length = 13
 Text = "High Priority"

xipc> quereceive ea 0 retseq,wait
 Qid = 0, Sequence = 1, Length = 22
 Text = "Mary had a little lamb"

xipc> quereceive ea 0 retprio,wait
 Qid = 0, Priority = 120, Length = 22
 Text = "Mary had a little lamb"

xipc> quereceive ea 0 noremove,wait
 Qid = 0, Priority = 120, Length = 22
 Text = "Mary had a little lamb"

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—68

xipc> quereceive ea 0 noremove,retseq,nowait
 Qid = 0, Sequence = 12, Length = 23
 Text = "System uptime: 12:33:02"

2.2.26 QueRemove() - REMOVE MESSAGE HEADER FROM A QUEUE

NAME
QueRemove() - Remove Message Header from a Queue.

SYNTAX
#include "xipc.h"

XINT
QueRemove(MsgHdr)

MSGHDR *MsgHdr;

PARAMETERS

Name Description

MsgHdr Pointer to a message header variable that contains a fully functional cop of a message
header still residing on a queue.

RETURNS

Value Description

RC > 0 Remove successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
QueRemove() removes a fully functional copy of the message header identified by MsgHdr from the
message queue where it is located. The message header identified by MsgHdr must have been
accessed previously by a call to QueGet() specifying the QUE_NOREMOVE option (placed to the left
of the blocking option) or by a call to QueBrowse(). The common factor being that MsgHdr references
a message header that has not been dequeued.
A message header that is removed from a queue via QueRemove() may be placed onto another queue
via QuePut(), or can have its text read from the message text pool via a call to QueRead().

QueSys Parameters, Functions and Macros 2—69

Date: 01/20/2004 - Revision: 4

ERRORS
Code Description

QUE_ER_BADTEXT The text pointer in MsgHdr is invalid.
QUE_ER_MSGHDRREMOVE
D

MsgHdr has already been dequeued.

QUE_ER_NOSUBSYSTEM QueSys is not configured in the instance.
QUE_ER_NOTLOGGEDIN User not logged into instance (User never logged in,

was aborted or disconnected).

XIPCNET_ER_CONNECTL
OST

Connection to instance lost.

XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

__

INTERACTIVE COMMAND

SYNTAX
queremove MsgHdr

ARGUMENTS
MsgHdr A one letter message header variable.

EXAMPLES
xipc> queget a ea 0 noremove,wait
 RetCode = 0, Qid = 1, Seq# = 1011, Prio = 100, HdrStatus = NOT-REMOVED
xipc> quebrowse a time+
 RetCode = 0, Qid = 1, Seq# = 1211, Prio = 100, HdrStatus = NOT-REMOVED
xipc> queremove a
 RetCode = 0

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—70

2.2.27 QueSend() - WRITE AND SEND A MESSAGE TO A QUEUE

NAME
QueSend() - Write and Send a Message To a Queue

SYNTAX
#include "xipc.h"

XINT
QueSend(QueSelectCode, QidList, MsgBuf, MsgLength, Priority,
 RetQid, Options)

XINT QueSelectCode;
QIDLIST QidList;
XANY *MsgBuf;
XINT MsgLength;
XINT Priority;
XINT *RetQid;
... Options;

PARAMETERS

Name Description

QueSelectCode A code indicating the selection criteria to be used in determining the target queue
of the QueSend() operation. The selected queue is one of the Qids in QidList.
The possible values for QueSelectCode are listed in section 2.3.2.

QidList A list of Qids for consideration as the target queue of the QueSend() operation.
A QIDLIST is constructed using QueList() or QueListBuild() and is updated
using QueListAdd(). A pointer to a QIDLIST (type PQIDLIST) may be passed
as well.

MsgBuf A pointer to the message text to be sent.

MsgLength The size (in bytes) of the message in MsgBuf. Its value must be greater than 0.

Priority A positive 32-bit integer to be designated as the message's priority.

RetQid A pointer to a variable that gets assigned by QueSend() upon its return; or
NULL if no return value is desired. Successful QueSend() operations (RC >=
0) return with *RetQid equal to the Qid of the selected target queue (from
within QidList) that received the sent message. Cancelled QueSend() operations
having RC = QUE_ER_DESTROYED or QUE_ER_PURGED, return with
*RetQid equal to the destroyed or purged Qid. Failed calls with RC =
QUE_ER_BADQID return with *RetQid equal to the invalid Qid. *RetQid is
otherwise undefined.

Options Options must be one of the following:

QueSys Parameters, Functions and Macros 2—71

Date: 01/20/2004 - Revision: 4

a) valid BlockOpt option. See Appendix A, Using Blocking XsIPC Functions,
for a description of BlockOpt;
 OR

b) one of the QUE_REPLACE_XX options, (identified in the Description
section which follows). Specifying QUE_REPLACE_XX causes the
QueSend() operation to succeed without blocking and without the need for
spooling. QueSend(...,QUE_REPLACE_XX) succeeds by deleting
one or more existing messages from the queue as necessary, if room needs
to be made for the new message. See the Description below for a
discussion of which messages are deleted from the queue in making room
for the new message;

OR

c) QUE_REPLICATE, which sends message copies to those processes that
are waiting for this message at the time of the QueSend() operation. (See
the Description below.)

RETURNS

Value Description

RC >= 0 Send successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
QueSend() attempts to write the message text in MsgBuf into the QueSys message text pool and then
put a header referring to it onto one of the queues listed in QidList. The selection of a target queue is
based on the value of QueSelectCode. QueSend() first attempts to write the message's text to the
QueSys message text pool, creating for it a message header (i.e., as per QueWrite()). It then attempts
to put the created message header onto one of the queues in QidList based on the value of
QueSelectCode (i.e., as per QuePut()).
It is acceptable to specify NULL as the RetQid argument value; it is not necessary to declare and
specify a return variable for acquiring a return value that is not desired.
QueSend() is given the potential to block or complete asynchronously by setting BlockOpt
appropriately. The operation will block or complete asynchronously in the following cases:
o The message text pool currently lacks the capacity for a message text of size MsgLength.
o All the queues listed in QidList are currently filled to their message or byte capacities.

A QueSend() operation completes when the cause of it not completing is removed, usually by another
user's actions. Specifically:
o Another user calling QueRead() to remove a message's text from the message text pool.
o Another user calling QueGet() to retrieve a message from one of the involved queues.
o Another user calling QueReceive() to accomplish both effects.

Alternatively, the QUE_REPLACE_XX option can be used to specify that the operation should
succeed without blocking and without the need for spooling. Specifying
QueSend(...,QUE_REPLACE_XX) causes the enqueue operation to always succeed by deleting
one or more existing messages from the queue, if room needs to be made for the new message. The
deleted message may come from one of the four open ends of the message queue: Earliest Arrived,
Latest Arrived, Highest Priority , Lowest Priority. Specifying the “end” from where messages are to
be deleted is accomplished by specifying one of four forms of the QUE_REPLACE_XX option:

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—72

QUE_REPLACE_HP, QUE_REPLACE_LP, QUE_REPLACE_EA,
QUE_REPLACE_LA.
This feature simplifies the construction of applications that have no assigned “remover of old messages,”
(e.g., an application that replicates messages to be sent to multiple users). QUE_REPLACE_XX is a
full-fledged completion option. It is not ORed with any of the six regular XsIPC completion options. If a
QueSend() is involved and the write to the text-pool is not possible because of it being full, the
QueSend() will return an error code indicating the inability to perform the operation, i.e.,
QUE_ER_TEXTFULL.
Alternatively, the QUE_REPLICATE option may be specified. This option provides a method for
sending replicated message copies to zero or more users waiting on a message queue for that particular
kind of message. (Note that no special coding is required by the consumer processes.) In this case, the
messages are never actually placed on the queue. Messages are sent to only those processes that are
waiting at the time of the QueSend() operation. All users waiting for the message are given a copy of
the message header. When QueSend() replicates a message, copying to n users, the text-block
reference count is incremented by n-1. In contrast, when QueSend() places a message on a queue, the
count is left unchanged.
See Appendix A, Using Blocking XsIPC Functions, for a description of how to use the blocking options.
ERRORS
Code Description

QUE_ER_ASYNC Operation is being performed asynchronously.
QUE_ER_ASYNCABORT Asynchronous operation aborted before completion. This

error code is not returned by the function call. It is set in the
Asynchronous Result Control Block RetCode field.

QUE_ER_BADBLOCKOPT Invalid BlockOpt.
QUE_ER_BADBUFFER MsgBuf is NULL.
QUE_ER_BADFILENAME Invalid SpoolFileName specified.
QUE_ER_BADLENGTH Invalid MsgLength parameter.
QUE_ER_BADOPTION Invalid Options parameter.
QUE_ER_BADPRIORITY Invalid Priority parameter.
QUE_ER_BADQID Bad Qid in QidList (= *RetQid).
QUE_ER_BADQIDLIST Invalid QidList parameter.
QUE_ER_BADQUESELECTCOD
E

Invalid QueSelectCode parameter.

QUE_ER_CAPACITY_ASYNC_
USER

QueSys async user table full.

QUE_ER_CAPACITY_HEADER QueSys header table full.
QUE_ER_CAPACITY_NODE QueSys node table full.
QUE_ER_DESTROYED Another user destroyed a queue that the blocked QueSend()

call was waiting on. The blocked QueSend() operation was
cancelled. No message was sent.

QUE_ER_INTERRUPT Operation was interrupted.
QUE_ER_ISFROZEN A BlockOpt of QUE_WAIT or QUE_TIMEOUT() was

specified after the instance was frozen by the calling user.
QUE_ER_NOASYNC An asynchronous operation was attempted with no

asynchronous environment present.
QUE_ER_NOSUBSYSTEM QueSys is not configured in the instance.
QUE_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).
QUE_ER_NOWAIT BlockOpt of QUE_NOWAIT was specified and request was

not immediately satisfied.

QueSys Parameters, Functions and Macros 2—73

Date: 01/20/2004 - Revision: 4

not immediately satisfied.
QUE_ER_PURGED Another user purged a queue that the blocked QueSend()

call was waiting on. The blocked QueSend() operation was
cancelled. No message was sent.

QUE_ER_TIMEOUT The blocked QueSend() operation timed out.
QUE_ER_TOOBIG The size of the message exceeds the byte capacity of one of

the listed Qids (= *RetQid).
QUE_ER_TEXTFULL Text space is not available when QUE_REPLICATE or

QUE_REPLACE_XX is specified, causing call to fail.

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.
XIPCNET_ER_TOOBIG Message text exceeds instance's size limit.

__

INTERACTIVE COMMAND

SYNTAX
quesend QueSelectCode QidList Priority MessageText
BlockingOpt

ARGUMENTS
QueSelectCode A message dispatch queue select code. (This is presented in the QueSys

Functions and Macros chapter, under Macros.) The prefix "QUE_Q_" of the
queue select code should be omitted, e.g., instead of QUE_Q_SHQ, use shq.

QidList A list of queue Ids

Priority The priority to be assigned to the message.

MessageText The text of the message enclosed in double quotes.

BlockingOpt Either one of the Blocking Options discussed in the xipc command
(Interactive Command Processor) section at the beginning of this Manual, or
one of the special blocking options (REPLICATE, REPLACE_EA,
REPLACE_LA, REPLACE_HP or REPLACE_LP).

EXAMPLES
xipc> quesend shq 0,1 100 "Mary had a little lamb" wait
 RetCode = 0 Qid = 0

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—74

2.2.28 QueSendReceive() - PERFORM GENERIC REQUEST/RESPONSE

NAME
QueSendReceive() - Perform Generic Request/Response

SYNTAX
#include "xipc.h"

QueSendReceive (SendArgs, SendOptions, RecvArgs, RecvOptions)

QUE_SEND_ARGS *SendArgs;
. . . SendOptions;
QUE_RECEIVE_ARGS *RecvArgs;
. . . RecvOptions;

PARAMETERS

Name Description

SendArgs A pointer to a variable of type QUE_SEND_ARGS (structure is defined below in
the Description), containing the arguments for the "send" portion of the
QueSendReceive() operation.

SendOptions See the Options parameter description under the QueSend() API. See also
Appendix A, Using Blocking Options.

RecvArgs A pointer to a variable of type QUE_RECEIVE_ARGS (structure is defined below
in the Description), containing the arguments for the "receive" portion of the
QueSendReceive() operation.

RecvOptions See the Options parameter description under the QueReceive() API. See also
Appendix A, Using Blocking Options.

RETURNS

Value Description

RC >= 0 SendReceive request successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
QueSendReceive () performs analogously to the RPC request/response paradigm by performing a
QueSend() operation immediately followed by a QueReceive() operation with a single network
operation.
The usage of queues within QueSendReceive() is highly flexible. For example, a client "inquiry"
message may be sent to a server via one queue and a "response" message drawn from a second queue.
Similarly, by specifying the receive operation to execute asynchronously, one can cause the inquiry-

QueSys Parameters, Functions and Macros 2—75

Date: 01/20/2004 - Revision: 4

response interaction to complete in the background (e.g., with callback functions invoked at the client
whenever a "response" message arrives).
It is important to note that unlike traditional RPC mechanisms, the QueSendReceive() form of inquiry-
response functionality provides explicit message queuing elasticity for handling high-volume traffic
scenarios. This is critical when preparing a system that must scale well through a range of deployment
settings.
The data structure follows:

typedef _QUE_SEND_ARGS
{
 XINT QueSelectCode;
 PQIDLIST QidList;
 XANY *MsgBuf;
 XINT MsgLength;
 XINT Priority;
 XINT *QidPtr;
}
QUE_SEND_ARGS;

typedef _QUE_RECEIVE_ARGS
{
 XINT QueSelectCode;
 PQIDLIST QidList;
 XANY *MsgBuf;
 XINT MsgLength;
 XINT *PrioPtr;
 XINT *QidPtr;
}
QUE_RECEIVE_ARGS;

ERRORS
Code Description

QUE_ER_ASYNC Operation is being performed asynchronously.
QUE_ER_ASYNCABORT Asynchronous operation aborted before completion. This

error code is not returned by the function call. It is set in the
Asynchronous Result Control Block RetCode field.

QUE_ER_BADBLOCKOPT Invalid BlockOpt.
QUE_ER_BADBUFFER MsgBuf is NULL.
QUE_ER_BADLENGTH Invalid MsgLength parameter.
QUE_ER_BADMSGSELECTCOD
E

Invalid MsgSelectCode within QidList.

QUE_ER_BADOPTION Invalid Options parameter.
QUE_ER_BADPRIORITY Invalid Priority parameter.
QUE_ER_BADQID Bad Qid in QidList (= *QidPtr).
QUE_ER_BADQIDLIST Invalid QidList parameter.
QUE_ER_BADQUESELECTCOD
E

Invalid QueSelectCode parameter.

QUE_ER_CAPACITY_ASYNC_
USER

QueSys async user table full.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—76

QUE_ER_CAPACITY_HEADER QueSys header table full.
QUE_ER_CAPACITY_NODE QueSys node table full.
QUE_ER_DESTROYED Another user destroyed a queue that the blocked QueSend()

call was waiting on. The blocked QueSend() operation was
cancelled. No message was sent.

QUE_ER_INTERRUPT Operation was interrupted.
QUE_ER_ISFROZEN A BlockOpt of QUE_WAIT or QUE_TIMEOUT() was

specified after the instance was frozen by the calling user.
QUE_ER_NOASYNC An asynchronous operation was attempted with no

asynchronous environment present.
QUE_ER_NOSUBSYSTEM QueSys is not configured in the instance.
QUE_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).
QUE_ER_NOWAIT BlockOpt of QUE_NOWAIT was specified and request was

not immediately satisfied.
QUE_ER_PURGED Another user purged a queue that the blocked QueSend()

call was waiting on. The blocked QueSend() operation was
cancelled. No message was sent.

QUE_ER_TIMEOUT The blocked QueSend() operation timed out.
QUE_ER_TOOBIG The size of the message exceeds the byte capacity of one of

the listed Qids (= *QidPtr).
QUE_ER_TEXTFULL Text space is not available when QUE_REPLICATE or

QUE_REPLACE_XXX is specified, causing call to fail.

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.
XIPCNET_ER_TOOBIG Message text exceeds instance's size limit.
__

QueSys Parameters, Functions and Macros 2—77

Date: 01/20/2004 - Revision: 4

INTERACTIVE COMMAND

SYNTAX
quesendreceive SendQueSelectCode SendQidList Priority

MessageText SendBlockOpt RecvQueSelectCode
RecvQidList [noremove,] [retseq,|retprio,]
RecvBlockOpt

ARGUMENTS
SendQueSelect
Code

A message dispatch queue select code. (This is presented in the QueSys
Functions and Macros chapter, under Macros.) The prefix "QUE_Q_" of the
queue select code should be omitted, e.g., instead of QUE_Q_SHQ, use
shq.

SendQidList A list of queue Ids

Priority The priority to be assigned to the message.

MessageText The text of the message enclosed in double quotes.

SendBlockOpt One of wait, nowait or timeout(Seconds).

RecvQueSelect A message retrieval queue select code. (This is presented in the QueSys
Functions and Macros chapter, under Macros.) The prefix "QUE_Q_" of the
queue select code should be omitted, e.g., instead of QUE_Q_EA, use ea.

RecvQidList A list of queue Ids, possibly specified with message select codes. (This is
presented in the QueSys Functions and Macros chapter, under Macros.) The
prefix "QUE_M_" of the message select code should be omitted, e.g.,
instead of QUE_M_PRGT(2,100), use prgt(2,100).

RecvBlockOpt See the Blocking Options discussion in the xipc command (Interactive
Command Processor) section at the beginning of this Manual.

EXAMPLES
xipc> quesend any 0 100 "send to qid 0" nowait
 RetCode = 0, Qid = 0

xipc> quesendreceive any 1 99 "sent to qid 1" nowait any ea(0) nowait
 RetCode = 13, SendQid = 1, RecvQid = 0,
 RecvLength = 13, RecvPriority = 100.
 Received textg: "sent to qid 0"

xipc> quereceive any ea(1) nowait
 Qid = 1, Priority = 99, Length = 13
 Text = "sent to qid 1"

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—78

2.2.29 QueSpool() - START AND STOP SPOOLING FOR A QUEUE

NAME
QueSpool() - Start and Stop Spooling for a Message Queue

SYNTAX
#include "xipc.h"

XINT
QueSpool(Qid, SpoolFileName)

XINT Qid;
CHAR *SpoolFileName;

PARAMETERS

Name Description

Qid The Queue ID of the queue to start or stop spooling.

SpoolFileName The name of a spool file where spooling is to occur; or QUE_SPOOL_OFF if
spooling is being turned off. SpoolFileName length must not exceed
QUE_LEN_PATHNAME.

RETURNS

Value Description

RC >= 0 Spool request successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
QueSpool() is used to start or stop overflow message spooling for a given queue. If SpoolFileName is
QUE_SPOOL_OFF, spooling for the queue is turned off.
Otherwise, message spooling for the queue is enabled. Overflow messages are spooled using a group of
files having SpoolFileName as their base name. Refer to the XsIPC User Guide for a detailed description
of the spooling mechanism.
A queue's spool is a virtual extension of the queue. Spooled messages, however, do not participate in
message retrieval competition involving the queue until they are absorbed from the spool into the queue
proper.
Turning spooling "on" or "off" has no effect on messages already present on the queue's spool. It only
effects the treatment of future messages attempting to enter the queue when full. When spooling is off,
the queue can potentially block a QuePut() or a QueSend() operation. When spooling is on, the queue
is by definition never full. QuePut() and QueSend() operations involving the queue will thus never block.
When spooling is turned "on" for a queue that currently has messages spooled, the specified
SpoolFileName is ignored and spooling continues using the spool file name holding the previously
spooled messages.

QueSys Parameters, Functions and Macros 2—79

Date: 01/20/2004 - Revision: 4

Spooling within a network instance occurs in the file system of the machine upon which the instance was
started. The SpoolFileName argument must therefore conform to the file naming conventions of that
platform.
Specifying a SpoolFileName that is currently being used by another queue will cause unpredictable
results.

ERRORS
Code Description

QUE_ER_BADFILENAME Invalid SpoolFileName parameter.
QUE_ER_BADQID Bad Qid.
QUE_ER_CAPACITY_NOD
E

QueSys node table full.

QUE_ER_NOSUBSYSTEM QueSys is not configured in the instance.
QUE_ER_NOTLOGGEDIN User not logged into instance (User never logged in,

was aborted or disconnected).

XIPCNET_ER_CONNECTL
OST

Connection to instance lost.

XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

__

INTERACTIVE COMMAND

SYNTAX
quespool Qid SpoolFileName

ARGUMENTS
Qid Queue Id.

SpoolFileName Name of spool file or off.

EXAMPLES
xipc> quespool 0 /tmp/splq0
 RetCode = 0

xipc> quespool 0 off
 RetCode = 0

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—80

2.2.30 QueTrigger() - DEFINE A QUESYS TRIGGER

NAME
QueTrigger() - Define a QueSys Trigger

SYNTAX
#include "xipc.h"

XINT
QueTrigger(Sid, TriggerSpec)

XINT Sid;
... TriggerSpec;

PARAMETERS

Name Description

Sid The Semaphore ID of the event semaphore to be set when the trigger event occurs.
The Sid is obtained by SemCreate() or SemAccess() function calls.

TriggerSpec Specification of the QueSys trigger event. The event is specified using a macro
that defines the type of event and parameters such as Qid and threshold values. See the
description below for a list of all trigger specifications.

RETURNS

Value Description

RC >= 0 QueTrigger successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
A QueSys trigger is a logical link between a QueSys event and a SemSys event semaphore. The
semaphore is automatically set when the QueSys event occurs.
A trigger is defined by:
o The ID of a SemSys event semaphore that will be set when the QueSys event occurs.
o A QueSys event specification.

The Sid of the event semaphore is obtained by calling SemSys functions SemCreate() or SemAccess().

The following table contains a list of all QueSys events that can be specified:
Trigger Description
QUE_T_BYTES_HIGH(Qid,
N)

Trigger event when number of bytes written to queue Qid
becomes higher than N percent of queue bytes capacity.

QUE_T_BYTES_LOW(Qid,
N)

Trigger event when number of bytes written to queue Qid
becomes lower than N percent of queue bytes capacity.

QueSys Parameters, Functions and Macros 2—81

Date: 01/20/2004 - Revision: 4

N) becomes lower than N percent of queue bytes capacity.
QUE_T_MSGS_HIGH(Qid,
N)

Trigger event when number of messages written to queue Qid
becomes higher than N percent of queue messages capacity.

QUE_T_MSGS_LOW(Qid, N) Trigger event when number of messages written to queue Qid
becomes lower than N percent of queue messages capacity.

QUE_T_PUT(Qid) Trigger event when a message is put onto queue Qid.
QUE_T_GET(Qid) Trigger event when a message is removed from queue Qid.
QUE_T_PUT_PREQ(Qid, P) Trigger event when a message of priority P is put onto queue

Qid.
QUE_T_GET_PREQ(Qid, P) Trigger event when a message of priority P is removed from

queue Qid.
QUE_T_PUT_PRGT(Qid, P) Trigger event when a message of priority greater then P is put

onto queue Qid.
QUE_T_GET_PRGT(Qid, P) Trigger event when a message of priority greater then P is

removed from queue Qid.
QUE_T_PUT_PRLT(Qid, P) Trigger event when a message of priority less then P is put

onto queue Qid.
QUE_T_GET_PRLT(Qid, P) Trigger event when a message of priority less then P is

removed from queue Qid.
QUE_T_USER_PUT(Qid,
Uid)

Trigger event when a message is put onto queue Qid by user
Uid.

QUE_T_USER_GET(Qid,
Uid)

Trigger event when a message is removed from queue Qid by
user Uid.

QUE_T_POOL_HIGH(N) Trigger event when the allocated size of the message text
pool becomes higher than N percent of its capacity.

QUE_T_POOL_LOW(N) Trigger event when the allocated size of the message text
pool becomes lower than N percent of its capacity.

QUE_T_HEADER_HIGH(N) Trigger event when the number of allocated message headers
becomes higher that N percent of the capacity.

QUE_T_HEADER_LOW(N) Trigger event when the number of allocated message headers
becomes lower that N percent of the capacity.

ERRORS
Code Description

QUE_ER_BADQID Qid is not a valid queue ID.
QUE_ER_BADSID Sid is not a valid semaphore ID.
QUE_ER_BADTRIGGERCODE Bad trigger code.
QUE_ER_BADUID Uid is not a valid user id.
QUE_ER_BADVAL Illegal trigger parameter value.
QUE_ER_CAPACITY_NODE QueSys node table full.
QUE_ER_DUPLICATE Attempt to define a trigger that is already defined
QUE_ER_NOSUBSYSTEM QueSys is not configured in the instance.
QUE_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—82

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

__

INTERACTIVE COMMAND

SYNTAX
quetrigger Sid TriggerCode TriggerParms

ARGUMENTS
Sid Semaphore Id of the semaphore to be set when the QueSys trigger event

occurs.

TriggerCode Mnemonic code of the trigger. Note that the prefix "QUE_T_" of the trigger
code should not be specified, e.g., QUE_T_BYTES_HIGH should be
specified as bytes_high.

TriggerParms Additional parameters depending on the type of trigger defined.

EXAMPLES
xipc> quecreate MsgQueue nolimit 20000
 Qid = 7
xipc> semcreate BytesHighSem clear
 Sid = 31
xipc> # Set Semaphore 31 when size of text in Queue 7 exceeds 80 percent
xipc> quetrigger 31 bytes_high 7 80
 RetCode = 0

QueSys Parameters, Functions and Macros 2—83

Date: 01/20/2004 - Revision: 4

2.2.31 QueUnfreeze() - UNFREEZE QUESYS

NAME
QueUnfreeze() - Unfreeze QueSys

SYNTAX
#include "xipc.h"

XINT
QueUnfreeze()

PARAMETERS
None.

RETURNS

Value Description

RC >= 0 QueUnfreeze successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
QueUnfreeze() unfreezes QueSys. Other QueSys users are restored with equal access to the
subsystem.
QueFreeze() prevents all other processes working within the QueSys, from proceeding with QueSys
operations until a bracketing QueUnfreeze(), XipcUnfreeze() or XipcLogout() call is issued. The
subsystems should therefore be kept frozen for as short a period of time as possible.
QueUnfreeze() will fail if the user has not previously frozen the QueSys via QueFreeze().

ERRORS
Code Description

QUE_ER_NOSUBSYSTEM QueSys is not configured in the instance.
QUE_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).
QUE_ER_NOTFROZEN QueSys not frozen.

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

__

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—84

INTERACTIVE COMMAND

SYNTAX
queunfreeze

ARGUMENTS
None.

EXAMPLES
xipc> queunfreeze
 RetCode = 0

QueSys Parameters, Functions and Macros 2—85

Date: 01/20/2004 - Revision: 4

2.2.32 QueUnget() - UNGET A MESSAGE BACK TO A QUEUE

NAME
QueUnget() - Unget a Message Back To a Queue

SYNTAX
#include "xipc.h"

XINT
QueUnget(MsgHdr)

MSGHDR *MsgHdr;

PARAMETERS

Name Description

MsgHdr A pointer to a message header to be un-gotten.

RETURNS

Value Description

RC >= 0 Unget successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
QueUnget() is used for returning a gotten message header to the queue it was taken from. QueUnget()
returns the message header to its original position relative to other messages on the queue.
QueUnget() succeeds even if it must violate a queue's capacity by returning the message to the queue
from which it was last taken. Refer to the QueSys/MemSys/SemSys User Guide for an explanation.

ERRORS
Code Description

QUE_ER_BADQID Bad Qid in MsgHdr.
QUE_ER_MSGHDRNOTREMOVE
D

MsgHdr references a message header that has not been
dequeued.

QUE_ER_NOSUBSYSTEM QueSys is not configured in the instance.
QUE_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).
QUE_ER_CAPACITY_ASYNC_
USER

QueSys async user table full.

QUE_ER_CAPACITY_HEADER QueSys header table full.
QUE_ER_CAPACITY_NODE QueSys node table full.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—86

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

__

INTERACTIVE COMMAND

SYNTAX
queunget MsgHdr

ARGUMENTS
MsgHdr A one letter message header variable

EXAMPLES
xipc> queget f ea 0 wait
 RetCode = 0, Qid = 0, Seq# = 1211, Prio = 100, HdrStatus = REMOVED
xipc> quecopy f 0 *
 Text = "Mary had a little lamb"
xipc> queunget f
 RetCode = 0

QueSys Parameters, Functions and Macros 2—87

Date: 01/20/2004 - Revision: 4

2.2.33 QueUntrigger() - UNDEFINE A QUESYS TRIGGER

NAME
QueUntrigger() - Undefine a QueSys Trigger

SYNTAX
#include "xipc.h"

XINT
QueUntrigger(Sid, TriggerSpec)

XINT Sid;
... TriggerSpec;

PARAMETERS

Name Description

Sid The Semaphore Id of the event semaphore associated with the trigger to be
undefined.

TriggerSpec Specification of the QueSys trigger event to be deleted. The event is specified
using a macro that defines the type of event and parameters such as Qid and
threshold values. See the description part of QueTrigger() for a list of all
triggers.

RETURNS

Value Description

RC >= 0 QueUntrigger successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
QueUntrigger() is used to undefine a trigger that was previously defined using the QueTrigger()
function.
The parameters to QueUntrigger() must be the same as were used to originally define the trigger.

ERRORS
Code Description

QUE_ER_BADQID Qid is not a valid queue ID.
QUE_ER_BADSID Sid is not a valid semaphore ID.
QUE_ER_BADTRIGGERCODE Bad trigger code.
QUE_ER_BADUID Uid is not a valid user id.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—88

QUE_ER_BADVAL Illegal trigger parameter value.
QUE_ER_NOSUBSYSTEM QueSys is not configured in the instance.
QUE_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).
QUE_ER_TRIGGERNOTEXIST Trigger not previously defined

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

__

INTERACTIVE COMMAND

SYNTAX
queuntrigger Sid TriggerCode TriggerParms

ARGUMENTS
Sid Semaphore Id used when the trigger was defined.

TriggerCode Mnemonic code of the trigger. For a complete list of trigger codes, see the
QueTrigger function in the QueSys Functions and Macros Chapter. Note that
the prefix "QUE_T_" of the trigger code should not be specified, e.g.,
QUE_T_BYTES_HIGH should be specified as bytes_high.

TriggerParms Additional parameters depending on the type of trigger defined.

EXAMPLES
xipc> quetrigger 31 bytes_high 7 80
 RetCode = 0
 .
 .
 .
xipc> queuntrigger 31 bytes_high 7 80
 RetCode = 0

QueSys Parameters, Functions and Macros 2—89

Date: 01/20/2004 - Revision: 4

2.2.34 QueWrite() - WRITE MESSAGE TEXT TO MESSAGE TEXT POOL

NAME
QueWrite() - Write Message Text To Message Text Pool

SYNTAX
#include "xipc.h"

XINT
QueWrite(MsgHdr, MsgBuf, MsgLength, Options)

MSGHDR *MsgHdr;
XANY *MsgBuf;
XINT MsgLength;
... Options;

PARAMETERS

Name Description

MsgHdr A pointer to an empty message header. MsgHdr values are assigned by QueWrite().

MsgBuf A pointer to the message text to be written.

MsgLength The size (in bytes) of the message in MsgBuf. Its value must be greater than 0.

Options Options must be a valid BlockOpt option. See Appendix A, Using Blocking XsIPC
Functions, for a description of BlockOpt.

RETURNS

Value Description

RC >= 0 Write successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
QueWrite() attempts to write the text in MsgBuf to the message text pool. It then sets MsgHdr with
appropriate values and returns it to the calling program. MsgHdr can then be placed on a queue using
QuePut().
QueWrite() sets the message text pool reference count to one (1) when it creates a new text block.
QueWrite() is given the potential to block or complete asynchronously by setting BlockOpt
appropriately. The operation will block or complete asynchronously if the message text pool currently
lacks the capacity for a message text of size MsgLength.
A QueWrite() operation completes when the required free space becomes available in the text pool,
usually by another user's actions. Specifically:

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—90

o Another user calling QueRead() or QueReceive() to remove a message's text from the
message text pool.

See Appendix A, Using Blocking XsIPC Functions, for a description of how to use the blocking options.

ERRORS
Code Description

QUE_ER_ASYNC Operation is being performed asynchronously.
QUE_ER_ASYNCABORT Asynchronous operation aborted before completion. This

error code is not returned by the function call. It is set in the
Asynchronous Result Control Block RetCode field.

QUE_ER_BADBLOCKOPT Invalid BlockOpt.
QUE_ER_BADBUFFER MsgBuf is NULL.
QUE_ER_BADLENGTH Invalid MsgLength parameter.
QUE_ER_BADOPTION Invalid Options parameter.
QUE_ER_CAPACITY_ASYNC_
USER

QueSys async user table full.

QUE_ER_CAPACITY_NODE QueSys node table full.
QUE_ER_INTERRUPT Operation was interrupted.
QUE_ER_ISFROZEN A BlockOpt of QUE_WAIT or QUE_TIMEOUT() was

specified after the instance was frozen by the calling user.
QUE_ER_NOASYNC An asynchronous operation was attempted with no

asynchronous environment present.
QUE_ER_NOSUBSYSTEM QueSys is not configured in the instance.
QUE_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).
QUE_ER_NOWAIT BlockOpt of QUE_NOWAIT specified and request was not

immediately satisfied.
QUE_ER_TIMEOUT The blocked QueWrite() operation timed out.

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.
XIPCNET_ER_TOOBIG Text exceeds instance's size limit.

QueSys Parameters, Functions and Macros 2—91

Date: 01/20/2004 - Revision: 4

__

INTERACTIVE COMMAND

SYNTAX
quewrite MsgHdr MessageText BlockingOpt

ARGUMENTS
MsgHdr A one letter message header variable.

MessageText The text of the message enclosed in double quotes.

BlockingOpt See the Blocking Options discussion in the xipc command (Interactive Command
Processor) section at the beginning of this Manual.

EXAMPLES
xipc> quewrite a "Mary had a little lamb" wait
 RetCode = 0
xipc> queput a shq 0,1 100 wait
 RetCode = 0 Qid = 1

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—92

2.2.35 ADDITIONAL QUESYS INTERACTIVE COMMAND

msghdr - Display Message Header

SYNTAX
msghdr MsgHdr

ARGUMENTS
MsgHdr A one letter message header variable

EXAMPLES
xipc> msghdr a
 Qid = 1, Seq# = 1234, Prio = 1000, HdrStatus = REMOVED

QueSys Parameters, Functions and Macros 2—93

Date: 01/20/2004 - Revision: 4

2.3 Macros

2.3.1 MSGSELECTCODES - MESSAGE SELECT CODES USED FOR MESSAGE
RETRIEVAL

NAME
MsgSelectCodes - Message Select Codes Used for Message Retrieval Operations

SYNTAX
#include "xipc.h"

DESCRIPTION
A QIDLIST, used as part of a message retrieval operation (QueGet() or QueReceive()), usually
includes one or more Message Select Code macros (MsgSelectCodes) for designating each listed
queue's candidate message.
The MsgSelectCodes that are acceptable as QIDLIST elements are:
QUE_M_EA(q) Designates the earliest arrived (oldest) message on the queue q.
QUE_M_LA(q) Designates the latest arrived (most recent) message on the queue q.
QUE_M_HP(q) Designates the highest priority message on the queue q.
QUE_M_LP(q) Designates the lowest priority message on the queue q.
QUE_M_PREQ(q, n) Designates the first message on queue q having a priority of n.
QUE_M_PRNE(q, n) Designates the first message on queue q not having a priority of n.
QUE_M_PRGT(q, n) Designates the first message on queue q with a priority greater than n.
QUE_M_PRGE(q, n) Designates the first message on queue q with a priority greater than or

equal to n.
QUE_M_PRLT(q, n) Designates the first message on queue q having a priority less than n.
QUE_M_PRLE(q, n) Designates the first message on queue q with a priority less than or

equal to n.
QUE_M_PRRNG(q,n,m) Designates the first message on queue q with a priority in the range

[n,m].
QUE_M_SEQEQ(q,
seqn)

Designates the first message on queue q with a value equal to
sequence number seqn.

QUE_M_SEQGE (q,
seqn)

Designates the first message on queue q with a value greater than or
equal to sequence number seqn.

QUE_M_SEQLE(q,
seqn)

Designates the first message on queue q with a value less than or
equal to sequence number seqn.

QUE_M_SEQGT(qid,
seqn)

Designates the first message on queue q with a value greater than
sequence number seqn.

QUE_M_SEQLT(q,
seqn)

Designates the first message on queue q with a value less than
sequence number seqn.

Note that MsgSelectCodes involving priorities cause the queue to be searched in decreasing priority
order.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

2—94

2.3.2 QUESELECTCODES - QUEUE SELECT CODES USED FOR MESSAGE
DISPATCH AND RETRIEVAL

NAME
QueSelectCodes - Queue Select Codes Used for Message Dispatch and Retrieval
Operations

SYNTAX
#include "xipc.h"

DESCRIPTION
A QueSelectCode is a required parameter for QuePut(), QueSend(), QueGet() and QueReceive(). The
available QueSelectCodes depend on the function for which it is specified.
The QueSelectCodes that are valid within message dispatch functions (QuePut() and QueSend()) are:

QUE_Q_SHQ Select the shortest queue.
QUE_Q_LNQ Select the longest queue.
QUE_Q_HPQ Select the queue having the highest priority message.
QUE_Q_LPQ Select the queue having the lowest priority message.
QUE_Q_EAQ Select the queue having the earliest arrived (oldest) message.
QUE_Q_LAQ Select the queue with the latest arrived (most recent) message.
QUE_Q_ANY Select the first queue in the list that has room (not full).

The QueSelectCodes that are valid within message retrieval functions (QueGet() and QueReceive())
can be divided into two groups:
Selection based on Message Attributes:

QUE_Q_EA Select the earliest arrived (oldest) candidate message.
QUE_Q_LA Select the latest arrived (most recent) candidate message.
QUE_Q_HP Select the highest priority candidate message.
QUE_Q_LP Select the lowest priority candidate message.

Selection based on Queue Attributes:
QUE_Q_LNQ Select the candidate message from the longest queue in the

list.
QUE_Q_SHQ Select the candidate message from the shortest queue in the

list.
QUE_Q_HPQ Select the candidate message from the queue having the

highest priority message.
QUE_Q_LPQ Select the candidate message from the queue having the

lowest priority message.
QUE_Q_EAQ Select the candidate message from the queue having the

earliest arrived message.
QUE_Q_LAQ Select the candidate message from the queue having the latest

arrived message.
QUE_Q_ANY Select the first candidate message.

MemSys Parameters, Functions and Macros 3—1

Date: 01/20/2004 - Revision: 4

3. MEMSYS PARAMETERS, FUNCTIONS AND MACROS

3.1 XsIPC Instance Configuration - MemSys Parameters

NAME
XsIPC Instance Configuration - MemSys parameter definitions for .cfg files

SYNTAX
[MEMSYS]
General MemSys parameters, defined below

PARAMETERS
The table below lists the general MemSys configuration parameters. Each parameter is presented with
its name, description and default value. The order that parameters appear within the [MEMSYS]
section of the configuration is not significant. The default values shown do not represent limits for the
values that any particular user may require.
Parameter Name Description Default

Value
MAX_SEGMENTS The maximum number of concurrent segments. It should be set

based on the requirements of the programs using the instance.
16

MAX_USERS The maximum number of concurrent MemSys users (real users
and pending asynchronous operations) that can be supported by
the subsystem. It should be set based on the requirements of the
programs using the instance.
Note that asynchronously blocked MemSys operations are treated
as MemSys users. The expected level of MemSys asynchronous
activity should therefore be factored into this parameter.

32

MAX_NODES The maximum number of nodes. MemSys nodes are used
internally for tracking users that block on MemSys operations.
The value depends largely on the nature of the program that will
use the instance. A conservative estimate can be calculated with
the following formula:
MAX_NODES=(MAX_SEGMENTS*MAX_USERS*

AverageSegmentSections)+(MAX_USERS*4)+
 MAX_SEGMENTS)
where: AverageSegmentSections is the expected
average number of sections that will exist concurrently on a
segment.
The default value was calculated using the default values for
MAX_SEGMENTS and MAX_USERS and using the number 2

1168

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

3—2

Parameter Name Description Default

Value
for AverageSegmentSections.

MAX_SECTIONS The maximum expected number of sections that will exist
concurrently in the instance. A starting value can be calculated
with the following formula:
MAX_SECTIONS=(MAX_SEGMENTS*AverageSegmen
tSections)
where: AverageSegmentSections is as defined above.
The default value was calculated using the values indicated above.

32

SIZE_MEMPOOL The size of the memory pool (K-bytes). SIZE_MEMPOOL must
exceed the size of the largest segment that will be created in the
instance. It must also exceed the largest aggregate of concurrent
segments. A starting formula for SIZE_MEMPOOL is:
SIZE_MEMPOOL =
(MAX_SEGMENTS*AverageSegmentSize)
where: AverageSegmentSize is the expected average
segment size occurring within the instance.
The default value was calculated using the values indicated above
and the number 256 for AverageSegmentSize.
SIZE_MEMPOOL is expressed in terms of K-bytes. As such
the calculated value should be rounded up o the next K-bytes
multiple. (For example, if the calculation comes to 1948 bytes,
then 2 K-bytes should be specified.)

4

SIZE_MEMTICK The memory allocation unit (bytes). This value specifies the
multiple by which memory pool allocations are made.
SIZE_MEMTICK should be rounded up to a multiple of 4. A
good starting value for SIZE_MEMTICK is:
SIZE_MEMTICK = 25PercentileSegmentSize
where: 25PercentileSegmentSize is the size value for
which it is expected that 75% of the instance's segments will be
larger in size and 25% will be smaller.

32

MemSys Parameters, Functions and Macros 3—3

Date: 01/20/2004 - Revision: 4

3.2 Functions

3.2.1 MemAbortAsync() - ABORT AN ASYNCHRONOUS OPERATION

NAME
MemAbortAsync() - Abort An Asynchronous Operation

SYNTAX
#include "xipc.h"

XINT
MemAbortAsync(AUid)

XINT AUid;

PARAMETERS

Name Description

AUid The asynchronous operation User ID of the operation to be aborted.

RETURNS

Value Description

RC >= 0 Abort successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
MemAbortAsync() aborts a pending asynchronous operation.
If the aborted asynchronous operation was issued by the same XsIPC user, the BlockOpt of the aborted
operation is ignored and the Asynchronous Result Control Block is not set.
If the aborted operation was issued by a different user, a return code of MEM_ER_ASYNCABORT is
placed in the RetCode field of the operation's Asynchronous Result Control Block and the action
specified in the BlockOpt of the aborted operation is carried out, i.e., a callback routine is invoked or a
semaphore is set.

ERRORS
Code Description

MEM_ER_BADUID Invalid AUid parameter.
MEM_ER_NOSUBSYSTEM MemSys is not configured in the instance.
MEM_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).
MEM_ER_SYSERR An internal error has occurred while processing the request.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

3—4

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

__

INTERACTIVE COMMAND

SYNTAX
memabortasync AsyncUserId

ARGUMENTS
AsyncUserId Asynchronous user id of the asynchronous MemSys operation to be

aborted

EXAMPLES
xipc> memlock all (0 100 32) callback(cb1,m)
 RetCode = -1097
 Operation continuing asynchronously
xipc> acb m
 AUid = 35
 .
 .
xipc> memabortasync 35
......Callback function CB1 executing......
 RetCode = -1098
 Asynchronous operation aborted
 .
 .
 .

MemSys Parameters, Functions and Macros 3—5

Date: 01/20/2004 - Revision: 4

3.2.2 MemAccess() - ACCESS AN EXISTING MEMORY SEGMENT

NAME
MemAccess() - Access an Existing Memory Segment

SYNTAX
#include "xipc.h"

XINT
MemAccess(Name)

CHAR *Name;

PARAMETERS

Name Description

Name A pointer to a string that contains the symbolic name identifying the desired memory
segment. Name must be null terminated, must not exceed MEM_LEN_XIPCNAME
characters, must identify an existing memory segment and cannot be MEM_PRIVATE.

RETURNS

Value Description

RC >= 0 Access successful. RC is memory segment ID (Mid). Mid is to be used in all
subsequent MemSys calls that refer to this memory segment.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
MemAccess() accesses an existing memory segment in MemSys. Name is used for identifying the
desired memory segment. The function returns the Mid of the accessed memory segment.

ERRORS
Code Description

MEM_ER_BADSEGNAME Invalid Name parameter.
MEM_ER_NOSUBSYSTEM MemSys is not configured in the instance.
MEM_ER_NOTFOUND Memory Segment with Name does not exist.
MEM_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

3—6

__

INTERACTIVE COMMAND

SYNTAX
memaccess Name

ARGUMENTS
Name Segment name

EXAMPLES
xipc> memaccess TrackTable
 Mid = 1

MemSys Parameters, Functions and Macros 3—7

Date: 01/20/2004 - Revision: 4

3.2.3 MemCreate() - CREATE A NEW MEMORY SEGMENT

NAME
MemCreate() - Create a New Memory Segment

SYNTAX
#include "xipc.h"

XINT
MemCreate(Name, Size)

CHAR *Name;
XINT Size;

PARAMETERS

Name Description

Name A pointer to a string that contains a symbolic name for publicly identifying the memory
segment. Name must be null terminated and must not exceed
MEM_LEN_XIPCNAME characters. If Name is MEM_PRIVATE then a private
memory segment is created. Duplicate memory segment names (other than
MEM_PRIVATE) are not permitted.

Size The size of the memory segment to be created. The size is specified in units of bytes.
Size must be greater than zero.

RETURNS

Value Description

RC >= 0 Create successful. RC is memory segment ID (Mid). Mid is to be used in all subsequent
MemSys calls that refer to this memory segment.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
MemCreate() creates a new memory segment in MemSys. Name is used for publicly identifying the
new memory segment. A Name of MEM_PRIVATE directs MemSys to create a private memory
segment (i.e., having no public identification). The segment is created having a size of Size bytes.

ERRORS
Code Description

MEM_ER_BADSEGNAME Invalid Name parameter.
MEM_ER_BADSIZE Invalid Size parameter.
MEM_ER_CAPACITY_NODE MemSys node table full.
MEM_ER_CAPACITY_POOL MemSys text pool full.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

3—8

MEM_ER_CAPACITY_SECTIO
N

MemSys section table full.

MEM_ER_CAPACITY_TABLE MemSys segment table full.
MEM_ER_NOSUBSYSTEM MemSys is not configured in the instance.
MEM_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

__

INTERACTIVE COMMAND

SYNTAX
memcreate {Name | @PRIVATE} Size

ARGUMENTS
Name Segment name (or, if @PRIVATE, a private memory segment indicator).

Size Segment size

EXAMPLES
xipc> memcreate TrackTable 10240
 Mid = 1

MemSys Parameters, Functions and Macros 3—9

Date: 01/20/2004 - Revision: 4

3.2.4 MemDelete() - DELETE A MEMORY SEGMENT

NAME
MemDelete() - Delete a Memory Segment

SYNTAX
#include "xipc.h"

XINT
MemDelete(Mid)

XINT Mid;

PARAMETERS

Name Description

Mid The memory segment ID of the MemSys segment to be deleted. Mid was obtained by
the user via MemCreate() or MemAccess() function calls.

RETURNS

Value Description

RC >= 0 Delete successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
MemDelete() deletes the MemSys segment identified by Mid from MemSys. MemDelete() will fail if
any sections are defined over the segment or if any user is blocked trying to lock, own, write or read the
segment.

ERRORS
Code Description

MEM_ER_BADMID Invalid Memory Segment ID Mid.
MEM_ER_NOSUBSYSTEM MemSys is not configured in the instance.
MEM_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).
MEM_ER_MEMBUSY MemSys Segment has one or more sections defined over it.

XIPCNET_ER_CONNECTL
OST

Connection to instance lost.

XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

3—10

__

INTERACTIVE COMMAND

SYNTAX
memdelete Mid

ARGUMENTS
Mid Segment Id

EXAMPLES
xipc> memdelete 1
 RetCode = 0

MemSys Parameters, Functions and Macros 3—11

Date: 01/20/2004 - Revision: 4

3.2.5 MemDestroy() - DESTROY A MEMSYS MEMORY SEGMENT

NAME
MemDestroy() - Destroy a MemSys Memory Segment

SYNTAX
#include "xipc.h"

XINT
MemDestroy(Mid)

XINT Mid;

PARAMETERS

Name Description

Mid The memory segment ID of the MemSys segment to be destroyed. Mid was obtained
by the user via MemCreate() or MemAccess() function calls.

RETURNS

Value Description

RC >= 0 Destroy successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
MemDestroy() deletes the MemSys segment identified by Mid from MemSys. MemDestroy() deletes
the segment even if sections are currently defined over it or users are waiting to lock, own, write or read
the segment.
Blocked MemSys operations (i.e., MemRead(), MemWrite(), MemLock() or MemSecOwn()),
initiated by other users involving memory segment Mid, are interrupted and returned with an
RC = MEM_ER_DESTROYED, indicating the forced deletion of memory segment Mid.
Users currently locking or owning section(s) defined over the destroyed memory segment have those
sections silently removed from their possession. These users are not explicitly notified of the segment's
forced deletion.

ERRORS
Code Description

MEM_ER_BADMID Invalid Memory Segment ID Mid.
MEM_ER_NOSUBSYSTEM MemSys is not configured in the instance.
MEM_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

3—12

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.
XIPCNET_ER_TOOBIG Text exceed instance's size limit.

__

INTERACTIVE COMMAND

SYNTAX
memdestroy Mid

ARGUMENTS
Mid Segment Id

EXAMPLES
xipc> memdestroy 1
 RetCode = 0

MemSys Parameters, Functions and Macros 3—13

Date: 01/20/2004 - Revision: 4

3.2.6 MemFreeze() - FREEZE MEMSYS

NAME
MemFreeze() - Freeze MemSys

SYNTAX
#include "xipc.h"

XINT
MemFreeze()

PARAMETERS
None.

RETURNS

Value Description

RC >= 0 MemFreeze successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
MemFreeze() freezes all MemSys activity occurring within the logged in instance and gives the calling
user exclusive access to all MemSys functionality. MemSys remains frozen until a MemUnfreeze(),
XipcUnfreeze() or an XipcLogout() function call is issued.
MemFreeze() prevents all other users, working within the MemSys, from proceeding with MemSys
operations–until a bracketing MemUnfreeze(), XipcUnfreeze() or XipcLogout() is issued. The
subsystem should therefore be kept frozen for as short a period of time as possible.

ERRORS
Code Description

MEM_ER_NOSUBSYSTEM MemSys is not configured in the instance.
MEM_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).
MEM_ER_ISFROZEN Calling user has already frozen MemSys.
XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

3—14

__

INTERACTIVE COMMAND

SYNTAX
memfreeze

ARGUMENTS
None.

EXAMPLES
xipc> memfreeze
 RetCode = 0

MemSys Parameters, Functions and Macros 3—15

Date: 01/20/2004 - Revision: 4

3.2.7 MemInfoMem() - GET MEMORY SEGMENT INFORMATION

NAME
MemInfoMem() - Get Memory Segment Information

SYNTAX
#include "xipc.h"

XINT
MemInfoMem(Mid, InfoMem)

XINT Mid;
MEMINFOMEM *InfoMem;

PARAMETERS

Name Description

Mid The memory segment ID of the segment whose information is desired, or
MEM_INFO_FIRST, or MEM_INFO_NEXT(Mid). Mid can be obtained via
MemCreate() or MemAccess() function calls.

InfoMem Pointer to a structure of type MEMINFOMEM, into which the segment information will
be copied.

RETURNS

Value Description

RC >= 0 Successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
MemInfoMem() fills the specified structure with information about the segment identified by Mid. The
Mid argument can be specified as one of the following:
♦ Mid - a memory segment id identifying a specific memory segment
♦ MEM_INFO_FIRST - identifies the first valid memory segment id
♦ MEM_INFO_NEXT(Mid) - identifies the next valid memory segment id, following Mid.
A program reviewing the status of all queues within an instance should call MemInfoMem() specifying
MEM_INFO_FIRST, followed by repeated calls to the function specifying MEM_INFO_NEXT
until the MEM_ER_NOMORE error code is returned.
Each MemSys segment has two lists of information associated with it:
o SList: The list of sections currently defined over the specified memory segment. Each list

element contains location, size, ownership and access privilege data about a section
existing on the subject memory segment, at the time of the MemInfoMem call.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

3—16

o WList: The list of blocked MemSys operations involving the specified memory segment. The
operations are listed in the order that they blocked.

The MEMINFOMEM data structure follows:

/*
 * The MEMINFOMEM structure is used for retrieving status information
 * about a particular MemSys semaphore. MemInfoMem() fills the
 * structure with the data about the Mid it is passed.
 */

typedef struct _MEMINFOMEM
{
 XINT Mid;
 XINT CreateTime; /* Time segment was created */
 XINT CreateUid; /* The Uid who created it */
 XINT Size; /* Size of segment (bytes)*/
 XINT NumSections; /* Num of sections on seg */
 XINT NumSecOwned; /* Num of owned sections */
 XINT NumSecLocked; /* Num of locked sections */
 XINT NumBytesOwned; /* Bytes owned on segment */
 XINT NumBytesLocked; /* Bytes locked on segment */
 XINT CountWrite; /* Num writes to segment */
 XINT CountRead; /* Num reads from segment */
 XINT LastUidWrite; /* Last Uid to write segment */
 XINT LastUidRead; /* Last Uid to read segment */
 XINT LastUidOwned; /* Last Uid to own on segment */
 XINT LastUidLocked; /* Last Uid to lock on segment */
 XINT SListTotalLength;
 XINT SListOffset;
 XINT SListLength;
 XINT WListTotalLength;
 XINT WListOffset;
 XINT WListLength;
 MEM_MEMSLISTITEM SList[MEM_LEN_INFOLIST];
 MEM_MEMWLISTITEM WList[MEM_LEN_INFOLIST];
 CHAR Name[MEM_LEN_XIPCNAME + 1]; /* Segment name */
}
MEMINFOMEM;

where:
SListTotalLength returns with the total internal length of the SList for this segment.

SListOffset is set by the user, prior to the MemInfoMem() function call, to specify the portion of the SList
that should be returned (i.e. what offset to start from).

SListLength returns with the length of the SList portion returned by the current call to MemInfoMem().
More specifically, SListLength is the number of elements returned in the SList array. SListLength
will be between 0 and MEM_LEN_INFOLIST.

SList is an array of list elements, where each element is of type MEM_MEMSLISTITEM. The
MEM_MEMSLISTITEM data type is defined in mempubd.h. The data structure follows:

MemSys Parameters, Functions and Macros 3—17

Date: 01/20/2004 - Revision: 4

typedef struct _MEM_MEMSLISTITEM
{
 XINT OwnerUid;
 XINT OwnerPriv;
 XINT OtherPriv;
 XINT Mid;
 XINT Offset;
 XINT Size;
}
MEM_MEMSLISTITEM;

typedef struct _MEM_MEMWLISTITEM
{
 XINT Uid;
 XINT OpCode; /* MEM_BLOCKEDLOCK, MEM_BLOCKEDREAD,
 * MEM_BLOCKEDWRITE or MEM_BLOCKEDOWN
 */
 XINT Offset;
 XINT Size;
}
MEM_MEMWLISTITEM;

Similar definitions and usage rules apply to the WList related fields.
A call to MemInfoMem() should be preceded by the setting of the SListOffset and WListOffset fields
of the MEMINFOMEM structure to appropriate values.
For a full example and more complete information on using the Info functions, refer to the Advanced
Topics chapter of the XsIPC User Guide.

ERRORS
Code Description

MEM_ER_BADMID No segment with specified Mid.
MEM_ER_BADLISTOFFSET Invalid offset value specified.
MEM_ER_NOMORE No more memory segments.
MEM_ER_NOSUBSYSTEM MemSys is not configured in the instance.
MEM_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

3—18

__

INTERACTIVE COMMAND

SYNTAX
meminfomem Mid | first | next(Mid)

ARGUMENTS
Mid Print info on the first segment, the segment with Mid MeId or the next higher

segment.

EXAMPLES
xipc> meminfomem first
 Name: 'TrackTable'
 Sections Defined: 0 Bytes Allocated: 10240
 . . .

xipc> meminfomem next(1)
 Mid: 3 Name: 'NodeTable'
 Sections Defined: 4 Bytes Allocated: 10240
 . . .

xipc> meminfomem next(3)
 RetCode = -1038
 No more data in list id

MemSys Parameters, Functions and Macros 3—19

Date: 01/20/2004 - Revision: 4

3.2.8 MemInfoSec() - GET SECTION INFORMATION

NAME
MemInfoSec() - Get Section Information

SYNTAX
#include "xipc.h"

XINT
MemInfoSec(Section, InfoSec)

SECTION Section;
MEMINFOSEC *InfoSec;

PARAMETERS

Name Description

Section The section whose status is requested.

InfoSec Pointer to a structure of type MEMINFOSEC, into which the section information will be
copied.

RETURNS

Value Description

RC >= 0 Successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
MemInfoSec() fills the specified structure with information about the section identified by Section. The
data structure follows:

/*
 * The MEMINFOSEC structure is used for retrieving status information
 * about a particular MemSys section overlay. MemInfoSec() fills the
 * structure with the data about the Section it is passed.
 */

typedef struct _MEMINFOSEC
{
 XINT Mid; /* MemSys segment ID */
 XINT Offset; /* Offset into the segment */
 XINT Size; /* Section size in bytes */
 XINT OwnerUid; /* Uid of section owner */
 XINT OwnerPriv; /* Owner access privileges */
 XINT OtherPriv; /* Other access privileges */
}
MEMINFOSEC;

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

3—20

For a full example and more complete information on using the Info functions, refer to the Advanced
Topics chapter of the XsIPC User Guide.

ERRORS
Code Description

MEM_ER_BADSECTION Invalid Section parameter.
MEM_ER_NOSUBSYSTEM MemSys is not configured in the instance.
MEM_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

__

INTERACTIVE COMMAND

SYNTAX
meminfosec Section

ARGUMENTS
Section Either a one letter section variable or section descriptor: Mid, Offset and Size enclosed

in parentheses.

EXAMPLES
xipc> memsecdef (1 100 64)
 RetCode = 0

xipc> memsection a (1 100 64)
 Section = (1 100 64)

xipc> meminfosec a
 Mid: 1, Offset: 100, Size: 64
 Owner: 32
 . . .

xipc> meminfosec (1 100 64)
 Mid: 1, Offset: 100, Size: 64
 Owner: 32
 . . .

MemSys Parameters, Functions and Macros 3—21

Date: 01/20/2004 - Revision: 4

3.2.9 MemInfoSys() - GET SUBSYSTEM INFORMATION

NAME
MemInfoSys() - Get System Information

SYNTAX
#include "xipc.h"

XINT
MemInfoSys(InfoSys)

MEMINFOSYS *InfoSys;

PARAMETERS

Name Description

InfoSys Pointer to a structure of type MEMINFOSYS, into which the system information will be
copied.

RETURNS

Value Description

RC >= 0 Successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
MemInfoSys() fills the specified structure with information about the current instance of MemSys into
which the user is logged in. The data structure follows:

/*
 * The MEMINFOSYS structure is used for retrieving status information
 * about the MemSys instance. MemInfoSys() fills the structure with the
 * data about the instance.
 */

typedef struct _MEMINFOSYS
{
 XINT MaxUsers; /* Max configured users */
 XINT CurUsers; /* Current num of users */
 XINT MaxSegments; /* Max configured segments */
 XINT CurSegments; /* Current num of segments */
 XINT MaxNodes; /* Max configured nodes */
 XINT FreeNCnt; /* Current available nodes */
 XINT MaxSections; /* Max configured sections */
 XINT FreeSCnt; /* Current available sects */
 XINT MemPoolSizeBytes; /* Configured mem pool size */
 XINT MemTickSize; /* Configured mem tick size */
 XINT MemPoolTotalAvail; /* Free text pool space */

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

3—22

 XINT MemPoolLargestBlk; /* Largest contig block */
 XINT MemPoolMaxPosBlks; /* Max possible tick blocks */
 XINT MemPoolTotalBlks; /* Number allocated blocks */
 CHAR Name[MEM_LEN_PATHNAME + 1]; /* InstanceFilename */
}
MEMINFOSYS;

For a full example and more complete information on using the Info functions, refer to the Advanced
Topics chapter of the XsIPC User Guide.

ERRORS
Code Description

MEM_ER_NOSUBSYSTEM MemSys is not configured in the instance.
MEM_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.
__

INTERACTIVE COMMAND

SYNTAX
meminfosys

ARGUMENTS
None.

EXAMPLES
xipc> meminfosys
 Configuration: '/usr/config'
 Maximum Current
 Users: 60 11
 .
 .
 .

MemSys Parameters, Functions and Macros 3—23

Date: 01/20/2004 - Revision: 4

3.2.10 MemInfoUser() - GET USER MEMSYS INFORMATION

NAME
MemInfoUser() - Get User Information

SYNTAX
#include "xipc.h"

XINT
MemInfoUser(Uid, InfoUser)

XINT Uid;
MEMINFOUSER *InfoUser;

PARAMETERS

Name Description

Uid The user ID of the user whose information is desired, or MEM_INFO_FIRST, or
MEM_INFO_NEXT(Uid). Uid may be an asynchronous Uid (AUid).

InfoUser Pointer to a structure of type MEMINFOUSER, into which the user information will be
copied.

RETURNS

Value Description

RC >= 0 Successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
MemInfoUser() fills the specified structure with information about the user identified by Uid. The Uid
argument can be specified as one of the following:
♦ Uid - an integer user ID identifying a specific user
♦ MEM_INFO_FIRST - identifies the first valid user ID within the instance
♦ MEM_INFO_NEXT(Uid) - identifies the next valid user ID, following Uid.
A program reviewing the status of all users currently within MemSys would call MemInfoUser()
specifying MEM_INFO_FIRST, followed by repeated calls to the function specifying
MEM_INFO_NEXT until the MEM_ER_NOMORE error code is returned.
Each MemSys user has three lists of information associated with it:
o HList: The list of sections currently held (owned or locked) by the subject user. The sections

are listed in the order that they were acquired.

o QList: The list of sections currently being requested by the subject user. The QList will have
elements only when the user is blocked on a MemSecOwn() or MemLock() operation.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

3—24

o WList: The list of sections currently being waited on by the subject user. The WList is the
subset of the QList that has not yet been satisfied. It too will only have elements when
the user is blocked on a MemSecOwn() or MemLock() operation.

 The MEMINFOUSER data structure follows:
/*
 * The MEMINFOUSER structure is used for retrieving status information
 * about a particular MemSys user. MemInfoUser() fills the structure
 * with the data about the Uid it is passed.
 */

typedef struct _MEMINFOUSER
{
 XINT Uid;
 XINT Pid; /* Process Id of user */
 TID Tid; /* Thread ID of user */
 XINT LoginTime; /* Time of login to MemSys */
 XINT TimeOut; /* Remaining timeout secs */
 XINT WaitType; /* One of: MEM_BLOCKEDWRITE,
 * MEM_BLOCKEDREAD, MEM_BLOCKEDOWN,
 * MEM_BLOCKEDLOCK or MEM_USER_NOTWAITING
 */
 XINT NumSecOwned; /* Num sects owned by Uid */
 XINT NumSecLocked; /* Num sects locked by Uid */
 XINT NumBytesOwned; /* Num bytes owned by Uid */
 XINT NumBytesLocked; /* Num bytes locked by Uid */
 XINT CountWrite; /* Num of Uid write opers */
 XINT CountRead; /* Num of Uid read opers */
 XINT HListTotalLength;
 XINT HListOffset;
 XINT HListLength;
 XINT WListTotalLength;
 XINT WListOffset;
 XINT WListLength;
 XINT QListTotalLength;
 XINT QListOffset;
 XINT QListLength;
 MEM_USERHLISTITEM HList[MEM_LEN_INFOLIST];
 MEM_USERWLISTITEM WList[MEM_LEN_INFOLIST];
 MEM_USERQLISTITEM QList[MEM_LEN_INFOLIST];
 CHAR Name[MEM_LEN_XIPCNAME + 1]; /* User login name /
 CHAR NetLoc[XIPC_LEN_NETLOC + 1];/* Name of Client Node */
}
MEMINFOUSER;

where:
HListTotalLength returns with the total internal length of the HList for this user.

HListOffset is set by the user, prior to the MemInfoUser() function call, to specify the portion of the HList
that should be returned (i.e. what offset to start from).

HListLength returns with the length of the HList portion returned by the current call to MemInfoUser().
More specifically, HListLength is the number of elements returned in the HList array. HListLength
will be between 0 and MEM_LEN_INFOLIST.

HList is an array of list elements, where each element is of type MEM_USERHLISTITEM. The
MEM_USERHLISTITEM data type is defined in mempubd.h. The data structure follows.

Similar definitions and usage rules apply to the QList and WList related fields.

MemSys Parameters, Functions and Macros 3—25

Date: 01/20/2004 - Revision: 4

typedef struct _MEM_USERHLISTITEM
{
 XINT OpCode; /* MEM_BLOCKEDLOCK or MEM_BLOCKEDOWN */
 XINT Mid;
 XINT Offset;
 XINT Size;
}
MEM_USERHLISTITEM;

typedef struct _MEM_USERWLISTITEM
{
 XINT Mid;
 XINT Offset;
 XINT Size;
}
MEM_USERWLISTITEM;

typedef struct _MEM_USERQLISTITEM
{
 XINT Mid;
 XINT Offset;
 XINT Size;
}
MEM_USERQLISTITEM;

A call to MemInfoUser() should be preceded by the setting of the HListOffset, QListOffset and
WListOffset fields of the MEMINFOUSER structure to appropriate values.
For a full example and more complete information on using the Info functions, refer to the Advanced
Topics chapter of the XsIPC User Guide.

ERRORS
Code Description

MEM_ER_BADUID Invalid Uid parameter.
MEM_ER_BADLISTOFFSET Invalid offset value specified.
MEM_ER_NOSUBSYSTEM MemSys is not configured in the instance.
MEM_ER_NOMORE No more users.
MEM_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

3—26

__

INTERACTIVE COMMAND

SYNTAX
meminfouser UserId | first | next(UserId) | all

ARGUMENTS
UserId Print info on the first user, the user with Uid Uid or the next higher user.

QueId

EXAMPLES
xipc> meminfouser 9
 Name: 'TableManager' Pid: 241 Tid: 0
 Login Time:...
 .
 .
 .

MemSys Parameters, Functions and Macros 3—27

Date: 01/20/2004 - Revision: 4

3.2.11 MemList(), MemListBuild() - BUILD LISTS OF MEMORY SECTIONS

NAME
MemList() - Create a One-Time List of Memory Sections

MemListBuild() - Build a Reusable List of Memory Sections

SYNTAX
#include "xipc.h"

PMIDLIST
MemList(Sec1, Sec2, ..., MEM_EOL)

SECTION Sec1;
SECTION Sec2;
...

PMIDLIST
MemListBuild(MidList, Sec1, Sec2, ..., MEM_EOL)

MIDLIST MidList;
SECTION Sec1;
SECTION Sec2;
...

PARAMETERS

Name Description

MidList An area to contain the resultant MIDLIST_xe "MIDLIST"_. A pointer to a MIDLIST
(type PMIDLIST) may be passed as well.

Sec1, Sec2 Memory sections to be included in the resultant MIDLIST. MEM_EOL_xe
"MEM_EOL"_ must be used to mark the end of the list.

RETURNS

Value Description

RC != NULL A pointer to the created list of sections. For MemListBuild() it is a pointer to the
MidList specified as an argument. For MemList() it is a pointer to an internal MidList.

RC == NULL MidList exceeded MEM_LEN_MIDLIST elements.

DESCRIPTION
These functions are used for building lists of memory section in a format acceptable by MemSys
functions taking a MIDLIST as one of their arguments. MEM_EOL must be the last argument to
MemList() and MemListBuild().
MemListBuild() builds the list in the area specified by MidList. MemList() creates the list in an internal
static area, and can therefore be safely used only once.
ERRORS
None.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

3—28

3.2.12 MemListAdd(), MemListRemove() - UPDATE LIST OF MEMORY
SECTIONS

NAME
MemListAdd() - Create a One-Time List of Sids

MemListRemove() - Build a Reusable List of Sids

SYNTAX

#include “xipc.h”

PMIDLIST
MemListAdd(MidList, Sec1, Sec2, ..., MEM_EOL)

MIDLIST MidList;
SECTION Sec1;
SECTION Sec2;
...

PMIDLIST
MemListRemove(MidList, Sec1, Sec2, ..., MEM_EOL)

MIDLIST MidList;
SECTION Sec1;
SECTION Sec2;
...

PARAMETERS

Name Description

MidList The MIDLIST to be updated_xe "QIDLIST"_. A
pointer to a MIDLIST (type PMIDLIST) may be
passed as well.

Sec1, Sec2, The memory sections to be added to or removed from
the MIDLIST. MEM_EOL_xe "QUE_EOL"_ must
be used to mark the end of the argument list.

RETURNS

Value Description

RC != NULL A pointer to the updated MIDLIST specified as an argument.

RC == NULL The operation failed. The MIDLIST specified as an argument remains unchanged.

MemSys Parameters, Functions and Macros 3—29

Date: 01/20/2004 - Revision: 4

DESCRIPTION
These functions are used for modifying MIDLISTs by adding or removing memory sections.
MEM_EOL must be the last argument to MemListAdd() and MemListRemove().
MemListAdd() adds memory sections to an existing MIDLIST. The new memory sections are added at
the end of the specified MidList. If the number of memory sections being added, plus the current
number of memory sections in the MIDLIST, exceeds MEM_LEN_MIDLIST, then the operation fails,
NULL is returned and Mdlist remains unchanged.
MemListRemove() removes memory sections from an existing MIDLIST. Each memory section must
match an memory section of the MidList exactly, and then that memory section is removed. If it does
not match a memory section of the MidList, the operation fails.
If the operation succeeds, a pointer to the modified argument MidList is returned; otherwise NULL is
returned and the argument MidList remains unchanged.

ERRORS
None.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

3—30

3.2.13 MemListCount() – GET NUMBER OF SECTIONS IN A LIST OF SECTIONS

NAME
MemListCount() - Get Number of Sections in a List of Sections

SYNTAX
#include "xipc.h"

XINT
MemListCount(MidList)

MIDLIST MidList;

PARAMETERS

Name Description

MidList A MIDLIST or a pointer to a MIDLIST (type
PMIDLIST).

RETURNS

Value Description

RC < 0 The MIDLIST is invalid.

RC > = 0 Number of sections in MidList.

DESCRIPTION
MemListCount() is used for determining the number of sections contained in MIDLIST.

ERRORS
None.

MemSys Parameters, Functions and Macros 3—31

Date: 01/20/2004 - Revision: 4

3.2.14 MemLock() - LOCK MEMORY SECTION(S)

NAME
MemLock() - Lock Memory Section(s)

SYNTAX
#include "xipc.h"

XINT
MemLock(LockType, MidList, RetSec, Options)

XINT LockType;
MIDLIST MidList;
SECTION *RetSec;
... Options;

PARAMETERS

Name Description

LockType MEM_ANY, MEM_ALL or MEM_ATOMIC depending on the locking criteria
desired.

MidList A list of memory section(s) to be locked. This list can be a MIDLIST built by
MemList() or MemListBuild(). A pointer to a MIDLIST (type PMIDLIST) may be
passed as well.

RetSec A pointer to a section variable that gets assigned a value by MemLock() upon its return.
It is acceptable to have a null RetSec argument; it is not necessary to declare and
specify return variables for acquiring return values that are not desired. Successful lock
operations (RC >= 0) return with *RetSec identifying the last locked section.
Interrupted lock operations, where RC = MEM_ER_DESTROYED, return with
*RetSec identifying the destroyed section. Failed calls with
RC = MEM_ER_BADSECTION return with *RetSec identifying the invalid section.
*RetSec is otherwise undefined.

Options Options must be a valid BlockOpt option. See Appendix A, Using Blocking XsIPC
Functions, for a description of BlockOpt.

RETURNS

Value Description

RC >= 0 MemLock successful. If LockType = MEM_ANY then one of the requested
memory sections has been locked and *RetSec identifies the locked memory section. If
LockType = MEM_ALL or MEM_ATOMIC then all requested memory sections
have been locked by the calling user and *RetSec identifies the last memory section that
was locked.

RC < 0 Error (Error codes appear below.)

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

3—32

DESCRIPTION

MemLock() attempts to lock the memory sections in MidList for the calling user's exclusive read-write
access, based on the values of LockType and BlockOpt. The value of LockType specifies how to
satisfy the requested lock:
o If LockType = MEM_ANY, the request is considered satisfied when any one of the

memory sections in MidList has been locked.
o If LockType = MEM_ALL, the request is not considered satisfied until all the memory

sections in MidList have been locked. Memory sections are locked as they become available
until all the sections in MidList have been locked.

o If LockType = MEM_ATOMIC, the request is not considered satisfied until all the
memory sections in MidList are available and then locked in a single atomic operation.
Individual memory sections in MidList are not locked as they become available. In this way it
differs from LockType = MEM_ALL.

MemLock() will not succeed in locking a section unless all of the segment bytes overlaid by the section
are read and write accessible by the calling user.
The value of BlockOpt specifies whether the requested lock operation should block or complete
asynchronously. See Appendix A, Using Blocking XsIPC Functions, for a description of how to use the
blocking options.
A blocked call that is interrupted by an asynchronous signal or trap is returned with
RC = MEM_ER_INTERRUPT. Satisfied MemLock() calls return the identity of the last locked
memory section in *RetSec. It is acceptable to have a null RetSec argument; it is not necessary to
declare and specify return variables for acquiring return values that are not desired.
Calling MemLock() is the most direct approach for acquiring exclusive read-write control over one or
more memory sections. MemLock() first defines the MidList list of memory sections that do not yet
exist. It then acquires ownership rights over the sections as specified by LockType. It then sets their
read-write privilege to read-write by the caller and non-accessible by others. In this way MemLock() is
a concatenation of MemSecDef(), MemSecOwn() and MemSecPriv().
ERRORS
Code Description

MEM_ER_ALREADYLOCKED MidList contains a memory section that is already locked by
the user. *SecPtr identifies the invalid sectionl

MEM_ER_ASYNC Operation is being performed asynchronously.
MEM_ER_ASYNCABORT Asynchronous operation aborted before completion. This

error code is not returned by the function call. It is set in the
Asynchronous Result Control Block RetCode field.

MEM_ER_BADBLOCKOPT Invalid BlockOpt.
MEM_ER_BADOPTION Invalid Options parameter.
MEM_ER_BADLOCKTYPE Invalid LockType parameter.
MEM_ER_BADSECTION MidList contains a bad section. *RetSec is set to the invalid

section.
MEM_ER_CAPACITY_ASYNC_
USER

MemSys user table full.

MEM_ER_CAPACITY_NODE MemSys node table full.
MEM_ER_CAPACITY_SECTIO
N

MemSys section table full.

MEM_ER_DESTROYED Another user destroyed a memory section that was being
waited on by this user. The blocked lock operation was
cancelled. No memory sections were locked. *RetSec
identifies the destroyed memory section.

MemSys Parameters, Functions and Macros 3—33

Date: 01/20/2004 - Revision: 4

MEM_ER_ISFROZEN A BlockOpt of MEM_WAIT or MEM_TIMEOUT() was
specified after the instance was frozen by the calling user.

MEM_ER_INTERRUPT The blocked lock operation was interrupted by an
asynchronous event (such as a signal). The operation has
been canceled.

MEM_ER_NOASYNC An asynchronous operation was attempted with no
asynchronous environment present.

MEM_ER_NOSUBSYSTEM MemSys is not configured in the instance.
MEM_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).
MEM_ER_NOWAIT BlockOpt of MEM_NOWAIT was specified and the request

was not immediately satisfied.
MEM_ER_TIMEOUT The time out period for the blocked lock operation has

expired without satisfying the request.

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

__

INTERACTIVE COMMAND

SYNTAX
memlock LockType MidList BlockingOpt

ARGUMENTS
LockType any, all or atomic.

MidList List of section variables or memory section descriptors separated by commas.
Each descriptor consists of Mid, Offset and Size enclosed in parentheses.

BlockingOpt See the Blocking Options discussion in the xipc command (Interactive
Command Processor) section at the beginning of this Manual.

EXAMPLES
xipc> memsection s (1 0 20)
 Section = (1 0 20)
xipc> memlock atomic (0 120 30),(0 4000 30),s wait
 RetCode = 0
 Section = (1 0 20)

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

3—34

3.2.15 MemPointer() - GET POINTER TO MEMSYS SEGMENT

NAME
MemPointer() - Get Pointer to MemSys Segment

SYNTAX
#include "xipc.h"

XINT
MemPointer(Mid, Ptr);

XINT Mid;
XANY **Ptr;

PARAMETERS

Name Description

Mid The memory segment ID of the MemSys segment whose pointer is desired. Mid was
obtained by the user via MemCreate() or MemAccess() function calls.

Ptr A pointer to the pointer variable that is returned with the segment pointer.

RETURNS

Value Description

RC >= 0 MemPointer successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
MemPointer() returns with a pointer to the first byte (offset 0) of MemSys segment Mid. The pointer
can then be used for directly accessing the data within the segment. The pointer is returned via the Ptr
argument.
This function is a double-edged sword. On the one hand, it provides the most basic mode of access to a
MemSys segment. This can simplify certain coding tasks. On the other hand, using a direct pointer into a
MemSys segment for manipulating its data completely circumvents the software synchronization and
access control mechanisms inherent to MemWrite() and MemRead(). It also introduces the risk of
overrunning MemSys segment boundaries.
As such, a direct segment pointer should only be used (if at all) on areas of a MemSys segment that are
currently "locked" by the User. To use otherwise will produce unpredictable results at best.
MemPointer() will return with a valid pointer to a segment of MemSys instance, if the instance involved
is local to the calling program (not over the network). Requests for pointers to MemSys segments
regarding instances that are non-local return with a MEM_ER_NOTLOCAL error code.

MemSys Parameters, Functions and Macros 3—35

Date: 01/20/2004 - Revision: 4

ERRORS
Code Description

MEM_ER_BADBUFFER Ptr is NULL.
MEM_ER_BADMID Invalid Memory Segment ID Mid.
MEM_ER_NOTLOCAL Instance is not local.
MEM_ER_NOSUBSYSTEM MemSys is not configured in the instance.
MEM_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).
__

INTERACTIVE COMMAND

SYNTAX
mempointer Mid

ARGUMENTS
Mid Segment Id

EXAMPLES
xipc> memcreate TrackTable 10240
 Mid = 1
xipc> mempointer 1
 Pointer = 0001A000

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

3—36

3.2.16 MemRead() - READ DATA FROM A MEMORY SEGMENT

NAME
MemRead() - Read Data From a Memory Segment

SYNTAX
#include "xipc.h"

XINT
MemRead(Mid, Offset, Length, Buffer, Options)

XINT Mid;
XINT Offset;
XINT Length;
XANY *Buffer;
... Options;

PARAMETERS

Name Description

Mid The memory segment ID of the segment to be read. Mid was obtained by the user via
MemCreate() or MemAccess() function calls.

Offset The number of bytes beyond the start of the segment from where the MemRead
operation should commence.

Length The number of bytes to be read from the memory segment into Buffer. Its value must
be greater than 0.

Buffer A pointer to the target data buffer.

Options Options must be a valid BlockOpt option. See Appendix A, Using Blocking XsIPC
Functions, for a description of BlockOpt.

RETURNS

Value Description

RC >= 0 MemRead successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
MemRead() attempts to read Length bytes of data from the MemSys Segment identified by Mid,
starting at Offset bytes from the start of the segment, into Buffer. The MemRead() operation will
succeed if and only if all the bytes targeted by the operation are currently readable by the calling user.
MemRead() operations are guaranteed to be atomic.

MemSys Parameters, Functions and Macros 3—37

Date: 01/20/2004 - Revision: 4

If the entire target area is protected from other user access (i.e. all overlaying sections are locked by the
reading user),then the read operation is executed in its most efficient form, without the need for explicit
protection by MemSys.
If, however, any part of the target area is not protected from other user access (i.e. one or more of the
overlaying sections are not locked by the calling user), then the atomic nature of the read operation is
explicitly enforced by MemSys.
MemRead() is given the potential to block or complete asynchronously by setting BlockOpt
appropriately. The operation will block or complete asynchronously if any bytes of the target area are
not readable by the calling user. A MemRead() operation completes when the complete target memory
area becomes readable by the caller. This is usually accomplished by another user's calling
MemUnlock() or MemSecPriv() regarding the unreadable section(s) overlaying the target area.
See Appendix A, Using Blocking XsIPC Functions, for a description of how to use the blocking options.

ERRORS
Code Description

MEM_ER_ASYNC Operation is being performed asynchronously.
MEM_ER_ASYNCABORT Asynchronous operation aborted before completion. This

error code is not returned by the function call. It is set in the
Asynchronous Result Control Block RetCode field.

MEM_ER_BADBLOCKOPT Invalid BlockOpt.
MEM_ER_BADBUFFER Buffer is NULL.
MEM_ER_BADMID Invalid Memory Segment ID Mid.
MEM_ER_BADOPTION Invalid Options parameter.
MEM_ER_BADTARGET Invalid target specification.
MEM_ER_CAPACITY_ASYNC_
USER

MemSys async user table full.

MEM_ER_CAPACITY_NODE MemSys node table full.
MEM_ER_DESTROYED Another user destroyed the memory segment targeted by the

blocked MemRead operation.
MEM_ER_INTERRUPT Operation was interrupted.
MEM_ER_ISFROZEN A BlockOpt of MEM_WAIT or MEM_TIMEOUT() was

specified after the instance was frozen by the calling user.
MEM_ER_NOASYNC An asynchronous operation was attempted with no

asynchronous environment present.
MEM_ER_NOSUBSYSTEM MemSys is not configured in the instance.
MEM_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).
MEM_ER_NOWAIT BlockOpt of MEM_NOWAIT specified and request was not

immediately satisfied.
MEM_ER_TIMEOUT The blocked MemRead() operation timed out.

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

3—38

__

INTERACTIVE COMMAND

SYNTAX
memread Mid Offset Length BlockingOpt

ARGUMENTS
Mid Segment Id.

Offset Number of bytes beyond the start of the segment.

Length Number of bytes

BlockingOpt See the Blocking Options discussion in the xipc command (Interactive
Command Processor) section at the beginning of this Manual.

EXAMPLES
xipc> memread 1 0 22 wait
 Text = "Mary had a little lamb"

MemSys Parameters, Functions and Macros 3—39

Date: 01/20/2004 - Revision: 4

3.2.17 MemSecDef() - DEFINE A MEMORY SECTION

NAME
MemSecDef() - Define a Memory Section

SYNTAX
#include "xipc.h"

XINT
MemSecDef(Section)

SECTION Section;

PARAMETERS

Name Description

Section The section to be defined. Section identifies the location and size of the new memory
section.

RETURNS

Value Description

RC >= 0 MemSecDef successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
MemSecDef() defines a new memory section on a MemSys memory segment. Attempting to define a
section that already exists is an error.
Read and Write access to each MemSys segment is governed via memory sections that overlay the
segment. Each MemSys segment can have zero or more sections defined over it. A section influences
access to the underlying portion of the segment using a pair of access privilege mechanisms: owner
read-write privilege and other read-write privilege.
A user may become the owner of a section, at which time his section access privilege is governed via
the section's owner access privilege setting. Otherwise, users are treated as others (non-owners) with
their section access privilege governed via the other privilege setting. A section can be owned by at
most one user at a time.
A section that is owned by a user and that has its other privileges set to MEM_NA is considered
Locked by the user. (Refer to the MemLock() function call.)
MemRead() and MemWrite() operations do not succeed unless the calling user has the appropriate
access to every byte within the targeted area of the MemSys segment. Such a determination depends on
the sections defined over the targeted segment area, the read-write privilege of these sections and
relevant section ownerships (if any) at the time.
A newly-defined section has no owner, and has MEM_RW (read and write) privilege set for owner and

others.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

3—40

ERRORS
Code Description

MEM_ER_BADSECTION Invalid Section parameter.
MEM_ER_CAPACITY_SECTIO
N

MemSys section table full.

MEM_ER_DUPLICATE Section already exists.
MEM_ER_NOSUBSYSTEM MemSys is not configured in the instance.
MEM_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

__

INTERACTIVE COMMAND

SYNTAX
memsecdef Section

ARGUMENTS
Section Either a one letter section variable or section descriptor: Mid, Offset and Size enclosed

in parentheses.

EXAMPLES
xipc> memsecdef (1 100 64)
 RetCode = 0

MemSys Parameters, Functions and Macros 3—41

Date: 01/20/2004 - Revision: 4

3.2.18 MemSecOwn() - BECOME OWNER OF MEMORY SECTION(S)

NAME
MemSecOwn() - Become Owner of Memory Section(s)

SYNTAX
#include "xipc.h"

XINT
MemSecOwn(OwnType, MidList, RetSec, Options)

XINT OwnType;
MIDLIST MidList;
SECTION *RetSec;
... Options;

PARAMETERS

Name Description

OwnType MEM_ANY, MEM_ALL or MEM_ATOMIC depending on the criteria desired.

MidList A list of section(s) to be owned. This list can be a MIDLIST built by MemList() or
MemListBuild(). A pointer to a MIDLIST (type PMIDLIST) may be passed as well.

RetSec A pointer to a SECTION variable that gets assigned a value by MemSecOwn() upon
its return. It is acceptable to have a null RetSec argument; it is not necessary to declare
and specify return variables for acquiring return values that are not desired. Successful
operations (RC >= 0) return with *RetSec identifying the last acquired section.
Interrupted operations, where RC = MEM_ER_DESTROYED, return with *RetSec
identifying the destroyed section. Failed calls with RC = MEM_ER_BADSECTION
return with *RetSec identifying the invalid section. The value of *RetSec is otherwise
undefined.

Options Options must be a valid BlockOpt option. See Appendix A, Using Blocking XsIPC
Functions, for a description of BlockOpt.

RETURNS

Value Description

RC >= 0 MemSecOwn successful. If OwnType = MEM_ANY then one of the requested
memory sections has been acquired and *RetSec identifies the memory section. If
OwnType = MEM_ALL or MEM_ATOMIC then all requested memory sections have
been acquired by the calling user and *RetSec identifies the last memory section gotten.

RC < 0 Error (Error codes appear below.)

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

3—42

DESCRIPTION

MemSecOwn() attempts to become the owner of the memory section(s) listed in MidList, based on the
value of OwnType and BlockOpt.
MemSecOwn() assumes that the listed sections are already defined. It does not define any new
sections. Section definition can be accomplished using MemSecDef().
When MemSecOwn() becomes owner of the listed sections, it does not modify the sections' owner or
other read-write privileges settings in any manner. This can be accomplished using MemSecPriv().
MemSecOwn() will not succeed in becoming the owner of a section unless all of the bytes overlaid by
the section are read and write accessible by the calling user.

The value of OwnType specifies how the ownership request is satisfied:
o If OwnType = MEM_ANY, the request is considered satisfied when any one of the

memory sections in MidList has been acquired.
o If OwnType = MEM_ALL, the request is not considered satisfied until all the memory

sections in MidList have been acquired. Memory sections are acquired as they become
available until all the sections in MidList are owned.

o If OwnType = MEM_ATOMIC, the request is not considered satisfied until all the memory
sections in MidList are available and then acquired in a single atomic operation. Individual
memory sections in MidList are not acquired as they become available. In this way it differs
from OwnType = MEM_ALL.

The value of BlockOpt specifies whether the operation should block or complete asynchronously. See
Appendix A, Using Blocking XsIPC Functions, for a description of how to use the blocking options.
A blocked call that is interrupted by an asynchronous signal or trap is returned with
RC = MEM_ER_INTERRUPT. Satisfied MemSecOwn() calls return the identity of the last acquired
memory section in *RetSec. It is acceptable to have a null RetSec argument; it is not necessary to
declare and specify return variables for acquiring return values that are not desired.
The most direct approach for acquiring exclusive read-write access to a list of memory sections is to use
the MemLock()function call. Refer to the MemLock() function for further details on section locking.
ERRORS
Code Description
MEM_ER_ASYNC Operation is being performed asynchronously.
MEM_ER_ASYNCABORT Asynchronous operation aborted before completion. This

error code is not returned by the function call. It is set in the
Asynchronous Result Control Block RetCode field.

MEM_ER_BADBLOCKOPT Invalid BlockOpt.
MEM_ER_BADOPTION Invalid Options parameter.
MEM_ER_BADOWNTYPE Invalid OwnType parameter.
MEM_ER_BADMIDLIST Invalid MidList parameter.
MEM_ER_BADSECTION MidList contains a bad section. *RetSec is set to the invalid

section.
MEM_ER_CAPACITY_ASYNC_
USER

MemSys async user table full.

MEM_ER_CAPACITY_NODE MemSys node table full.
MEM_ER_DESTROYED Another user destroyed a memory section that was being

waited on by this user. The blocked MemSecOwn operation
was cancelled. No memory sections were acquired. *RetSec
identifies the destroyed memory section.

MEM_ER_INTERRUPT The blocked MemSecOwn operation was interrupted by an
asynchronous event (such as a signal). The operation has
been cancelled.

MemSys Parameters, Functions and Macros 3—43

Date: 01/20/2004 - Revision: 4

been cancelled.
MEM_ER_ISFROZEN A BlockOpt of MEM_WAIT or MEM_TIMEOUT() was

specified after the instance was frozen by the calling user.
MEM_ER_NOASYNC An asynchronous operation was attempted with no

asynchronous environment present.
MEM_ER_NOSUBSYSTEM MemSys is not configured in the instance.
MEM_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).
MEM_ER_NOWAIT BlockOpt of MEM_NOWAIT was specified and the request

was not immediately satisfied.
MEM_ER_TIMEOUT The time out period for the blocked MemSecOwn operation

has expired without satisfying the request.

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.
__

INTERACTIVE COMMAND

SYNTAX
memsecown OwnType MidList BlockingOpt

ARGUMENTS
LockType any, all or atomic.

MidList List of section variables or memory section descriptors separated by commas. Each
descriptor consists of Mid, Offset and Size enclosed in parentheses.

BlockingOpt See the Blocking Options discussion in the xipc command (Interactive Command
Processor) section at the beginning of this Manual.

EXAMPLES
xipc> memsecown all (0 120 30),(0 4000 30) post(35,b)
 RetCode = -1097
 Operation continuing asynchronously
xipc> semwait all 35 timeout(30)
 RetCode = 0 Sid = 35
xipc> acb b
 AUid = 11
 .
 .
 .
 MEMSECOWN
 - RetSec = (0 4000 30)
 - RetCode = 0

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

3—44

3.2.19 MemSecPriv() - SET A MEMORY SECTION'S PRIVILEGES

NAME
MemSecPriv() - Set a Memory Section's Privileges

SYNTAX
#include "xipc.h"

XINT
MemSecPriv(Section, OwnerPrivilege, OtherPrivilege)

SECTION Section;
XINT OwnerPrivilege;
XINT OtherPrivilege;

PARAMETERS

Name Description

Section The section whose privileges are to be set. Section identifies the location and
size of the memory section involved.

OwnerPrivilege The Section's owner privilege setting code.

OtherPrivilege The Section's other privilege setting code.

RETURNS

Value Description

RC >= 0 MemSecPriv successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
MemSecPriv() sets the read-write privileges settings of the given memory section. It sets the section's
owner and other access privilege according to the values of OwnerPrivilege and OtherPrivilege.
Possible privilege values are:

MEM_RW Set privilege to read-write access.
MEM_RO Set privilege to read only access.
MEM_WO Set privilege to write only access.
MEM_NA Set privilege to no access.
MEM_ADD_R Add read access.
MEM_ADD_W Add write access.
MEM_RMV_R Remove read access.
MEM_RMV_W Remove write access.
MEM_NC Leave access privilege unchanged.

MemSys Parameters, Functions and Macros 3—45

Date: 01/20/2004 - Revision: 4

MemSecPriv() will fail if the calling user is not the current owner of the specified memory section.
MemSecOwn() or MemLock() must first be used to acquire ownership of the section.

ERRORS
Code Description

MEM_ER_BADSECTION Invalid Section parameter.
MEM_ER_BADPRIVILEGE Invalid OwnerPrivilege or OtherPrivilege parameter(s).
MEM_ER_NOTOWNER User is not current owner of Section.
MEM_ER_NOSUBSYSTEM MemSys is not configured in the instance.
MEM_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.
__

INTERACTIVE COMMAND

SYNTAX
memsecpriv Section OwnerPriv OtherPriv

ARGUMENTS
Section Either a one letter section variable or section descriptor: Mid, Offset and Size enclosed

in parentheses.

OwnerPriv Owner Privileges: rw, ro, wo, na, +r, +w, -r, -w, nc.

OtherPriv Others Privileges: rw, ro, wo, na, +r, +w, -r, -w, nc.

EXAMPLES
xipc> memsection s (1 100 64)
 Section = (1 100 64)
xipc> memsecdef s
 RetCode = 0
xipc> memsecown all s wait
 RetCode = 0
xipc> memsecpriv s rw ro
 RetCode = 0
 .
 .
 .
xipc> memsecpriv s -w nc
 RetCode = 0

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

3—46

3.2.20 MemSecRel() - RELEASE OWNED MEMORY SECTION(S)

NAME
MemSecRel() - Release Owned Memory Section(s)

SYNTAX
#include "xipc.h"

XINT
MemSecRel(MidList, RetSec)

MIDLIST MidList;
SECTION *RetSec;

PARAMETERS

Name Description

MidList A list of sections being released. This list can be a MIDLIST built by MemList() or
MemListBuild(). A pointer to a MIDLIST (type PMIDLIST) may be passed as well.

RetSec A pointer to a variable that gets assigned a value by MemSecRel() on return. It is
acceptable to have a null RetSec argument; it is not necessary to declare and specify
return variables for acquiring return values that are not desired. For failed calls, where
RC = MEM_ER_BADSECTION or RC = MEM_ER_SECNOTOWNER,
*RetSec identifies the invalid section. For successful calls *RetSec identifies the last
memory section released. *RetSec is otherwise undefined.

RETURNS

Value Description

RC >= 0 MemSecRel successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
MemSecRel() releases the memory section(s) specified in the MidList. MemSecRel() will fail if any of
the listed sections are not currently owned by the calling user.
It is acceptable to have a null RetSec argument; it is not necessary to declare and specify return
variables for acquiring return values that are not desired.

ERRORS
Code Description

MEM_ER_BADSECTION MidList contains a bad section. *RetSec identifies the invalid
section.

MEM_ER_BADMIDLIST Invalid MidList parameter.

MemSys Parameters, Functions and Macros 3—47

Date: 01/20/2004 - Revision: 4

MEM_ER_NOSUBSYSTEM MemSys is not configured in the instance.
MEM_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).
MEM_ER_NOTOWNER MidList contains a memory section not currently owned by

the user. *RetSec identifies the invalid section.

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.
__

INTERACTIVE COMMAND

SYNTAX
memsecrel MidList

ARGUMENTS
MidList List of section variables or memory section descriptors separated by commas. Each

descriptor consists of Mid, Offset and Size enclosed in parentheses.

EXAMPLES
xipc> memsecown any (0 120 30),(0 4000 30) wait
 RetCode = 0
 Section = (0 120 30)
 .
 .
 .
xipc> memsecrel (0 120 30)
 RetCode = 0

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

3—48

3.2.21 MemSection() - INITIALIZE A SECTION VARIABLE

NAME
MemSection() - Initialize a Section Variable

SYNTAX
#include "xipc.h"

SECTION
MemSection(Mid, Offset, Size)

XINT Mid;
XINT Offset;
XINT Size;

PARAMETERS

Name Description

Mid The Memory Segment Id of the section. Mid was obtained by the user via
MemCreate() or MemAccess() function calls.

Offset The number of bytes beyond the start of the segment from where the section starts.

Size The size of the memory section. The size is specified in units of bytes.

RETURNS
See description.
DESCRIPTION
MemSection() constructs a memory section variable having the specified initialized values, and returns
the initialized variable as the function's value. As such, it can be used anywhere a SECTION variable is
expected.

Note

MemSection() is not reentrant and should not be used in an environment that requires
reentrant code, e.g., threaded environment or an environment that serves software
interrupts such as signals, ASTs, etc. The function MemSectionBuild() should be used
instead.

ERRORS
None.

MemSys Parameters, Functions and Macros 3—49

Date: 01/20/2004 - Revision: 4

__

INTERACTIVE COMMAND

SYNTAX
memsection SectionId [Section]

ARGUMENTS
SectionId A one letter section variable.

Section Either a one letter section variable or section descriptor: Mid, Offset and Size enclosed
in parentheses.

EXAMPLES
xipc> memsection s (0 0 100)
 Section = (0 0 100)
xipc> section s
 Section = (0 0 100)
xipc> memsecdef s
 RetCode = 0

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

3—50

3.2.22 MemSectionBuild() - BUILD A SECTION VARIABLE

NAME
MemSectionBuild() - Build a Section Variable

SYNTAX
#include "xipc.h"

SECTION *
MemSectionBuild(SectionPtr, Mid, Offset, Size)

SECTION *SectionPtr;
XINT Mid;
XINT Offset;
XINT Size;

PARAMETERS

Name Description

SectionPtr A pointer to the section variable to be built.

Mid The memory segment ID of the section. Mid was obtained by the user via MemCreate()
or MemAccess() function calls.

Offset The number of bytes beyond the start of the segment from where the section starts.

Size The size of the memory section. The size is specified in units of bytes.

RETURNS
See description.
DESCRIPTION
MemSectionBuild() initializes the memory section variable specified in its first argument to have the
specified values; it returns a pointer to the initialized variable as the function's value.

ERRORS
None.

MemSys Parameters, Functions and Macros 3—51

Date: 01/20/2004 - Revision: 4

3.2.23 MemSecUndef() - UNDEFINE A MEMORY SECTION

NAME
MemSecUndef() - Undefine a Memory Section

SYNTAX
#include "xipc.h"

XINT
MemSecUndef(Section)

SECTION Section;

PARAMETERS

Name Description

Section The identity of the section to be undefined.

RETURNS

Value Description

RC >= 0 MemSecUndef successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
MemSecUndef() removes a memory section definition from a MemSys memory segment. The section
argument identifies the section definition to be removed.
Undefining a section can have the affect of eliminating access barriers to all or part of the MemSys
segment area it overlays.
A user can only undefine a section that he owns or that is unowned. Otherwise the call returns with
RC = MEM_ER_ACCESSDENIED.
Users blocked trying to acquire ownership of the section being undefined are notified of the section's
removal via a RC = MEM_ER_DESTROYED return code.

ERRORS
Code Description

MEM_ER_BADSECTION Invalid Section parameter.
MEM_ER_NOSUBSYSTEM MemSys is not configured in the instance.
MEM_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).
MEM_ER_ACCESSDENIED Specified Section is currently owned by another user.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

3—52

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

__

INTERACTIVE COMMAND

SYNTAX
memsecundef Section

ARGUMENTS
Section Either a one letter section variable or section descriptor: Mid, Offset and Size enclosed

in parentheses and separated by spaces.

EXAMPLES
xipc> memsecundef (1 100 64)
 RetCode = 0

MemSys Parameters, Functions and Macros 3—53

Date: 01/20/2004 - Revision: 4

3.2.24 MemTrigger() - DEFINE A MEMSYS TRIGGER

NAME
MemTrigger() - Define a MemSys Trigger

SYNTAX
#include "xipc.h"

XINT
MemTrigger(Sid, TriggerSpec)

XINT Sid;
... TriggerSpec;

PARAMETERS

Name Description

Sid The Semaphore ID of the event semaphore to be set when the trigger event occurs.
The Sid is obtained by SemCreate() or SemAccess() function calls.

TriggerSpec Specification of the MemSys trigger event. The event is specified using a macro
that defines the type of event and parameters such as Mid and threshold values.
See the description below for a list of all trigger specifications.

RETURNS

Value Description

RC >= 0 MemTrigger successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
A MemSys trigger is a logical link between a MemSys event and a SemSys event semaphore. The
semaphore is automatically set when the MemSys event occurs.
A trigger is defined by:
o The Id of an event semaphore that will be set when the MemSys event occurs.
o A MemSys event specification.

The Sid of the event semaphore is obtained by calling SemSys functions SemCreate() or SemAccess().
The following table contains a list of all MemSys events that can be specified:
Trigger Description

MEM_T_READ(Mid, Offset, Size) Trigger event when data is read from the shared
memory area specified by Mid, Offset and Size
(or any part of it).

MEM_T_WRITE(Mid, Offset, Size) Trigger event when data is written into the shared
memory area specified by Mid, Offset and Size
(or any part of it).

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

3—54

(or any part of it).
MEM_T_LOCK(Mid, Offset, Size) Trigger event when the shared memory area

specified by Mid, Offset and Size (or any part of
it) is locked.

MEM_T_UNLOCK(Mid, Offset, Size) Trigger event when the shared memory area
specified by Mid, Offset and Size (or any part of
it) is unlocked.

MEM_T_USER_READ(Mid, Offset, Size
, Uid)

Trigger event when user Uid reads data from the
shared memory area specified by Mid, Offset and
Size (or any part of it).

MEM_T_USER_WRITE(Mid, Offset, Siz
e, Uid)

Trigger event when user Uid writes data into the
shared memory area specified by Mid, Offset and
Size (or any part of it).

MEM_T_USER_LOCK(Mid, Offset, Size
, Uid)

Trigger event when user Uid locks the shared
memory area specified by Mid, Offset and Size
(or any part of it).

MEM_T_USER_UNLOCK(Mid, Offset, Si
ze, Uid)

Trigger event when user Uid unlocks the shared
memory area specified by Mid, Offset and Size
(or any part of it).

MEM_T_POOL_HIGH(N) Trigger event when the allocated size of the shared
memory pool becomes higher than N percent of its
capacity.

MEM_T_POOL_LOW(N) Trigger event when the allocated size of the shared
memory pool becomes lower than N percent of its
capacity.

MEM_T_SECTION_HIGH(N) Trigger event when the number of allocated
sections becomes higher than N percent of the
capacity.

MEM_T_SECTION_LOW(N) Trigger event when the number of allocated
sections becomes lower than N percent of the
capacity.

ERRORS
Code Description

MEM_ER_BADMID Mid is not a valid segment ID.
MEM_ER_BADSID Sid is not a valid semaphore ID.
MEM_ER_BADTRIGGERCODE Bad trigger code
MEM_ER_BADUID Uid is not a valid user ID.
MEM_ER_BADVAL Illegal trigger parameter value
MEM_ER_BADTARGET Illegal shared memory offset
MEM_ER_CAPACITY_NODE MemSys node table full.
MEM_ER_DUPLICATE Attempt to define a trigger that is already defined
MEM_ER_NOSUBSYSTEM MemSys is not configured in the instance.
MEM_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).

MemSys Parameters, Functions and Macros 3—55

Date: 01/20/2004 - Revision: 4

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.
__

INTERACTIVE COMMAND

SYNTAX
memtrigger Sid TriggerCode TriggerParms

ARGUMENTS
Sid Semaphore Id of the semaphore to be set when the MemSys trigger event occurs.

TriggerCode Mnemonic code of the trigger. Note that the prefix "MEM_T_" of the trigger code
should not be specified, e.g., MEM_T_POOL_HIGH should be specified as
pool_high.

TriggerParms Additional parameters depending on the type of trigger defined.

EXAMPLES
xipc> memcreate TrackTable 10240
 Mid = 1
xipc> semcreate BytesHighSem clear
 Sid = 31
xipc> # Set Semaphore 31 when any byte in the 10k Segment 1 is locked.
xipc> memtrigger 31 lock 1 0 10240
 RetCode = 0

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

3—56

3.2.25 MemUnfreeze() - UNFREEZE MEMSYS

NAME
MemUnfreeze() - Unfreeze MemSys

SYNTAX
#include "xipc.h"

XINT
MemUnfreeze()

PARAMETERS
None.

RETURNS

Value Description

RC >= 0 MemUnfreeze successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
MemUnfreeze() unfreezes MemSys. Other MemSys users are restored with equal access to the
subsystem.
MemFreeze() prevents all other processes working within the MemSys, from proceeding with MemSys
operations until a bracketing MemUnfreeze(), XipcUnfreeze() or XipcLogout() call is issued. The
subsystems should therefore be kept frozen for as short a period of time as possible.
MemUnfreeze() will fail if the user has not previously frozen the MemSys via MemFreeze().

ERRORS
Code Description

MEM_ER_NOSUBSYSTEM MemSys is not configured in the instance.
MEM_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).
MEM_ER_NOTFROZEN MemSys not frozen.

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

MemSys Parameters, Functions and Macros 3—57

Date: 01/20/2004 - Revision: 4

__

INTERACTIVE COMMAND

SYNTAX
memunfreeze

ARGUMENTS
None.

EXAMPLES
xipc> memunfreeze
 RetCode = 0

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

3—58

3.2.26 MemUnlock() - UNLOCK MEMORY SECTION(S)

NAME
MemUnlock() - Unlock Memory Section(s)

SYNTAX
#include "xipc.h"

XINT
MemUnlock(MidList, RetSec)

MIDLIST MidList;
SECTION *RetSec;

PARAMETERS

Name Description

MidList A list of sections being unlocked. This list can be a MIDLIST built by MemList() or
MemListBuild(). A pointer to a MIDLIST (type PMIDLIST) may be passed as well.

RetSec A pointer to a variable that gets assigned a value by MemUnlock() on return. It is
acceptable to have a null RetSec argument; it is not necessary to declare and specify
return variables for acquiring return values that are not desired. For failed calls, where
RC = MEM_ER_BADSECTION or RC = MEM_ER_NOTLOCKED, *RetSec
identifies the invalid section. For successful calls *RetSec identifies the last memory
section unlocked. *RetSec is otherwise undefined.

RETURNS

Value Description

RC >= 0 MemUnlock successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
MemUnlock() unlocks the memory section(s) specified in the MidList. MemUnlock() will fail if any of
the listed sections are not currently locked by the user (RC = MEM_ER_NOTLOCKED).
It is acceptable to have a null RetSid argument; it is not necessary to declare and specify return
variables for acquiring return values that are not desired.

MemSys Parameters, Functions and Macros 3—59

Date: 01/20/2004 - Revision: 4

ERRORS
Code Description

MEM_ER_BADSECTION MidList contains a bad section. *RetSec identifies the invalid
section.

MEM_ER_BADMIDLIST Invalid MidList parameter.
MEM_ER_NOSUBSYSTEM MemSys is not configured in the instance.
MEM_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).
MEM_ER_NOTLOCKED MidList contains a memory section not currently locked by

the user. *RetSec identifies the invalid section.

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.
__

INTERACTIVE COMMAND

SYNTAX
memunlock MidList

ARGUMENTS
MidList List of section variables or memory section descriptors separated by commas. Each

descriptor consists of Mid, Offset and Size enclosed in parentheses.

EXAMPLES
xipc> memunlock (0 120 30),(0 4000 30)
 RetCode = 0

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

3—60

3.2.27 MemUntrigger() - UNDEFINE A MEMSYS TRIGGER

NAME
MemUntrigger() - Undefine a MemSys Trigger

SYNTAX
#include "xipc.h"

XINT
MemUntrigger(Sid, TriggerSpec)

XINT Sid;
... TriggerSpec;

PARAMETERS

Name Description

Sid The Semaphore Id of the event semaphore associated with the trigger to be
undefined.

TriggerSpec Specification of the MemSys trigger to be undefined. The event is specified using a
macro that defines the type of event and parameters such as Mid and threshold
values. See the description part of MemTrigger() for a list of all triggers.

RETURNS

Value Description

RC >= 0 MemUntrigger successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
MemUntrigger() is used to undefine a trigger that was previously defined using the MemTrigger()
function.
The parameters to MemUntrigger() must be the same as were used to originally define the trigger.

ERRORS
Code Description

MEM_ER_BADMID Mid is not a valid segment ID.
MEM_ER_BADSID Sid is not a valid semaphore ID.
MEM_ER_BADTRIGGERCODE Bad trigger code
MEM_ER_BADUID Uid is not a valid user id.
MEM_ER_BADVAL Illegal trigger parameter value
MEM_ER_NOSUBSYSTEM MemSys is not configured in the instance.

MemSys Parameters, Functions and Macros 3—61

Date: 01/20/2004 - Revision: 4

MEM_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was
aborted or disconnected).

MEM_ER_TRIGGERNOTEXIST Trigger not previously defined

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

__

INTERACTIVE COMMAND

SYNTAX
memuntrigger Sid TriggerCode TriggerParms

ARGUMENTS
Sid Semaphore Id used when the trigger was defined.

TriggerCode Mnemonic code of the trigger. Note that the prefix "MEM_T_" of the trigger
code should not be specified, e.g., MEM_T_POOL_HIGH should be specified
as pool_high.

TriggerParms Additional parameters depending on the type of trigger defined.

EXAMPLES
xipc> memtrigger 31 lock 1 0 10240
 RetCode = 0
 .
 .
 .
xipc> memuntrigger 31 lock 1 0 10240
 RetCode = 0

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

3—62

3.2.28 MemWrite() - WRITE DATA INTO A MEMORY SEGMENT

NAME
MemWrite() - Write Data Into a Memory Segment

SYNTAX
#include "xipc.h"

XINT
MemWrite(Mid, Offset, Length, Buffer, Options)

XINT Mid;
XINT Offset;
XINT Length;
XANY *Buffer;
... Options;

PARAMETERS

Name Description

Mid The Memory Segment Id of the segment to be written. Mid was obtained by the user
via MemCreate() or MemAccess() function calls.

Offset The number of bytes beyond the start of the segment from where the MemWrite
operation should commence.

Length The number of bytes to be written from Buffer to the MemSys segment starting at
Offset bytes into the segment. If MEM_FILL() is the Buffer argument then Length is
the number of bytes to be filled. Length must be greater than 0.

Buffer A pointer to a source data buffer or a call to the MEM_FILL() macro. MEM_FILL()
when specified, is used for filling each byte of the targeted memory area with a specific
byte value. MEM_FILL() takes the desired byte fill value as its argument.

Options Options must be a valid BlockOpt option. See Appendix A, Using Blocking XsIPC
Functions, for a description of BlockOpt.

RETURNS

Value Description

RC >= 0 MemWrite successful.

RC < 0 Error (Error codes appear below.)

MemSys Parameters, Functions and Macros 3—63

Date: 01/20/2004 - Revision: 4

DESCRIPTION
MemWrite() attempts to write Length bytes of data from Buffer into the memory segment identified by
Mid starting at Offset bytes from the start of the segment. If MEM_FILL() is given as the Buffer
argument, then the specified byte value is written to the entire targeted memory area.
The MemWrite operation will succeed if and only if all the bytes targeted by the operation are currently
writeable by the calling user.
MemWrite operations are guaranteed to be atomic.
If the entire target area is protected from other user access (i.e., all overlaying sections are locked by
the writing user), then the atomic write operation is executed in its most efficient form, without the need
for explicit protection by MemSys.
If, however, any part of the targeted area is not protected from other user access (i.e., one or more of
the overlaying sections are not locked by the calling user), then the atomic nature of the write operation
is explicitly enforced by MemSys.
MemWrite() is given the potential to block or complete asynchronously by setting BlockOpt
appropriately. The operation will block or complete asynchronously if any bytes of the target area
cannot be written to by the calling user.
A MemWrite() operation completes when the complete target memory area becomes writeable by the
caller. This is usually accomplished by another user's calling MemUnlock() or MemSecPriv() regarding
the un-writeable section(s) underlying the target area.
See Appendix A, Using Blocking XsIPC Functions, for a description of how to use the blocking options.

ERRORS
Code Description

MEM_ER_ASYNC Operation is being performed asynchronously.
MEM_ER_ASYNCABORT Asynchronous operation aborted before completion. This

error code is not returned by the function call. It is set in the
Asynchronous Result Control Block RetCode field.

MEM_ER_BADBLOCKOPT Invalid BlockOpt.
MEM_ER_BADBUFFER Buffer is NULL.
MEM_ER_BADMID Invalid Memory Segment ID Mid.
MEM_ER_BADOPTION Invalid Options parameter.
MEM_ER_BADTARGET Invalid target specification.
MEM_ER_CAPACITY_ASYNC_
USER

MemSys async user table full.

MEM_ER_CAPACITY_NODE MemSys node table full.
MEM_ER_DESTROYED Another user destroyed the memory segment targeted by the

blocked MemWrite operation.
MEM_ER_INTERRUPT Operation was interrupted.
MEM_ER_ISFROZEN A BlockOpt of MEM_WAIT or MEM_TIMEOUT() was

specified after the instance was frozen by the calling user.
MEM_ER_NOASYNC An asynchronous operation was attempted with no

asynchronous environment present.
MEM_ER_NOSUBSYSTEM MemSys is not configured in the instance.
MEM_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).
MEM_ER_NOWAIT BlockOpt of MEM_NOWAIT specified and request was not

immediately satisfied.
MEM_ER_TIMEOUT The blocked MemWrite() operation timed out.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

3—64

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.
XIPCNET_ER_TOOBIG Text exceed instance's size limit.

__

INTERACTIVE COMMAND

SYNTAX
memwrite Mid Offset Length Text BlockingOpt

ARGUMENTS
Mid Segment Id.

Offset Number of bytes beyond the start of the segment.

Length Number of bytes

Text The text to be written enclosed in double quotes or a filler character enclosed in
single quotes

BlockingOpt See the Blocking Options discussion in the xipc command (Interactive Command
Processor) section at the beginning of this Manual.

EXAMPLES
xipc> memwrite 1 0 22 "Mary had a little lamb" wait
 RetCode = 0

xipc> # Fill first 22 bytes of segment 1 with spaces.
xipc> memwrite 1 0 22 ' ' wait
 RetCode = 0

MemSys Parameters, Functions and Macros 3—65

Date: 01/20/2004 - Revision: 4

3.2.29 ADDITIONAL MEMSYS INTERACTIVE COMMAND

section - Display a Section Variable

SYNTAX
section SectionId

ARGUMENTS
SectionId A one letter section variable

EXAMPLES
xipc> section a
 Section = (0 100 25)

SemSys Parameters, Functions and Macros 4—1

Date: 01/20/2004 - Revision: 4

4. SEMSYS PARAMETERS, FUNCTIONS AND MACROS

4.1 XsIPC Instance Configuration - SemSys Parameters

NAME
XsIPC Instance Configuration - SemSys parameter definitions for .cfg files

SYNTAX
[SEMSYS]
General SemSys parameters, defined below

PARAMETERS
The table below lists the general SemSys configuration parameters, including the parameter name,
description and default value. The order in which parameters appear within the [SEMSYS] section of
the configuration is not significant. The default values shown do not represent limits for the values that
any particular user may require.
Parameter Name Description Default

Value
MAX_SEMS The number of concurrent semaphores. It should be set

based on the requirements of the programs using the instance.
16

MAX_USERS The maximum number of concurrent SemSys users (real
users and pending asynchronous operations) that can be
supported by the subsystem. It should be set based on the
requirements of the programs using the instance.
Note that asynchronously blocked SemSys operations are
treated as SemSys users. The expected level of SemSys
asynchronous activity should therefore be factored into this
parameter.

32

MAX_NODES The maximum number of nodes. It defines the number of
nodes that are to be made available to the instance. SemSys
nodes are used internally for recording blocking and
ownership of the instance's semaphores.
There is no hard and fast rule for calculating an appropriate
value for MAX_NODES. It depends on the mix of event vs.
Resource semaphores to be employed, the number of user
programs involved and the degree of blocking that is
expected. An initial calculation can be made with the
following formula:
MAX_NODES = (MAX_SEMS * 2) +
(MAX_USERS * 4)
 + (MAX_USERS*MAX_SEMS)
The default value was calculated using the default values for

640

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

4—2

Parameter Name Description Default
Value

MAX_SEMS and MAX_USERS.
Empirical observations via SemView should be made to
monitor node usage. Adjustments should follow as
necessary.

4.2 Functions

4.2.1 SemAbortAsync() - ABORT AN ASYNCHRONOUS OPERATION

NAME
SemAbortAsync() - Abort An Asynchronous Operation

SYNTAX
#include "xipc.h"

XINT
SemAbortAsync(AUid)

XINT AUid;

PARAMETERS

Name Description

AUid The asynchronous operation User ID of the operation to be aborted.

RETURNS

Value Description

RC >= 0 Abort successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
SemAbortAsync() aborts a pending asynchronous operation.
If the aborted asynchronous operation was issued by the same XsIPC user, the BlockOpt of the aborted
operation is ignored and the Asynchronous Result Control Block is not set.
If the aborted operation was issued by a different user, a return code of SEM_ER_ASYNCABORT is
placed in the RetCode field of the operation's Asynchronous Result Control Block and the action
specified in the BlockOpt of the aborted operation is carried out, i.e., a callback routine is invoked or a
semaphore is set.

SemSys Parameters, Functions and Macros 4—3

Date: 01/20/2004 - Revision: 4

ERRORS
Code Description

SEM_ER_BADUID Invalid AUid parameter.
SEM_ER_NOSUBSYSTEM SemSys is not configured in the instance.
SEM_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).
SEM_ER_SYSERR An internal error has occurred while processing the request.

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.
__

INTERACTIVE COMMAND

SYNTAX
semabortasync AsyncUserId

ARGUMENTS
AsyncUserId Asynchronous user id of the asynchronous SemSys operation to be aborted

EXAMPLES
xipc> semwait all 0 callback(cb1,s)
 RetCode = -1097
 Operation continuing asynchronously
 Sid = 0
xipc> acb s
 AUid = 35
 .
 .
xipc> semabortasync 35
......Callback function CB1 executing......
 RetCode = -1098
 Asynchronous operation aborted
 RetSid = 0
 RetCode = 0

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

4—4

4.2.2 SemAccess() - ACCESS AN EXISTING SEMAPHORE

NAME
SemAccess() - Access an Existing Semaphore

SYNTAX
#include "xipc.h"

XINT
SemAccess(Name)

CHAR *Name;

PARAMETERS

Name Description

Name A pointer to a string that contains the symbolic name identifying the desired semaphore.
Name must be null terminated, must not exceed SEM_LEN_XIPCNAME characters,
must identify an existing semaphore and cannot be SEM_PRIVATE.

RETURNS

Value Description

RC >= 0 Access successful. RC is semaphore ID (Sid). Sid is to be used in all subsequent
SemSys calls that refer to this semaphore.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
SemAccess() accesses an existing semaphore in SemSys. Name is used for identifying the desired
semaphore. The function returns the Sid of the accessed semaphore.

ERRORS
Code Description

SEM_ER_BADSEMNAME Invalid Name parameter.
SEM_ER_NOSUBSYSTEM SemSys is not configured in the instance.
SEM_ER_NOTFOUND Semaphore with Name does not exist.
SEM_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).
XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

SemSys Parameters, Functions and Macros 4—5

Date: 01/20/2004 - Revision: 4

__

INTERACTIVE COMMAND

SYNTAX
semaccess Name

ARGUMENTS
Name Semaphore name

EXAMPLES
xipc> semaccess InitSem
 Sid = 7

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

4—6

4.2.3 SemAcquire() - ACQUIRE RESOURCE SEMAPHORES

NAME
SemAcquire() - Acquire Resource Semaphores

SYNTAX
#include "xipc.h"

XINT
SemAcquire(AcquireType, SidList, RetSid, Options)

XINT AcquireType;
SIDLIST SidList;
XINT *RetSid;
... Options;

PARAMETERS

Name Description

AcquireType SEM_ANY, SEM_ALL or SEM_ATOMIC depending on the acquisition criteria
desired.

SidList A list of Sids being requested. This list should be a SIDLIST built by SemList() or
SemListBuild() and updated by SemListAdd(). A pointer to a SIDLIST (type
PSIDLIST) may be passed as well.

RetSid A pointer to a variable that gets assigned by SemAcquire() upon its return. It is
acceptable to have a null RetSid argument; it is not necessary to declare and specify
return variables for acquiring return values that are not desired. Successful acquire
operations (RC >= 0) return with *RetSid equal to the last acquired Sid. Interrupted
acquire operations (RC = SEM_ER_DESTROYED or SEM_ER_CANCEL)
return with *RetSid equal to the destroyed or cancelled Sid. Failed calls with RC =
SEM_ER_BADSID return with *RetSid equal to the invalid Sid. *RetSid is
otherwise undefined.

Options Options must be a valid BlockOpt option. See Appendix A, Using Blocking XsIPC
Functions, for a description of BlockOpt.

RETURNS

Value Description

RC >= 0 Acquire successful. If AcquireType = SEM_ANY then one of the requested
semaphores has been acquired and *RetSid is the Sid of the acquired semaphore. If
AcquireType = SEM_ALL or SEM_ATOMIC then all requested semaphores
have been acquired by the calling user and *RetSid is the Sid of the last semaphore
acquired.

RC < 0 Error (Error codes appear below.)

SemSys Parameters, Functions and Macros 4—7

Date: 01/20/2004 - Revision: 4

DESCRIPTION
SemAcquire() attempts to obtain the semaphores in SidList for the calling user based on the values of
AcquireType and BlockOpt.
The value of AcquireType specifies how to satisfy the requested acquire:

o If AcquireType = SEM_ANY, the request is considered satisfied when any one of the
semaphores in SidList has been acquired.

o If AcquireType = SEM_ALL, the request is not considered satisfied until all the
semaphores in SidList have been acquired. Semaphores are accumulated as they become
available until the entire SidList has been acquired.

o If AcquireType = SEM_ATOMIC, the request is not considered satisfied until all the
semaphores in SidList are available and then acquired in a single atomic operation. Individual
semaphores in SidList are not accumulated as they become available. In this way it differs
from AcquireType = SEM_ALL.

The value of BlockOpt specifies whether and how to block for the satisfaction of the requested acquire
in case it cannot be satisfied immediately. See Appendix A, Using Blocking XsIPC Functions, for a
description of how to use the blocking options.
A blocked call that is interrupted by an asynchronous signal or trap is returned with RC =
SEM_ER_INTERRUPT.
Satisfied SemAcquire() calls return the Sid of the last acquired semaphore in *RetSid. It is acceptable
to have a null RetSid argument; it is not necessary to declare and specify return variables for acquiring
return values that are not desired.

ERRORS
Code Description

SEM_ER_ASYNC Operation is being performed asynchronously.
SEM_ER_ASYNCABORT Asynchronous operation aborted before completion. This error

code is not returned by the function call. It is set in the
Asynchronous Result Control Block RetCode field.

SEM_ER_BADACQUIRETYP
E

Invalid AcquireType parameter.

SEM_ER_BADBLOCKOPT Invalid BlockOpt.
SEM_ER_BADOPTION Invalid Options parameter.
SEM_ER_BADSID SidList contains a bad Sid. *RetSid is set to the invalid Sid.
SEM_ER_BADSIDLIST Bad SidList.
SEM_ER_CANCEL Another user issued a SemCancel() call for one of the

semaphores in SidList. The blocked SemAcquire() operation
was cancelled, and no semaphores were acquired. *RetSid is
set to the Sid of the destroyed semaphore.

SEM_ER_CAPACITY_ASYN
C_USER

SemSys async user table full

SEM_ER_CAPACITY_NODE SemSys node table full.
SEM_ER_DESTROYED Another user destroyed a semaphore that was being waited on

by this user. The blocked acquire operation was cancelled. No
semaphores were acquired. *RetSid is set to the Sid of the
destroyed semaphore.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

4—8

SEM_ER_INTERRUPT The blocked acquire operation was interrupted by an
asynchronous event (such as a signal). The operation has been
canceled.

SEM_ER_ISFROZEN A BlockOpt of SEM_WAIT or SEM_TIMEOUT() was
specified after the instance was frozen by the calling user.

SEM_ER_NOASYNC An asynchronous operation was attempted with no
asynchronous environment present.

SEM_ER_NOSUBSYSTEM SemSys is not configured in the instance.
SEM_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).
SEM_ER_NOWAIT BlockOpt of SEM_NOWAIT was specified and the request

was not immediately satisfied.
SEM_ER_TIMEOUT The time out period for the blocked acquire operation has

expired without satisfying the request.

XIPCNET_ER_CONNECTLO
ST

Connection to instance lost.

XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.
__

INTERACTIVE COMMAND

SYNTAX
semacquire AcquireType SidList BlockingOpt

ARGUMENTS
AcquireType any, all or atomic.

SidList List of Semaphore Ids separated by commas.

BlockingOpt See the Blocking Options discussion in the xipc command (Interactive Command
Processor) section at the beginning of this Manual.

EXAMPLES
xipc> semacquire any 0,1,3 timeout(10)
 RetCode = 0 Sid = 1

SemSys Parameters, Functions and Macros 4—9

Date: 01/20/2004 - Revision: 4

4.2.4 SemCancel() - CANCEL BLOCKED OPERATIONS

NAME
SemCancel() - Cancel Blocked Operations

SYNTAX
#include "xipc.h"

XINT
SemCancel(SidList, RetSid)

SIDLIST SidList;
XINT *RetSid;

PARAMETERS

Name Description

SidList A list of Sids for which cancellation of blocked operations is to be performed. This list
should be built by SemList() or SemListBuild() and updated by SemListAdd(). A
pointer to a SIDLIST (type PSIDLIST) may be passed as well.

RetSid A pointer to a variable that gets assigned by SemCancel() on return. It is acceptable to
have a null RetSid argument; it is not necessary to declare and specify return variables
for acquiring return values that are not desired. For failed calls, where RC =
SEM_ER_BADSID, *RetSid is set to the invalid Sid. For successful calls *RetSid is
set to the last semaphore having its blocked operations cancelled. In all other cases,
*RetSid is undefined.

RETURNS

Value Description

RC >= 0 Cancel successful. RC is the number of users having blocked operations cancelled.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
SemCancel() cancels blocked SemWait() or SemAcquire() operations involving the semaphores in
SidList. Users blocked on any of the listed semaphores are notified of the cancellation of their
SemWait() or SemAcquire() requests by receiving a RC = SEM_ER_CANCEL.
It is acceptable to have a null RetSid argument; it is not necessary to declare and specify return
variables for acquiring return values that are not desired.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

4—10

ERRORS
Code Description

SEM_ER_BADSID SidList contains a bad Sid. *RetSid is set to the invalid Sid.
SEM_ER_BADSIDLIST Bad SidList.
SEM_ER_NOSUBSYSTEM SemSys is not configured in the instance.
SEM_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

__

INTERACTIVE COMMAND

SYNTAX
semcancel SidList

ARGUMENTS
SidList List of Semaphore Ids separated by commas.

EXAMPLES
xipc> semcancel 0
 RetCode = 1 Sid = 0

SemSys Parameters, Functions and Macros 4—11

Date: 01/20/2004 - Revision: 4

4.2.5 SemClear() - CLEAR EVENT SEMAPHORES

NAME
SemClear() - Clear Event Semaphores

SYNTAX
#include "xipc.h"

XINT
SemClear(SidList, RetSid)

SIDLIST SidList;
XINT *RetSid;

PARAMETERS

Name Description

SidList A list of Sids to be cleared. This list should be built by SemList() or SemListBuild() and
updated by SemListAdd(). A pointer to a SIDLIST (type PSIDLIST) may be passed
as well.

RetSid A pointer to a variable that gets assigned by SemClear() on return. It is acceptable to
have a null RetSid argument; it is not necessary to declare and specify return variables
for acquiring return values that are not desired. For failed calls, where RC =
SEM_ER_BADSID or RC = SEM_ER_SEMCLEAR, *RetSid is set to the invalid
Sid. For successful calls *RetSid is set to the last semaphore cleared. In all other
cases, *RetSid is undefined.

RETURNS

Value Description

RC >= 0 Clear successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
SemClear() clears the semaphores specified in SidList.
It is acceptable to have a null RetSid argument; it is not necessary to declare and specify return
variables for acquiring return values that are not desired.

ERRORS
Code Description

SEM_ER_BADSID SidList contains a bad Sid. *RetSid is set to the invalid Sid.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

4—12

SEM_ER_BADSIDLIST Bad SidList.
SEM_ER_NOSUBSYSTEM SemSys is not configured in the instance.
SEM_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).
SEM_ER_SEMCLEAR SidList contains a Sid of a semaphore which is already clear.

*RetSid is set to that Sid.

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

__

INTERACTIVE COMMAND

SYNTAX
semclear SidList

ARGUMENTS
SidList List of Semaphore Ids separated by commas.

EXAMPLES
xipc> semclear 0,1
 RetCode = 0

SemSys Parameters, Functions and Macros 4—13

Date: 01/20/2004 - Revision: 4

4.2.6 SemCreate() - CREATE A NEW SEMAPHORE

NAME
SemCreate() - Create a New Semaphore

SYNTAX
#include "xipc.h"

XINT
SemCreate(Name, CreateValue)

CHAR *Name;
SEMVAL CreateValue;

PARAMETERS

Name Description

Name A pointer to a string that contains a symbolic name for publicly identifying the
semaphore. Name must be null terminated and must not exceed
SEM_LEN_XIPCNAME characters. If Name is SEM_PRIVATE then a
private semaphore is created. Duplicate semaphore names (other than
SEM_PRIVATE) are not permitted.

CreateValue For resource semaphores, a non-zero positive integer representing the
semaphore's maximum value. For event semaphores, either SEM_CLEAR or
SEM_SET is specified.

RETURNS

Value Description

RC >= 0 Create successful. RC is semaphore ID (Sid). Sid is to be used in all subsequent
SemSys calls that refer to this semaphore.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
SemCreate() creates a new semaphore in SemSys. Name is used for publicly identifying the new
semaphore. A Name of SEM_PRIVATE directs SemSys to create a private semaphore (i.e. having
no public identification). A resource semaphore is created having an initial value of CreateValue, while
an event semaphore is created either as set or as clear. The function returns the Sid of the created
semaphore.

ERRORS
Code Description

SEM_ER_BADSEMNAME Invalid Name parameter.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

4—14

SEM_ER_BADSEMVALUE Invalid CreateValue parameter.
SEM_ER_CAPACITY_NODE SemSys node table full.
SEM_ER_CAPACITY_TABLE Semaphore table full.
SEM_ER_DUPLICATE Semaphore with Name already exists.
SEM_ER_NOSUBSYSTEM SemSys is not configured in the instance.
SEM_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

__

INTERACTIVE COMMAND

SYNTAX
semcreate {Name | @PRIVATE} CreateValue

ARGUMENTS
Name Name of new semaphore (or, if @PRIVATE, a private semaphore indicator).

CreateValue For a resource semaphore: A maximum value;
For an event semaphore: Either clear or set.

EXAMPLES
xipc> semcreate Resource 5
 Sid = 0

xipc> semcreate InitSem clear
 Sid = 3

SemSys Parameters, Functions and Macros 4—15

Date: 01/20/2004 - Revision: 4

4.2.7 SemDelete() - DELETE A SEMAPHORE

NAME
SemDelete() - Delete a Semaphore

SYNTAX
#include "xipc.h"

XINT
SemDelete(Sid)

XINT Sid;

PARAMETERS

Name Description

Sid The Semaphore ID of the semaphore to be deleted. Sid was obtained by the user via
SemCreate() or SemAccess() function calls.

RETURNS

Value Description

RC >= 0 Delete successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
SemDelete() deletes the semaphore identified by Sid from SemSys. SemDelete() will fail if any other
users are holding onto or blocking for the specified semaphore.

ERRORS
Code Description

SEM_ER_INVALIDSID Invalid semaphore identifier specified.
SEM_ER_NOSUBSYSTEM SemSys is not configured in the instance.
SEM_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).
SEM_ER_SEMBUSY Semaphore Sid held or blocked on by other users.

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

4—16

__

INTERACTIVE COMMAND

SYNTAX
semdelete Sid

ARGUMENTS
Sid Semaphore Id.

EXAMPLES
xipc> semdelete 5
 RetCode = 0

SemSys Parameters, Functions and Macros 4—17

Date: 01/20/2004 - Revision: 4

4.2.8 SemDestroy() - DESTROY A SEMAPHORE

NAME
SemDestroy() - Destroy a Semaphore

SYNTAX
#include "xipc.h"

XINT
SemDestroy(Sid)

XINT Sid;

PARAMETERS

Name Description

Sid The semaphore ID of the semaphore to be destroyed. Sid was obtained by the user via
SemCreate() or SemAccess() function calls.

RETURNS

Value Description

RC >= 0 Destroy successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
SemDestroy() deletes the semaphore identified by Sid from SemSys even if other users are holding onto
or blocked on the specified semaphore. Blocked SemAcquire() or SemWait() operations initiated by
other users, having Sid as one of the semaphores being blocked on, are interrupted and returned with an
RC = SEM_ER_DESTROYED, indicating the deletion of semaphore Sid. If Sid is a resource
semaphore, its copies are silently taken away from users holding them. These users are not explicitly
notified of the semaphore's deletion.

ERRORS
Code Description

SEM_ER_INVALIDSID Invalid semaphore identifier specified.
SEM_ER_NOSUBSYSTEM SemSys is not configured in the instance.
SEM_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

4—18

__

INTERACTIVE COMMAND

SYNTAX
semdestroy Sid

ARGUMENTS
Sid Semaphore Id.

EXAMPLES
xipc> semdestroy 5
 RetCode = 0

SemSys Parameters, Functions and Macros 4—19

Date: 01/20/2004 - Revision: 4

4.2.9 SemFreeze() - FREEZE SEMSYS

NAME
SemFreeze() - Freeze SemSys

SYNTAX
#include "xipc.h"

XINT
SemFreeze()

PARAMETERS
None.

RETURNS

Value Description

RC >= 0 SemFreeze successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
SemFreeze() freezes all SemSys activity occurring within the logged in instance, and gives the calling
user exclusive access to all SemSys functionality. SemSys remains frozen until a SemUnfreeze(),
XipcUnfreeze() or a XipcLogout() function call is issued.
SemFreeze() prevents all other users, working within the SemSys, from proceeding with SemSys
operations - until a bracketing SemUnfreeze(), XipcUnfreeze() or XipcLogout() call is issued. The
subsystem should therefore be kept frozen for as short a period of time as possible.

ERRORS
Code Description

SEM_ER_NOSUBSYSTEM SemSys is not configured in the instance.
SEM_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).
SEM_ER_ISFROZEN Calling user has already frozen SemSys.

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

4—20

__

INTERACTIVE COMMAND

SYNTAX
semfreeze

ARGUMENTS
None.

EXAMPLES
xipc> semfreeze
 RetCode = 0

SemSys Parameters, Functions and Macros 4—21

Date: 01/20/2004 - Revision: 4

4.2.10 SemInfoSem() - GET SEMAPHORE INFORMATION

NAME
SemInfoSem() - Get Semaphore Information

SYNTAX
#include "xipc.h"

XINT
SemInfoSem(Sid, InfoSem)

XINT Sid;
SEMINFOSEM *InfoSem;

PARAMETERS

Name Description

Sid The Semaphore Id of the semaphore whose information is desired or
SEM_INFO_FIRST, or SEM_INFO_NEXT(Sid). Sid can be obtained via
SemCreate() or SemAccess() function calls.

InfoSem Pointer to a structure of type SEMINFOSEM, into which the semaphore information
will be copied.

RETURNS

Value Description

RC >= 0 Successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
SemInfoSem() fills the specified structure with information about the semaphore identified by Sid. The
Sid argument can be specified as one of the following:
♦ Sid - a semaphore id identifying a specific semaphore
♦ SEM_INFO_FIRST - identifies the first valid semaphore id
♦ SEM_INFO_NEXT(Sid) - identifies the next valid semaphore id, following Sid.
A program reviewing the status of all semaphores within SemSys should call SemInfoSem() specifying
SEM_INFO_FIRST, followed by repeated calls to the function specifying SEM_INFO_NEXT until
the SEM_ER_NOMORE error code is returned.
Each SemSys semaphore has two lists of information associated with it:
o HList: The list of the Uids currently holding a copy of the specified resource semaphore. This

HList is not used by event semaphores. The Uids are listed in the order that they
acquired a semaphore copy.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

4—22

o WList: For resource semaphores, the WList is the list of Uids currently waiting for a copy of
the specified semaphore to become available. For event semaphores, the WList is the
list of Uids currently waiting for the semaphore to be set. The Uids are listed in the
order that they began waiting.

 The SEMINFOSEM data structure follows:
/*
 * The SEMINFOSEM structure is used for retrieving status information
 * about a particular SemSys semaphore. SemInfoSem() fills the
 * structure with the data about the Sid it is passed.
 */

typedef struct _SEMINFOSEM
{
 XINT Sid;
 XINT CreateTime; /* Time semaphore created */
 XINT CreateUid; /* The Uid who created it */
 XINT LastUid; /* Last Uid to use it */
 XINT MaxValue; /* Initial value */
 XINT CurValue; /* Current value */
 LBITS SemType; /* SEM_TYPE_RESOURCE or SEM_TYPE_EVENT */
 XINT HListTotalLength;
 XINT HListOffset;
 XINT HListLength;
 XINT WListTotalLength;
 XINT WListOffset;
 XINT WListLength;
 SEM_SEMHLISTITEM HList[SEM_LEN_INFOLIST];
 SEM_SEMWLISTITEM WList[SEM_LEN_INFOLIST];
 CHAR Name[SEM_LEN_XIPCNAME + 1]; /* Semaphore name */
}
SEMINFOSEM;

where:
HListTotalLength returns with the total internal length of the HList for this semaphore.
HListOffset is set by the user, prior to the SemInfoSem() function call, to specify the portion of
the HList that should be returned (i.e. what offset to start from).
HListLength returns with the length of the HList portion returned by the current call to
SemInfoSem(). More specifically, HListLength is the number of elements returned in the HList
array. HListLength will be between 0 and SEM_LEN_INFOLIST.
HList is an array of list elements, where each element is of type SEM_SEMHLISTITEM. The
SEM_SEMHLISTITEM data type is defined in sempubd.h.
The data structure follows; similar definitions and usage rules apply to the WList related fields.
typedef struct _SEM_SEMWLISTITEM
{
 XINT Uid;
}
SEM_SEMWLISTITEM;

SemSys Parameters, Functions and Macros 4—23

Date: 01/20/2004 - Revision: 4

typedef struct _SEM_SEMHLISTITEM
{
 XINT Uid;
}
SEM_SEMHLISTITEM;

A call to SemInfoSem() should be preceded by the setting of the HListOffset and WListOffset fields
of the SEMINFOSEM structure to appropriate values.
For a full example and more complete information on using the Info functions, refer to the Advanced
Topics chapter of the XsIPC User Guide.

ERRORS
Code Description

SEM_ER_INVALIDSID Invalid semaphore identifier specified.
SEM_ER_BADLISTOFFSET Invalid offset value specified.
SEM_ER_NOMORE No more semaphores.
SEM_ER_NOSUBSYSTEM SemSys is not configured in the instance.
SEM_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.
__

INTERACTIVE COMMAND

SYNTAX
seminfosem Sid | first | next(Sid) | all

ARGUMENTS
Sid Print info on the first semaphore, the semaphore with Sid Sid or the next higher

semaphore.

EXAMPLES

xipc> seminfosem 5
 Name: 'InitSem' Type: Event
 Created by Uid: 22 At:...
 . . .

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

4—24

4.2.11 SemInfoSys() - GET SUBSYSTEM INFORMATION

NAME
SemInfoSys() - Get Subsystem Information

SYNTAX
#include "xipc.h"

XINT
SemInfoSys(InfoSys)

SEMINFOSYS *InfoSys;

PARAMETERS

Name Description

InfoSys Pointer to a structure of type SEMINFOSYS, into which the system information will be
copied.

RETURNS

Value Description

RC >= 0 Successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
SemInfoSys() fills the specified structure with information about the current instance of SemSys into
which the user is logged in. The data structure follows:

/*
 * The SEMINFOSYS structure is used for retrieving status information
 * about the SemSys instance. SemInfoSys() fills the structure with the
 * data about the instance.
 */

typedef struct _SEMINFOSYS
{
 XINT MaxUsers; /* Maximum allowed users */
 XINT CurUsers; /* Current number of users */
 XINT MaxSems; /* Maximum allowed sems */
 XINT CurSems; /* Current number of sems */
 XINT MaxNodes; /* Max configured nodes */
 XINT FreeCnt; /* Current available nodes */
 CHAR Name[SEM_LEN_PATHNAME + 1]; /* InstanceFileName */
}
SEMINFOSYS;

For a full example and more complete information on using the Info functions, refer to the Advanced
Topics chapter of the XsIPC User Guide.

SemSys Parameters, Functions and Macros 4—25

Date: 01/20/2004 - Revision: 4

ERRORS
Code Description

SEM_ER_NOSUBSYSTEM SemSys is not configured in the instance.
SEM_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

__

INTERACTIVE COMMAND

SYNTAX
seminfosys

ARGUMENTS
None.

EXAMPLES
xipc> seminfosys
 Configuration: '/usr/config'
 Maximum Current
 Users: 60 11
 .
 .
 .

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

4—26

4.2.12 SemInfoUser() - GET SEMSYS USER INFORMATION

NAME
SemInfoUser() - Get User Information

SYNTAX
#include "xipc.h"

XINT
SemInfoUser(Uid, InfoUser)

XINT Uid;
SEMINFOUSER *InfoUser;

PARAMETERS

Name Description

Uid The User Id of the user whose information is desired. or SEM_INFO_FIRST, or
SEM_INFO_NEXT(Uid). Uid may be an asynchronous Uid (AUid).

InfoUser Pointer to a structure of type SEMINFOUSER, into which the user information will be
copied.

RETURNS

Value Description

RC >= 0 Successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
SemInfoUser() fills the specified structure with information about the user identified by Uid. The Uid
argument can be specified as one of the following:
♦ Uid - a user ID identifying a specific user
♦ SEM_INFO_FIRST - identifies the first valid user ID within the instance
♦ SEM_INFO_NEXT(Uid) - identifies the next valid user ID id, following Uid.
A program reviewing the status of all queues within SemSys should call SemInfoUser() specifying
SEM_INFO_FIRST, followed by repeated calls to the function specifying SEM_INFO_NEXT until
the SEM_ER_NOMORE error code is returned.
Each SemSys user has three lists of information associated with it:
o HList: The list of resource Sid copies currently held by the subject user. The Sids are listed in

the order that they were acquired.

o QList: The list of Sids currently being requested by the subject user. The QList will have
elements only when the user is blocked on a SemAcquire() or SemWait() operation.

SemSys Parameters, Functions and Macros 4—27

Date: 01/20/2004 - Revision: 4

o WList: The list of Sids currently being waited on by the subject user. The WList is the subset of
the QList that has not yet been satisfied. It too will only have elements when the user is
blocked on a SemAcquire() or SemWait() operation.

The SEMINFOUSER data structure follows:

/*
 * The SEMINFOUSER structure is used for retrieving status information
 * about a particular SemSys user. SemInfoUser() fills the structure
 * with the data about the Uid it is passed.
 */

typedef struct _SEMINFOUSER
{
 XINT Uid;
 XINT Pid; /* Process ID of user */
 TID Tid; /* Thread ID of user */
 XINT LoginTime; /* Time of login to SemSys */
 XINT TimeOut; /* Remaining timeout secs */
 XINT WaitType; /* One of: SEM_BLOCKEDATOMIC,
 * SEM_BLOCKEDALL, SEM_BLOCKEDANY or
 * SEM_USER_NOTWAITING

 */
 XINT HListTotalLength;
 XINT HListOffset;
 XINT HListLength;
 XINT WListTotalLength;
 XINT WListOffset;
 XINT WListLength;
 XINT QListTotalLength;
 XINT QListOffset;
 XINT QListLength;
 SEM_USERHLISTITEM HList[SEM_LEN_INFOLIST];
 SEM_USERWLISTITEM WList[SEM_LEN_INFOLIST];
 SEM_USERQLISTITEM QList[SEM_LEN_INFOLIST];
 CHAR Name[SEM_LEN_XIPCNAME + 1]; /* User login name */
 CHAR NetLoc[XIPC_LEN_NETLOC + 1];/* Name of Client Node */
}
SEMINFOUSER;

where:
HListTotalLength returns with the total internal length of the HList for this user.

HListOffset is set by the user, prior to the SemInfoUser() function call, to specify the portion of the HList
that should be returned (i.e. what offset to start from).

HListLength returns with the length of the HList portion returned by the current call to SemInfoUser().
More specifically, HListLength is the number of elements returned in the HList array. HListLength
will be between 0 and SEM_LEN_INFOLIST.

HList is an array of list elements, where each element is of type SEM_USERHLISTITEM. The
SEM_USERHLISTITEM data type is defined in sempubd.h.

Similar definitions and usage rules apply to the QList and WList related fields.

The data structures follow:

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

4—28

typedef struct _SEM_USERQLISTITEM
{
 XINT Sid;
}
SEM_USERQLISTITEM;

typedef struct _SEM_USERWLISTITEM
{
 XINT Sid;
}
SEM_USERWLISTITEM;

typedef struct _SEM_USERHLISTITEM
{
 XINT Sid;
}
SEM_USERHLISTITEM;

A call to SemInfoUser() should be preceded by the setting of the HListOffset, QListOffset and
WListOffset fields of the SEMINFOUSER structure to appropriate values.
For a full example and more complete information on using the Info functions, refer to the Advanced
Topics chapter of the XsIPC User Guide.

ERRORS
Code Description

SEM_ER_BADUID Invalid Uid parameter.
SEM_ER_BADLISTOFFSET Invalid offset value specified.
SEM_ER_NOMORE No more users.
SEM_ER_NOSUBSYSTEM SemSys is not configured in the instance.
SEM_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

SemSys Parameters, Functions and Macros 4—29

Date: 01/20/2004 - Revision: 4

__

INTERACTIVE COMMAND

SYNTAX
seminfouser Uid | first | next(Uid) | all

ARGUMENTS
Uid Print info on the first user, the user with Uid Uid or the next higher user.

EXAMPLES

xipc> seminfouser 9
 Name: 'MasterControl' Pid: 214 Tid: 0
 Login Time:...
 . . .

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

4—30

4.2.13 SemList(), SemListBuild() - BUILD LISTS OF SIDS

NAME
SemList() - Create a One-Time List of Sids

SemListBuild() - Build a Reusable List of Sids

SYNTAX
#include "xipc.h"

PSIDLIST
SemList(Sid1, Sid2, ..., SEM_EOL)

SECTION Sid1;
SECTION Sid2;
...

PSIDLIST
SemListBuild(SidList, Sid1, Sid2, ..., SEM_EOL)

SIDLIST SidList;
SECTION Sid1;
SECTION Sid2;
...

PARAMETERS

Name Description

SidList An area to contain the resultant SIDLIST_xe "MIDLIST"_. A pointer to a SIDLIST
(type PSIDLIST) may be passed as well.

Sid1, Sid2 Sids to be included in the resultant SIDLIST. SEM_EOL_xe
"MEM_EOL"_ must be used to mark the end of the list.

RETURNS

Value Description

RC != NULL A pointer to the created list of Sids. For SemListBuild() it is a pointer to the SidList
specified as an argument. For SemList() it is a pointer to an internal SidList.

RC == NULL SidList exceeded SEM_LEN_SIDLIST elements.

DESCRIPTION
These functions are used for building lists of Sids in a format acceptable by SemSys functions taking a
SIDLIST as one of their arguments. SEM_EOL must be the last argument to SemList() and
SemListBuild().
SemListBuild() builds the list in the area specified by SidList. SemList() creates the list in an internal
static area, and can therefore be safely used only once.
ERRORS
None.

SemSys Parameters, Functions and Macros 4—31

Date: 01/20/2004 - Revision: 4

4.2.14 SemListAdd(), SemListRemove() - UPDATE LIST OF SIDS

NAME
SemListAdd() – Add to a List of Sids

SemListRemove() – Remove from a List of Sids

SYNTAX

#include “xipc.h”

PSIDLIST
SemListAdd(SidList, Sid1, Sid2, ..., SEM_EOL)

SIDLIST SidList;
XINT Sid1;
XINT Sid2;
...

PSIDLIST
SemListRemove(SidList, Sid1, Sid2, ..., SEM_EOL)

SIDLIST SidList;
XINT Sid1;
XINT Sid2;
...

PARAMETERS

Name Description

SidList The SIDLIST to be updated_xe "QIDLIST"_. A
pointer to a SIDLIST (type PSIDLIST) may be passed
as well.

Sid1, Sid2, The Sids to be added to or removed from the
SIDLIST. SEM_EOL_xe "QUE_EOL"_ must be
used to mark the end of the argument list.

RETURNS

Value Description

RC != NULL A pointer to the updated SIDLIST specified as an argument..

RC == NULL The operation failed. The SIDLIST specified as an argument remains unchanged.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

4—32

DESCRIPTION
These functions are used for modifying SIDLISTs by adding or removing Sidss. SEM_EOL must be
the last argument to SemListAdd() and SemListRemove().
SemListAdd() adds Sids to an existing SIDLIST. The new Sids are added at the end of the specified
SidList. If the number of Sids being added, plus the current number of Sids in the SIDLIST, exceeds
SEM_LEN_SIDLIST, then the operation fails, NULL is returned and SidList remains unchanged.
SemListRemove() removes Sids from an existing SIDLIST. Each Sid must match a Sid of the SidList
exactly, and then that Sid is removed. If it does not match a Sid of the SidList, the operation fails.
If the operation succeeds, a pointer to the modified argument SidList is returned; otherwise NULL is
returned and the argument SidList remains unchanged.

ERRORS
None.

SemSys Parameters, Functions and Macros 4—33

Date: 01/20/2004 - Revision: 4

4.2.15 SemListCount() – GET NUMBER OF SIDS IN A LIST OF SIDS

NAME
SemListCount() - Get Number of Sids in a List of Sids

SYNTAX
#include "xipc.h"

XINT
SemListCount(SidList)

SIDLIST SidList;

PARAMETERS

Name Description

SidList A SIDLIST or a pointer to a SIDLIST (type
PSIDLIST).

RETURNS

Value Description

RC < 0 The SIDLIST is invalid.

RC > = 0 Number of Sids in SidList.

DESCRIPTION
SemListCount() is used for determining the number of Sids contained in SIDLIST.

ERRORS
None.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

4—34

4.2.16 SemRelease() - RELEASE RESOURCE SEMAPHORES

NAME
SemRelease() - Release Resource Semaphores

SYNTAX
#include "xipc.h"

XINT
SemRelease(SidList, RetSid)

SIDLIST SidList;
XINT *RetSid;

PARAMETERS

Name Description

SidList A list of Sids being released. This list can be built by SemList() or SemListBuild() and
updated by SemListAdd(). A pointer to a SIDLIST (type PSIDLIST) may be passed
as well.

RetSid A pointer to a variable that gets assigned by SemRelease() on return. It is acceptable to
have a null RetSid argument; it is not necessary to declare and specify return variables
for acquiring return values that are not desired. For failed calls, where RC =
SEM_ER_BADSID or RC = SEM_ER_SEMNOTHELD, *RetSid is set to the
invalid Sid. For successful calls *RetSid is set to the last semaphore released. In all
other cases, *RetSid is undefined.

RETURNS

Value Description

RC >= 0 Release successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
SemRelease() releases the resource semaphores specified in SidList.
It is acceptable to have a null RetSid argument; it is not necessary to declare and specify return
variables for acquiring return values that are not desired.

ERRORS
Code Description

SEM_ER_BADSID SidList contains a bad Sid. *RetSid is set to the invalid Sid.

SemSys Parameters, Functions and Macros 4—35

Date: 01/20/2004 - Revision: 4

SEM_ER_BADSIDLIST Bad SidList.
SEM_ER_NOSUBSYSTEM SemSys is not configured in the instance.
SEM_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).
SEM_ER_SEMNOTHELD SidList contains a Sid of a semaphore not currently held by

the user. *RetSid is set to that Sid.

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

__

INTERACTIVE COMMAND

SYNTAX
semrelease SidList

ARGUMENTS
SidList List of Semaphore Ids separated by commas.

EXAMPLES
xipc> semrelease 9,11
 RetCode = 0

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

4—36

4.2.17 SemSet() - SET EVENT SEMAPHORES

NAME
SemSet() - Set Event Semaphores

SYNTAX
#include "xipc.h"

XINT
SemSet(SidList, RetSid)

SIDLIST SidList;
XINT *RetSid;

PARAMETERS

Name Description

SidList A list of Sids to be set. This list should be built by SemList() or SemListBuild() and
updated by SemListAdd(). A pointer to a SIDLIST (type PSIDLIST) may be passed
as well.

RetSid A pointer to a variable that gets assigned by SemSet() on return. It is acceptable to
have a null RetSid argument; it is not necessary to declare and specify return variables
for acquiring return values that are not desired. For failed calls, where RC =
SEM_ER_BADSID or RC = SEM_ER_SEMSET, *RetSid is set to the invalid
Sid. For successful calls *RetSid is set to the last semaphore set. In all other cases,
*RetSid is undefined.

RETURNS

Value Description

RC >= 0 Set successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
SemSet() sets the semaphores specified in SidList.
It is acceptable to have a null RetSid argument; it is not necessary to declare and specify return
variables for acquiring return values that are not desired.

ERRORS
Code Description

SEM_ER_BADSID SidList contains a bad Sid. *RetSid is set to the invalid Sid.

SemSys Parameters, Functions and Macros 4—37

Date: 01/20/2004 - Revision: 4

SEM_ER_BADSIDLIST Bad SidList.
SEM_ER_NOSUBSYSTEM SemSys is not configured in the instance.
SEM_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).
SEM_ER_SEMSET SidList contains a Sid of a semaphore which is already set.

*RetSid is set to that Sid.

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

__

INTERACTIVE COMMAND

SYNTAX
semset SidList

ARGUMENTS
SidList List of Semaphore Ids separated by commas.

EXAMPLES
xipc> semset 0,1,22
 RetCode = 0

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

4—38

4.2.18 SemUnfreeze() - UNFREEZE SEMSYS

NAME
SemUnfreeze() - Unfreeze SemSys

SYNTAX
#include "xipc.h"

XINT
SemUnfreeze()

PARAMETERS
None.

RETURNS

Value Description

RC >= 0 SemUnfreeze successful.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
SemUnfreeze() unfreezes SemSys. Other SemSys users are restored with equal access to the
subsystem.
SemFreeze() prevents all other processes working within the SemSys, from proceeding with SemSys
operations until a bracketing SemUnfreeze(), XipcUnfreeze() or XipcLogout() call is issued. The
subsystems should therefore be kept frozen for as short a period of time as possible.
SemUnfreeze() will fail if the user has not previously frozen the SemSys via SemFreeze().

ERRORS
Code Description

SEM_ER_NOSUBSYSTEM SemSys is not configured in the instance.
SEM_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).
SEM_ER_NOTFROZEN SemSys not frozen.

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

SemSys Parameters, Functions and Macros 4—39

Date: 01/20/2004 - Revision: 4

__

INTERACTIVE COMMAND

SYNTAX
semunfreeze

ARGUMENTS
None.

EXAMPLES
xipc> semunfreeze
 RetCode = 0

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

4—40

4.2.19 SemWait() - WAIT ON EVENT SEMAPHORES

NAME
SemWait() - Wait On Event Semaphores

SYNTAX
#include "xipc.h"

XINT
SemWait(WaitType, SidList, RetSid, Options)

XINT WaitType;
SIDLIST SidList;
XINT *RetSid;
... Options;

PARAMETERS

Name Description

WaitType SEM_ANY, SEM_ALL or SEM_ATOMIC depending on the waiting criteria
desired; or SEM_USER_NOTWAITING

SidList A list of Sids being waited on. This list should be a SIDLIST built by SemList() or
SemListBuild() and updated by SemListAdd(). A pointer to a SIDLIST (type
PSIDLIST) may be passed as well.

RetSid A pointer to a variable that gets assigned by SemWait() upon its return. It is acceptable
to have a null RetSid argument; it is not necessary to declare and specify return
variables for acquiring return values that are not desired. Successful wait operations
(RC >= 0) return with *RetSid equal to the last Sid to be set. Interrupted wait
operations (RC = SEM_ER_DESTROYED or SEM_ER_CANCEL) return with
*RetSid equal to the destroyed or cancelled Sid. Failed calls with RC =
SEM_ER_BADSID return with *RetSid equal to the invalid Sid. *RetSid is otherwise
undefined.

Options The Options parameter is of the form:
 [ClearOpt |] BlockOpt

 ClearOpt is optional and can be either SEM_CLEAR or SEM_NOCLEAR, indicating
whether or not set semaphores are to be cleared at the completion of the SemWait()
operation. SEM_NOCLEAR is the default ClearOpt value. See Appendix A, Using
Blocking XsIPC Functions, for a description of BlockOpt.

RETURNS

Value Description

RC >= 0 Wait successful. If WaitType = SEM_ANY then one of the requested semaphores
has been set and *RetSid is the Sid of that semaphore. If WaitType = SEM_ALL

SemSys Parameters, Functions and Macros 4—41

Date: 01/20/2004 - Revision: 4

or SEM_ATOMIC then all requested semaphores have been set and *RetSid is the Sid
of the last semaphore set.

RC < 0 Error (Error codes appear below.)

DESCRIPTION
SemWait() waits for the semaphores in SidList to be in a set state, based on the values of WaitType
and BlockOpt.

The value of WaitType specifies how to satisfy the requested wait:

o If WaitType = SEM_ANY, the request is considered satisfied when any one of the
semaphores in SidList is in the set state.

o If WaitType = SEM_ALL, the request is not considered satisfied until all the
semaphores in SidList have been in the set state at least once since the beginning of the wait.
Semaphore states are noted as they become set until the entire SidList has been set. If a
semaphore that was noted to be set changes its state to clear before the wait is satisfied, the
change will not affect the satisfaction of the wait.

o If WaitType = SEM_ATOMIC, the request is not considered satisfied until all the
semaphores in SidList are in the set state at one time. Semaphore states are noted as they
become set until the entire SidList has been set. If a semaphore that was noted to be set
changes its state to clear before the wait is satisfied, the change will be noted and will prevent
the wait from being satisfied. In this way it differs from WaitType = SEM_ALL.

The value of ClearOpt specifies whether semaphores should be left set or should be cleared once the
Wait request has been completely satisfied:

o If ClearOpt = SEM_CLEAR, set semaphores are cleared when the request is
considered satisfied.

o If ClearOpt = SEM_NOCLEAR or is omitted, set semaphores are left in their set state.
The value of BlockOpt specifies whether and how to block for the satisfaction of the requested wait in
case it cannot be satisfied immediately. See Appendix A, Using Blocking XsIPC Functions, for a
description of how to use the blocking options.
A blocked call that is interrupted by an asynchronous signal or trap is returned with
RC = SEM_ER_INTERRUPT.
Satisfied SemWait() calls return with *RetSid equal to the Sid of the last semaphore to be set. It is
acceptable to have a null RetSid argument; it is not necessary to declare and specify return variables for
acquiring return values that are not desired.

ERRORS
Code Description

SEM_ER_ASYNC Operation is being performed asynchronously.
SEM_ER_ASYNCABORT Asynchronous operation aborted before completion. This

error code is not returned by the function call. It is set in the
Asynchronous Result Control Block RetCode field.

SEM_ER_BADBLOCKOPT Invalid BlockOpt.
SEM_ER_BADCLEAROPT Invalid ClearOpt.
SEM_ER_BADOPTION Invalid Option parameter.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

4—42

SEM_ER_BADSID SidList contains a bad Sid. *RetSid is set to the invalid Sid.
SEM_ER_BADSIDLIST Bad SidList.
SEM_ER_BADWAITTYPE Invalid WaitType parameter.
SEM_ER_CANCEL Another user issued a SemCancel() call for one of the

semaphores in SidList. The blocked SemWait() operation
was cancelled. *RetSid is set to the Sid of the semaphore for
which the SemCancel() was issued.

SEM_ER_CAPACITY_ASYNC_
USER

SemSys async user table full.

SEM_ER_CAPACITY_NODE SemSys node table full.
SEM_ER_DESTROYED Another user destroyed a semaphore that was being waited

on by this user. The blocked acquire operation was
cancelled. *RetSid is set to the Sid of the destroyed
semaphore.

SEM_ER_INTERRUPT The blocked wait operation was interrupted by an
asynchronous event (such as a signal). The operation has
been canceled.

SEM_ER_ISFROZEN A BlockOpt of SEM_WAIT or SEM_TIMEOUT() was
specified after the instance was frozen by the calling user.

SEM_ER_NOASYNC An asynchronous operation was attempted with no
asynchronous environment present.

SEM_ER_NOSUBSYSTEM SemSys is not configured in the instance.
SEM_ER_NOTLOGGEDIN User not logged into instance (User never logged in, was

aborted or disconnected).
SEM_ER_NOWAIT BlockOpt of SEM_NOWAIT was specified and the request

was not immediately satisfied.
SEM_ER_TIMEOUT The time out period for the blocked wait operation has

expired without satisfying the request.

XIPCNET_ER_CONNECTLOST Connection to instance lost.
XIPCNET_ER_NETERR Network transmission error.
XIPCNET_ER_SYSERR Operating system error.

SemSys Parameters, Functions and Macros 4—43

Date: 01/20/2004 - Revision: 4

__

INTERACTIVE COMMAND

SYNTAX
semwait WaitType SidList [Clear,]BlockingOpt

ARGUMENTS
WaitType any, all or atomic.

SidList List of Semaphore Ids separated by commas.

BlockingOpt See the Blocking Options discussion in the xipc command (Interactive Command
Processor) section at the beginning of this Manual.

EXAMPLES
xipc> semwait any 0,1,3 clear,wait
 RetCode = 0 Sid = 1

xipc> semwait all 0,1 nowait
 RetCode = -1034
 XIPC NOWAIT
 Sid = 0

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

4—44

4.3 Macros

[There are no SemSys macros.]

Appendices 5—1

Date: 01/20/2004 - Revision: 4

5. APPENDICES

5.1 Appendix A: Using Blocking X©IPC Functions

5.1.1 BLOCKING OPTIONS

All XsIPC functions that have the potential to block or complete asynchronously, have a BlockOpt
parameter that is used to specify the appropriate option for the function call.
The blocking option parameter accepts one of the following values, as listed in the table below. The
characters "XXX_" in all blocking option codes and return codes should be replaced by "SEM_,"
"QUE_" or "MEM_", depending on the subsystem called.
The asynchronous options refer to a user-declared Asynchronous Result Control Block structure
(ACB). The function of this control block is described in the next section.

Blocking Option Description

XXX_NOWAIT If the request specified in the function call cannot be satisfied,
the function returns immediately with
RC = XXX_ER_NOWAIT.

XXX_WAIT If the request specified in the function call cannot be satisfied,
the caller is blocked until the request is completed.

XXX_TIMEOUT(n) If the request specified in the function call cannot be satisfied,
the caller is blocked until the request is completed or until n
seconds have elapsed after which the function returns with
RC = XXX_ER_TIMEOUT.

XXX_CALLBACK(Func, AcbPt
r)

The function returns immediately with
RC = XXX_ER_ASYNC. When the request is completed,
the ACB pointed to by AcbPtr is filled with the results of the
operation, and the function Func is called with AcbPtr
passed as its only argument.

XXX_POST(Sid, AcbPtr) The function returns immediately with
RC = XXX_ER_ASYNC. When the request is completed,
the ACB pointed to by AcbPtr is filled with the results of the
operation, and the event semaphore Sid is set.

XXX_IGNORE(AcbPtr) The function returns immediately with
RC = XXX_ER_ASYNC. When the request is completed,
the ACB pointed to by AcbPtr is filled with the results of the
operation.

The three asynchronous options, as described above, cause all successful operation completions to
occur using the prescribed asynchronous mechanism - including operations that can be completed
immediately.
It is important to note that flags are always ORed to the left of (before) the blocking option.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

5—2

It is sometimes required that operations that complete immediately–without blocking–should return their
result synchronously and have the specified asynchronous option apply only to blocking situations.
This behavior can be achieved by specifying XXX_RETURN option flag along with the asynchronous
options as in:

XXX_RETURN | XXX_CALLBACK(Func, AcbPtr)

XXX_RETURN | XXX_POST(Sid, AcbPtr)

XXX_RETURN | XXX_IGNORE(AcbPtr)

In each of the above cases the specified asynchronous mechanism is employed only if the operation
cannot complete immediately. Operations that can complete immediately return synchronously with
their results.

5.1.2 ASYNCHRONOUS RESULT CONTROL BLOCK (ACB)

The Asynchronous Result Control Block (ACB) is a data structure that is filled, upon completion of an
asynchronous XsIPC operation, with the results of the operation. The results include the return code of
the operation as well as operation dependent results (e.g., RetQid and Priority).
The ACB is declared by the caller of the asynchronous XsIPC operation and a pointer to it is specified in
the BlockOpt parameter as described in the previous section. The ACB can be examined by the user
to check the status of the asynchronous operation.
The pointer to the ACB structure is later passed as an argument to a user callback function, if the
XXX_CALLBACK option had been specified as the BlockOpt parameter.

NOTE
The ACB must be allocated using the static storage attribute or by using dynamic
allocation. It should not be allocated on the stack.

Example:
static ASYNCRESULT Acb;

Another Appendix contains the structure of the ACB.

5.1.3 CALLBACK ROUTINE

As we have seen, XsIPC provides the option for specifying a user-defined callback routine that is to be
invoked when an asynchronous operation completes, i.e., the XXX_CALLBACK option. When the
callback routine is invoked, the ACB associated with the operation already contains the results of the
completed operation. A pointer to the ACB is passed as an argument to the callback routine.
The callback routine is defined as follows:

XINT
CallbackFunc(AcbPtr)
ASYNCRESULT *AcbPtr;
{
 .
 .
 .
}

Appendices 5—3

Date: 01/20/2004 - Revision: 4

5.2 Appendix B: Using Message Select Codes and Queue Select Codes

QueSys provides the systems developer with great flexibility in sending and receiving messages. It is this
feature that most sets QueSys apart from existing message queuing facilities. The key to successful
utilization of QueSys is a good understanding of when and how to use the various message and queue
select codes. This section offers a brief tutorial that describes these 'whens and hows'.
All QueSys operations that dispatch or retrieve messages to and from QueSys queues require a
QueSelectCode and a QidList argument. It is the combination of these two arguments that determines
the destination queue of dispatched messages, as well as the identity of retrieved messages. It is
therefore essential to understand the function of these two arguments and how they interact.
This document uses a shorthand notation for writing QueSelectCode and QidList argument
specifications. Using this shorthand it is possible to examine and explore the open-ended possibilities
afforded to the systems developer. Instead of formally describing the shorthand notation, the document
demonstrates via examples.

5.2.1 DISPATCHING MESSAGES ONTO QUESYS QUEUES

Dispatching messages via QueSend() and QuePut() is presented first, since it is less complex than the
retrieval of messages.
Dispatching messages onto QueSys message queues can be viewed as occurring in two steps:

o First, a list of one or more queues is defined.

o Then, the message is placed onto one of the queues in the list, depending on some criteria.
As an example, consider a programmer who wishes to send a message onto the shortest queue of the
list of queues a, b and c (perhaps to guarantee balanced queue loads). The programmer would first
define the queue list {a, b, c}, and then specify the 'Shortest Queue' criteria together with the queue list
when dispatching the message using the QueSend() or QuePut() function calls. This can be easily
expressed as:

QUE_Q_SHQ{a, b, c}

Similarly, the expression for sending a message onto the longest queue in the list would be:

QUE_Q_LNQ{a, b, c}

The syntax for such dispatch expressions is thus of the form:

QueSelectCode{QidList}

The different possible QueSelectCodes that may be used to dispatch a message using QuePut or
QueSend are:
QUE_Q_SHQ The shortest queue.
QUE_Q_LNQ The longest queue.
QUE_Q_HPQ The queue having the highest priority message.
QUE_Q_LPQ The queue having the lowest priority message.
QUE_Q_EAQ The queue having the earliest arrived (oldest) message.
QUE_Q_LAQ The queue with the latest arrived (most recent) message.
QUE_Q_ANY The first queue in the list that has room (not full).

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

5—4

Examples of their usage include:
QUE_Q_LPQ{x, y, z} Place the outgoing message on one of the

queues x, y or z, having the lowest priority message.
QUE_Q_EAQ{q, r, s} Place the outgoing message on one of the

queues q, r or s, having the earliest arrived (oldest) message. This
selects queues in a 'least recently accessed' manner.

QUE_Q_LAQ{m, n} Place the outgoing message on one of the queues m or n, having the
latest arrived (most recent) message.

QUE_Q_SHQ{j, k, m} Place the outgoing message on the shortest of
the three queues j, k or m. This achieves queue balancing.

QUE_Q_ANY{a, b, c} Place the message on the first of the queue a, b
or c that has room for another message. The queues are examined in
the order of specification.

5.2.2 RETRIEVING MESSAGES FROM QUESYS QUEUES

Retrieving messages in the QueSys system can similarly be viewed as occurring in two steps, but with a
minor variation:

o First a list of message queues is defined by the program. As part of this definition, one
message is designated as the 'candidate message' for each of the listed queues, using a
MsgSelectCode. For example, the specification

 {QUE_M_HP(a), QUE_M_EA(b), QUE_M_LA(c)}
defines a list of three queues a, b, and c, where the candidate messages are:

QUE_M_HP(a), the highest priority message on queue a.
QUE_M_EA(b), the earliest arrived message on queue b.
QUE_M_LA(c), the latest arrived message on queue c.

o A message then gets selected from the list of candidate messages using a QueSelectCode. The
selected message is retrieved and returned to the calling function. Thus for example, the
specification

 QUE_Q_HP{QUE_M_EA(a), QUE_M_EA(b)}
compares the oldest (earliest arrived) messages on queue a and queue b and returns the one
with the higher priority. Similarly, the specification

 QUE_Q_EA{QUE_M_HP(x), QUE_M_HP(y), QUE_M_HP(z)}
returns the oldest of the highest priority messages from queues x, y and z.
Now consider another retrieval example having a slightly different twist:

 QUE_Q_LNQ{QUE_M_HP(a), QUE_M_HP(b), QUE_M_HP(c)}
The interpretation of this expression is as follows: First, the highest priority message on the
three respective queues a, b and c are designated as candidate messages. The returned
message is that candidate message which resides on the longest queue.
Note that the 'QUE_Q_LNQ' QueSelectCode when used in a candidate message selection
capacity chooses the candidate message that resides on the longest queue of a, b, and c. This
is a departure from the message retrieval examples demonstrated until now where the
candidate message selection process was based on a 'QueSelectCode' that compared the
designated candidate messages from each queue directly, one with the other. Here by
contrast, the message selection is performed based on characteristics of the underlying queues.

Appendices 5—5

Date: 01/20/2004 - Revision: 4

The possible MsgSelectCodes are listed below.

QUE_M_EA(Q) The earliest arrived (oldest) message on the queue Q.
QUE_M_LA(Q) The latest arrived (most recent) message on the queue Q.
QUE_M_HP(Q) The highest priority message on the queue Q.
QUE_M_LP(Q) The lowest priority message on the queue Q.
QUE_M_PREQ(Q, n) The first message on queue Q having a priority of n.
QUE_M_PRNE(Q, n) The first message on queue Q not having a priority of n.
QUE_M_PRGT(Q, n) The first message on queue Q with a priority greater than n.
QUE_M_PRGE(Q, n) The first message on queue Q with a priority >= n.
QUE_M_PRLT(Q, n) The first message on queue Q having a priority less than n.
QUE_M_PRLE(Q, n) The first message on queue Q with a priority <= n.
QUE_M_PRRNG(Q,n,m) The first message on queue Q with a priority in [n,m] range.
QUE_M_SEQEQ(q,
seqn)

Designates the first message on queue q with a value equal to
sequence number seqn.

QUE_M_SEQGE(q,
seqn)

Designates the first message on queue q with a value greater
than or equal to sequence number seqn.

QUE_M_SEQLE(q,
seqn)

Designates the first message on queue q with a value less than
or equal to sequence number seqn.

QUE_M_SEQGT(qid
seqn)

Designates the first message on queue q with a value greater
than sequence number seqn.

QUE_M_SEQLT(q,
seqn)

Designates the first message on queue q with a value less than
sequence number seqn.

Note that MsgSelectCodes involving priorities cause the queue to be searched in decreasing priority
order.
The possible QueSelectCodes that can be used for selecting a candidate message from one of the listed
queues during retrieval operations are the listed below. Beware of some of their differing interpretations
as compared to their usage within message dispatch operations.

QUE_Q_EA The earliest arrived (oldest) candidate message.
QUE_Q_LA The latest arrived (most recent) candidate message.
QUE_Q_HP The highest priority candidate message.
QUE_Q_LP The lowest priority candidate message.
QUE_Q_LNQ The candidate message from the longest queue in the list.
QUE_Q_SHQ The candidate message from the shortest queue in the list.
QUE_Q_HPQ The candidate message from the queue having the highest priority

msg.
QUE_Q_LPQ The candidate message from the queue having the lowest priority

msg.
QUE_Q_EAQ The candidate message from the queue having the earliest arrived

msg.
QUE_Q_LAQ The candidate message from the queue having the latest arrived msg.
QUE_Q_ANY The first candidate message.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

5—6

5.2.3 EXPRESSION SIMPLIFICATION

Expression simplification can be employed in certain cases. Simplification is straight forward, involving
simple defaults.
Whenever a message retrieval QidList has an entry wherein which a MsgSelectCode is not provided
for a given queue (i.e., only the Qid is given), then the retrieval operation's QueSelectCode is employed
as the message select criteria for that given queue.
The following examples demonstrate this concept. The following two message retrieval expressions are
equivalent:

QUE_Q_HP{QUE_M_HP(x), QUE_M_EA(y), QUE_M_HP(z)}
QUE_Q_HP{x, QUE_M_EA(y), z}

They both consider three candidate messages:
The highest priority message on queue x.
The earliest arrived message on queue y.
The highest priority message on queue z.

The candidate message having the highest priority is the one retrieved.
Note that the first and third Qids of the simplified expression lack a MsgSelectCode. As a result they
inherit the criteria of the expression's QueSelectCode (Highest Priority).
Similarly:

QUE_Q_HP{QUE_M_HP(q), QUE_M_HP(r), QUE_M_HP(s)}
QUE_Q_HP{q, r, s}

Both of these retrieval expressions return the overall highest priority message found on the three queues
q, r and s.
How the expression QUE_Q_HP{q, r, s} returns the highest priority message of all three queues q, r
and s is accomplished as follows (considering the unsimplified form of the expression):

QUE_Q_HP{QUE_M_HP(q), QUE_M_HP(r), QUE_M_HP(s)}

First, the candidate messages from the three queues q, r and s are designated. They are the highest
priority message of their respective queues. These three candidate messages are then compared and the
highest priority message of the three candidates is chosen.
Note, therefore, that a QidList of the form {q, r, s} can be used interchangeably within message
dispatch and retrieval functions.

Appendices 5—7

Date: 01/20/2004 - Revision: 4

5.2.4 PRIORITY SPECIFICATION DURING RETRIEVAL

A number of the MsgSelectCodes deal with priorities. A variety of priority values or ranges can be
specified.
For example:

QUE_Q_EA{QUE_M_PREQ(a, 100), QUE_M_PRLT(b, 50)}

designates the first message on queue a having a priority of 100 as the candidate message of queue a,
and the first message on queue b having a priority less than 50 as the candidate message of queue b. It
then returns the earliest arrived (oldest) of these two candidate messages.
Similarly:

QUE_Q_LNQ{QUE_M_PRRNG(a, 100, 200), QUE_M_PRRNG(b, 100, 200)}

considers the first message on queue a having a priority in the range [100,200], and does the same for
queue b. It then returns the candidate message from the longer of the two queues.

5.2.5 CONCLUSION

This tutorial has outlined a few guidelines and examples of how to dispatch and retrieve messages to and
from queues within the XsIPC QueSys subsystem. The possible combinations are far more numerous
than can be presented in a manual. These examples and the shorthand used to express them should
provide a good starting point for using the system correctly and to its full potential.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

5—8

5.3 Appendix C: X©IPC User Data Structures

5.3.1 X©IPC GENERAL DATA STRUCTURES

NAME
XsIPC General Data Structures - Data Structures Used by all XsIPC subsystems

SYNTAX
/*
 * The ASYNCRESULT Control Block (ACB) structure is used for examining
 * the results of an asynchronous operation. The structure contains
 * a union that defines returned fields for every XIPC operation
 * that may block.
 */

/***
** Macros
***/

#define XIPC_ASYNC_INPROGRESS 1
#define XIPC_ASYNC_COMPLETED 2

#define ACB_FIELD(AcbPtr, Function, Field) AcbPtr->Api.Function.Field

/***
** 'ACB' - ASYNCRESULT Control Block ---
***/

struct _ASYNCRESULT /* Result of Async API call */
{
 XINT AUid; /* Async Uid "receipt" */
 XINT AsyncStatus; /* XIPC_ASYNC_INPROGRESS

 or XIPC_ASYNC_COMPLETED */
 XINT UserData1; /* ------ user defined usage ---- */
 XINT UserData2; /* ------ user defined usage ---- */
 XINT UserData3; /* ------ user defined usage ---- */

 XINT OpCode; /* Async operation, key to union */

 union
 {
 struct
 {
 XINT RetSid;
 XINT RetCode; /* of completed async operation */
 }
 SemWait;

 struct
 {
 XINT RetSid;
 XINT RetCode; /* of completed async operation */
 }
 SemAcquire;

Appendices 5—9

Date: 01/20/2004 - Revision: 4

 struct
 {
 MSGHDR MsgHdr; /* The resultant MsgHdr */
 CHAR FAR *MsgBuf;
 XINT RetCode; /* of completed async operation */
 }
 QueWrite;

 struct
 {
 MSGHDR MsgHdr; /* The resultant MsgHdr */
 XINT RetQid;
 XINT RetCode;
 }
 QuePut;

 struct
 {
 MSGHDR MsgHdr; /* The resultant MsgHdr */
 XINT Priority;
 XINT RetQid;
 XINT RetCode;
 }
 QueGet;

 struct
 {
 CHAR FAR *MsgBuf;
 XINT RetQid;
 XINT RetCode;
 }
 QueSend;

 struct
 {
 CHAR FAR *MsgBuf;
 XINT MsgLen;
 XINT Priority;
 XINT RetQid;
 XINT RetCode;
 }
 QueReceive;

 struct
 {
 /*
 * Only used for passing error info re
 * failed QueBurstSend() operation.
 */

 XINT SeqNo; /* of burst-send message that failed */
 XINT TargetQid;
 XINT Priority;
 XINT RetQid;
 XINT RetCode;
 }
 QueBurstSend;

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

5—10

 struct
 {
 /*
 * Only used for handling an asynchronous
 * QueBurstSendSync() operation.
 */
 XINT SeqNo; /* of last burst-send msg enqueued */
 XINT RetCode;
 }
 QueBurstSendSync;

Appendices 5—11

Date: 01/20/2004 - Revision: 4

 struct
 {
 XINT Mid; /* of target */
 XINT Offset; /* of target */
 XINT Length; /* of target */
 CHAR FAR *Buffer;
 XINT RetCode;
 }
 MemWrite;

 struct
 {
 XINT Mid; /* of target */
 XINT Offset; /* of target */
 XINT Length; /* of target */
 CHAR FAR *Buffer;
 XINT RetCode;
 }
 MemRead;

 struct
 {
 SECTION RetSec;
 XINT RetCode;
 }
 MemSecOwn;

 struct
 {
 SECTION RetSec;
 XINT RetCode;
 }
 MemLock;

 struct
 {
 MOM_MSGID MsgId;
 XINT RetCode;
 }
 MomSend;

 struct
 {
 CHAR FAR *MsgBuf;
 XINT MsgLen;
 MOM_MSGID MsgId;
 XINT ReplyAppQueue;
 XINT RetCode;
 XINT TrackingLevel;
 }
 MomReceive;

 struct
 {
 XINT RetCode;
 }
 MomEvent;

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

5—12

 }
 Api;

};

Appendices 5—13

Date: 01/20/2004 - Revision: 4

5.3.2 QUESYS DATA STRUCTURES

NAME
QueSys Data Structures - Data Structures Used Within QueSys

SYNTAX
/*
 * The MSGHDR structure is used for manipulating QueSys message
 * headers. Each active message in an instance has a message header
 * associated with it.
 */

typedef struct _MSGHDR
{
 XINT GetQid; /* Last Qid msg was on */
 XINT HdrStatus; /* Rmvd or Not Rmvd, etc */
 XINT Priority; /* Message's priority */
 XINT SeqNum; /* Msg sequence # within queue */
 XINT TimeVal; /* Msg sequence number within QueSys */
 XINT Size; /* Numb. of bytes in msg */
 XINT TextOffset; /* Offset of msg's text in text-pool */
 XINT Uid; /* The User-Id of user that sent msg */
 CHAR Data[MSGHDR_DATASIZE]; /* User data field */
}
MSGHDR;

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

5—14

/*
 * The QUEINFOQUE structure is used for retrieving status information
 * about a particular QueSys message queue. QueInfoQue() fills the
 * structure with the data about the Qid it is passed.
 */
typedef struct _QUEINFOQUE
{
 XINT Qid;
 XINT CreateTime; /* Time queue was created */
 XINT CreateUid; /* The Uid who created it */
 XINT LastUid; /* Last Uid to use queue */
 LBITS QueType; /* - Not Used - */
 XINT LimitMessages; /* Max message capacity */
 XINT LimitBytes; /* Max byte capacity */
 XINT CountMessages; /* Current number of msgs */
 XINT CountBytes; /* Current number of bytes */
 XINT CountIn; /* Number msgs entered que */
 XINT CountOut; /* Number msgs exited que */
 XINT LastUidGet; /* Last Uid to put a msg */
 XINT LastUidPut; /* Last Uid to get a msg */
 XINT SpoolFlag; /* Spooling: ON or OFF */
 XINT SpoolMessages; /* Number msgs spooled */
 XINT SpoolBytes; /* Number bytes spooled */
 XINT WListTotalLength;
 XINT WListOffset;
 XINT WListLength;
 QUE_QUEWLISTITEM WList[QUE_LEN_INFOLIST];
 CHAR SpoolFileName[QUE_LEN_PATHNAME+1];
 CHAR Name[QUE_LEN_XIPCNAME + 1]; /* Queue name */
}
QUEINFOQUE;

Appendices 5—15

Date: 01/20/2004 - Revision: 4

typedef struct _QUE_QUEWLISTITEM
{
 XINT OpCode; /* PUT or GET */
 union
 {
 struct
 {
 XINT Uid; /* User blocked */
 XINT MsgSize; /* Putting Msg */
 XINT MsgPrio; /* Msg Priority */
 }
 Put;

 struct
 {
 XINT Uid; /* User blocked */
 XINT MsgSelCode; /* Getting Msg */
 XINT Parm1;
 XINT Parm2;
 }
 Get;
 }
 u;
}
QUE_QUEWLISTITEM;

/*
 * The QUEINFOUSER structure is used for retrieving status information
 * about a particular QueSys user. QueInfoUser() fills the structure
 * with the data about the Uid it is passed.
 */

typedef struct _QUEINFOUSER
{
 XINT Uid;
 XINT Pid; /* Process ID of user */
 TID Tid; /* Thread ID of user */
 XINT LoginTime; /* Time of login to QueSys */
 XINT TimeOut; /* Remaining timeout secs */
 XINT WaitType; /* One of: QUE_BLOCKEDWRITE,

QUE_BLOCKEDPUT,QUE_BLOCKEDGET or QUE_USER_NOTWAITING
 */
 XINT CountPut; /* Number of msgs put */
 XINT CountGet; /* Number of msgs gotten */
 XINT LastQidPut; /* Last Qid msg was put on */
 XINT LastQidGet; /* Last Qid msg taken from */
 XINT WListTotalLength;
 XINT WListOffset;
 XINT WListLength;
 QUE_USERWLISTITEM WList[QUE_LEN_INFOLIST];
 CHAR Name[QUE_LEN_XIPCNAME + 1]; /* User login name */
 CHAR NetLoc[XIPC_LEN_NETLOC + 1];/* Name of Client Node */
}
QUEINFOUSER;

typedef struct _QUE_USERWLISTITEM
{
 XINT OpCode; /* PUT, GET or WRITE */

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

5—16

 union
 {
 struct
 {
 XINT Qid; /* Que Blocked */
 XINT MsgSize; /* Putting Msg */
 XINT MsgPrio; /* Msg Priority */
 }
 Put;

 struct
 {
 XINT Qid; /* Que Blocked */
 XINT MsgSelCode; /* Getting Msg */
 XINT Parm1;
 XINT Parm2;
 }
 Get;

 struct
 {
 XINT MsgSize; /* Write Blked */
 }
 Write;
 }
 u;
}
QUE_USERWLISTITEM;

Appendices 5—17

Date: 01/20/2004 - Revision: 4

/*
 * The QUEINFOSYS structure is used for retrieving status information
 * about the QueSys instance. QueInfoSys() fills the structure with the
 * data about the instance.
 */

typedef struct _QUEINFOSYS /* system information */
{
 XINT MaxUsers; /* Max configured users */
 XINT CurUsers; /* Number of current users */
 XINT MaxQueues; /* Max configured queues */
 XINT CurQueues; /* Number of current queues */
 XINT MaxNodes; /* Max configured nodes */
 XINT FreeNCnt; /* Current available nodes */
 XINT MaxHeaders; /* Max configured headers */
 XINT FreeHCnt; /* Current available hdrs */
 XINT SplTickSizeBytes; /* Configured spool tick value */
 XINT MsgPoolSizeBytes; /* Configured text pool size */
 XINT MsgTickSize; /* Configured text tick size */
 XINT MsgPoolTotalAvail; /* Free text pool space */
 XINT MsgPoolLargestBlk; /* Largest contig block */
 XINT MsgPoolMaxPosBlks; /* Max possible tick blocks */
 XINT MsgPoolTotalBlks; /* Number allocated blocks */
 XINT WListTotalLength;
 XINT WListOffset;
 XINT WListLength;
 QUE_SYSWLISTITEM WList[QUE_LEN_INFOLIST];
 CHAR Name[QUE_LEN_PATHNAME + 1]; /* InstanceFileName */
}
QUEINFOSYS;

typedef struct _QUE_SYSWLISTITEM
{

 XINT Uid; /* User Blked */
 XINT MsgSize; /* Write size */
}
QUE_SYSWLISTITEM;

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

5—18

5.3.3 MEMSYS DATA STRUCTURES

NAME
MemSys Data Structures - Data Structures Used Within MemSys

SYNTAX
/*
 * The SECTION structure is used for manipulating MemSys section
 * overlays. MemSection() can be used to initialize a section with
 * values.
 */

typedef struct _SECTION
{
 XINT Mid; /* MemSys memory seg ID */
 XINT Offset; /* Offset into segment */
 XINT Size; /* Byte size of section */
}
SECTION;

/*
 * The MEMINFOSEC structure is used for retrieving status information
 * about a particular MemSys section overlay. MemInfoSec() fills the
 * structure with the data about the Section it is passed.
 */

typedef struct _MEMINFOSEC
{
 XINT Mid; /* MemSys segment ID */
 XINT Offset; /* Offset into the segment */
 XINT Size; /* Section size in bytes */
 XINT OwnerUid; /* Uid of section owner */
 XINT OwnerPriv; /* Owner access privileges */
 XINT OtherPriv; /* Other access privileges */
}
MEMINFOSEC;

Appendices 5—19

Date: 01/20/2004 - Revision: 4

/*
 * The MEMINFOMEM structure is used for retrieving status information
 * about a particular MemSys semaphore. MemInfoMem() fills the
 * structure with the data about the Mid it is passed.
 */

typedef struct _MEMINFOMEM
{
 XINT Mid;
 XINT CreateTime; /* Time segment was created */
 XINT CreateUid; /* The Uid who created it */
 XINT Size; /* Size of segment (bytes)*/
 XINT NumSections; /* Num of sections on seg */
 XINT NumSecOwned; /* Num of owned sections */
 XINT NumSecLocked; /* Num of locked sections */
 XINT NumBytesOwned; /* Bytes owned on segment */
 XINT NumBytesLocked; /* Bytes locked on segment */
 XINT CountWrite; /* Num writes to segment */
 XINT CountRead; /* Num reads from segment */
 XINT LastUidWrite; /* Last Uid to write segment */
 XINT LastUidRead; /* Last Uid to read segment */
 XINT LastUidOwned; /* Last Uid to own on segment */
 XINT LastUidLocked; /* Last Uid to lock on segment */
 XINT SListTotalLength;
 XINT SListOffset;
 XINT SListLength;
 XINT WListTotalLength;
 XINT WListOffset;
 XINT WListLength;
 MEM_MEMSLISTITEM SList[MEM_LEN_INFOLIST];
 MEM_MEMWLISTITEM WList[MEM_LEN_INFOLIST];
 CHAR Name[MEM_LEN_XIPCNAME + 1]; /* Segment name */
}
MEMINFOMEM;

typedef struct _MEM_MEMSLISTITEM
{
 XINT OwnerUid;
 XINT OwnerPriv;
 XINT OtherPriv;
 XINT Mid;
 XINT Offset;
 XINT Size;
}
MEM_MEMSLISTITEM;

typedef struct _MEM_MEMWLISTITEM
{
 XINT Uid;
 XINT OpCode; /* MEM_BLOCKEDLOCK, MEM_BLOCKEDREAD,
 * MEM_BLOCKEDWRITE or MEM_BLOCKEDOWN
 */
 XINT Offset;
 XINT Size;
}
MEM_MEMWLISTITEM;

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

5—20

/*
 * The MEMINFOUSER structure is used for retrieving status information
 * about a particular MemSys user. MemInfoUser() fills the structure
 * with the data about the Uid it is passed.
 */

typedef struct _MEMINFOUSER
{
 XINT Uid;
 XINT Pid; /* Process Id of user */
 TID Tid; /* Thread ID of user */
 XINT LoginTime; /* Time of login to MemSys */
 XINT TimeOut; /* Remaining timeout secs */
 XINT WaitType; /* One of: MEM_BLOCKEDWRITE,
 * MEM_BLOCKEDREAD, MEM_BLOCKEDOWN,
 * MEM_BLOCKEDLOCK or MEM_USER_NOTWAITING
 */
 XINT NumSecOwned; /* Num sects owned by Uid */
 XINT NumSecLocked; /* Num sects locked by Uid */
 XINT NumBytesOwned; /* Num bytes owned by Uid */
 XINT NumBytesLocked; /* Num bytes locked by Uid */
 XINT CountWrite; /* Num of Uid write opers */
 XINT CountRead; /* Num of Uid read opers */
 XINT HListTotalLength;
 XINT HListOffset;
 XINT HListLength;
 XINT WListTotalLength;
 XINT WListOffset;
 XINT WListLength;
 XINT QListTotalLength;
 XINT QListOffset;
 XINT QListLength;
 MEM_USERHLISTITEM HList[MEM_LEN_INFOLIST];
 MEM_USERWLISTITEM WList[MEM_LEN_INFOLIST];
 MEM_USERQLISTITEM QList[MEM_LEN_INFOLIST];
 CHAR Name[MEM_LEN_XIPCNAME + 1]; /* User login name */
 CHAR NetLoc[XIPC_LEN_NETLOC + 1];/* Name of Client Node */
}
MEMINFOUSER;

typedef struct _MEM_USERQLISTITEM
{
 XINT Mid;
 XINT Offset;
 XINT Size;
}
MEM_USERQLISTITEM;

typedef struct _MEM_USERHLISTITEM
{
 XINT OpCode; /* MEM_BLOCKEDLOCK or MEM_BLOCKEDOWN */
 XINT Mid;
 XINT Offset;
 XINT Size;
}
MEM_USERHLISTITEM;

Appendices 5—21

Date: 01/20/2004 - Revision: 4

typedef struct _MEM_USERWLISTITEM
{
 XINT Mid;
 XINT Offset;
 XINT Size;
}
MEM_USERWLISTITEM;

/*
 * The MEMINFOSYS structure is used for retrieving status information
 * about the MemSys instance. MemInfoSys() fills the structure with the
 * data about the instance.
 */

typedef struct _MEMINFOSYS
{
 XINT MaxUsers; /* Max configured users */
 XINT CurUsers; /* Current num of users */
 XINT MaxSegments; /* Max configured segments */
 XINT CurSegments; /* Current num of segments */
 XINT MaxNodes; /* Max configured nodes */
 XINT FreeNCnt; /* Current available nodes */
 XINT MaxSections; /* Max configured sections */
 XINT FreeSCnt; /* Current available sects */
 XINT MemPoolSizeBytes; /* Configured mem pool size */
 XINT MemTickSize; /* Configured mem tick size */
 XINT MemPoolTotalAvail; /* Free text pool space */
 XINT MemPoolLargestBlk; /* Largest contig block */
 XINT MemPoolMaxPosBlks; /* Max possible tick blocks */
 XINT MemPoolTotalBlks; /* Number allocated blocks */
 CHAR Name[MEM_LEN_PATHNAME + 1]; /* InstanceFilename */
}
MEMINFOSYS;

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

5—22

5.3.4 SEMSYS DATA STRUCTURES

NAME
SemSys Data Structures - Data Structures Used Within SemSys

SYNTAX
/*
 * The SEMINFOSEM structure is used for retrieving status information
 * about a particular SemSys semaphore. SemInfoSem() fills the
 * structure with the data about the Sid it is passed.
 */

typedef struct _SEMINFOSEM
{
 XINT Sid;
 XINT CreateTime; /* Time semaphore created */
 XINT CreateUid; /* The Uid who created it */
 XINT LastUid; /* Last Uid to use it */
 XINT MaxValue; /* Initial value */
 XINT CurValue; /* Current value */
 LBITS SemType; /* SEM_TYPE_RESOURCE or SEM_TYPE_EVENT */
 XINT HListTotalLength;
 XINT HListOffset;
 XINT HListLength;
 XINT WListTotalLength;
 XINT WListOffset;
 XINT WListLength;
 SEM_SEMHLISTITEM HList[SEM_LEN_INFOLIST];
 SEM_SEMWLISTITEM WList[SEM_LEN_INFOLIST];
 CHAR Name[SEM_LEN_XIPCNAME + 1]; /* Semaphore name */
}
SEMINFOSEM;

typedef struct _SEM_SEMWLISTITEM
{
 XINT Uid;
}
SEM_SEMWLISTITEM;

typedef struct _SEM_SEMHLISTITEM
{
 XINT Uid;
}
SEM_SEMHLISTITEM;

Appendices 5—23

Date: 01/20/2004 - Revision: 4

/*
 * The SEMINFOUSER structure is used for retrieving status information
 * about a particular SemSys user. SemInfoUser() fills the structure
 * with the data about the Uid it is passed.
 */

typedef struct _SEMINFOUSER
{
 XINT Uid;
 XINT Pid; /* Process ID of user */
 TID Tid; /* Thread ID of user */
 XINT LoginTime; /* Time of login to SemSys */
 XINT TimeOut; /* Remaining timeout secs */
 XINT WaitType; /* One of: SEM_BLOCKEDATOMIC,
 * SEM_BLOCKEDALL, SEM_BLOCKEDANY or
 * SEM_USER_NOTWAITING

 */
 XINT HListTotalLength;
 XINT HListOffset;
 XINT HListLength;
 XINT WListTotalLength;
 XINT WListOffset;
 XINT WListLength;
 XINT QListTotalLength;
 XINT QListOffset;
 XINT QListLength;
 SEM_USERHLISTITEM HList[SEM_LEN_INFOLIST];
 SEM_USERWLISTITEM WList[SEM_LEN_INFOLIST];
 SEM_USERQLISTITEM QList[SEM_LEN_INFOLIST];
 CHAR Name[SEM_LEN_XIPCNAME + 1]; /* User login name */
 CHAR NetLoc[XIPC_LEN_NETLOC + 1];/* Name of Client Node */
}
SEMINFOUSER;

typedef struct _SEM_USERQLISTITEM
{
 XINT Sid;
}
SEM_USERQLISTITEM;

typedef struct _SEM_USERWLISTITEM
{
 XINT Sid;
}
SEM_USERWLISTITEM;

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

5—24

typedef struct _SEM_USERHLISTITEM
{
 XINT Sid;
}
SEM_USERHLISTITEM;

/*
 * The SEMINFOSYS structure is used for retrieving status information
 * about the SemSys instance. SemInfoSys() fills the structure with the
 * data about the instance.
 */

typedef struct _SEMINFOSYS
{
 XINT MaxUsers; /* Maximum allowed users */
 XINT CurUsers; /* Current number of users */
 XINT MaxSems; /* Maximum allowed sems */
 XINT CurSems; /* Current number of sems */
 XINT MaxNodes; /* Max configured nodes */
 XINT FreeCnt; /* Current available nodes */
 CHAR Name[SEM_LEN_PATHNAME + 1]; /* InstanceFileName */
}
SEMINFOSYS;

Appendices 5—25

Date: 01/20/2004 - Revision: 4

5.4 Appendix D: QueSys/SemSys/MemSys Error Codes

5.4.1 QUESYS ERROR CODES: BY SYMBOLIC ERROR NAME

Symbolic Error Name Number Description
QUE_ER_ASYNC -1097 Operation is being performed asynchronously.
QUE_ER_ASYNCABORT -1098 Asynchronous operation aborted before

completion. This error code is not returned by
the function call. It is set in the Asynchronous
Result Control Block RetCode field.

QUE_ER_BADBLOCKOPT -1031 Invalid BlockOpt.
QUE_ER_BADBUFFER -1019 MsgBuf is NULL.
QUE_ER_BADDIRECTION -1620 Invalid Direction parameter.
QUE_ER_BADERROROPT -1667 Invalid ErrorOption parameter.
QUE_ER_BADFILENAME -1022 Invalid SpoolFileName specified.
QUE_ER_BADLENGTH -1614 Invalid MsgLength parameter.
QUE_ER_BADLIMIT -1615 Invalid LimitMsgs or LimitBytes

parameter.
QUE_ER_BADLISTOFFSET -1014 Invalid offset value specified.
QUE_ER_BADMSGSELECTCO
DE

-1618 Invalid MsgSelectCode within QidList.

QUE_ER_BADOPTION -1030 Invalid Options parameter.
QUE_ER_BADPRIORITY -1616 Invalid Priority parameter.
QUE_ER_BADQID -1612 Bad TargetQid, or QUE_NULL_QID was

specified when valid Qid is required.
QUE_ER_BADQIDLIST -1613 Invalid QidList parameter.
QUE_ER_BADQUENAME -1611 Invalid Name parameter.
QUE_ER_BADQUESELECTCO
DE

-1619 Invalid QueSelectCode parameter.

QUE_ER_BADREADAHEAD -1671 Invalid ReadAheadBufSize parameter.
QUE_ER_BADSID -1610 Sid is not a valid semaphore ID.
QUE_ER_BADSYNCMODE -1674 Invalid Mode parameter.
QUE_ER_BADTEXT -1617 MsgHdr has invalid text pointer.
QUE_ER_BADTRIGGERCODE -1051 Bad trigger code.
QUE_ER_BADUID -1023 No user with specified Uid.
QUE_ER_BADVAL -1024 Illegal trigger parameter value.
QUE_ER_CAPACITY_ASYNC
_USER

-1645 QueSys async user table full.

QUE_ER_CAPACITY_HEADE
R

-1642 QueSys header table full.

QUE_ER_CAPACITY_NODE -1643 QueSys node table full.
QUE_ER_CAPACITY_TABLE -1644 Queue table full.
QUE_ER_CAPACITY_USER -1641 QueSys user table full.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

5—26

Symbolic Error Name Number Description
QUE_ER_DESTROYED -1035 Another user destroyed a queue that a

blocked QueBurstSend() call was waiting to
enqueue onto. The blocked QueBurstSend()
operation was canceled. No message was
enqueued.

QUE_ER_DUPLICATE -1032 Queue with Name already exists.
QUE_ER_ENDOFQUEUE -1625 An end of the queue has been reached.
QUE_ER_FAILSTART -1651 QueSys initialization failed.
QUE_ER_FAILSTOP -1652 QueSys termination failed.
QUE_ER_GHOSTSTART -1653 Cannot register QueSys with XsIPC object

daemon.
QUE_ER_GHOSTSTOP -1654 Cannot deregister QueSyswith XsIPC object

daemon.
QUE_ER_INRECEIVEBURST -1666 User is in a receive-burst.
QUE_ER_INSENDBURST -1665 User already in a send-burst.
QUE_ER_INTERRUPT -1100 Operation was interrupted.
QUE_ER_ISFROZEN -1007 A BlockOpt of QUE_WAIT or

QUE_TIMEOUT() was specified after the
instance was frozen by the calling user.

QUE_ER_MSGHDRNOTREMOV
ED

-1626 MsgHdr references a message header that has
not been dequeued.

QUE_ER_MSGHDRREMOVED -1624 MsgHdr has been removed from queue.
QUE_ER_NOASYNC -1006 An asynchronous operation was attempted

with no asynchronous environment present.
QUE_ER_NOMORE -1038 No more queues.
QUE_ER_NOSECCFG -1655 No [QUESYS] section in ".cfg" file.
QUE_ER_NOSECIDS -1656 No [QUESYS] section in ".ids" file.
QUE_ER_NOSUBSYSTEM -1004 QueSys is not configured in the instance.
QUE_ER_NOTEMPTY -1622 The queue is not empty.
QUE_ER_NOTFOUND -1033 Queue with Name does not exist.
QUE_ER_NOTFROZEN -1008 QueSys not frozen.
QUE_ER_NOTINSENDBURST -1663 User not in send-burst.
QUE_ER_NOTLOCAL -1037 Instance is not local.
QUE_ER_NOTLOGGEDIN -1002 User not logged into instance (User never

logged in, was aborted or disconnected).
QUE_ER_NOWAIT -1034 BlockOpt of QUE_NOWAIT specified and

request was not immediately satisfied.
QUE_ER_PURGED -1621 Another user purged a queue that the blocked

QueSend() call was waiting on. The blocked
QueSend() operation was cancelled. No
message was sent.

QUE_ER_SYSERR -1101 Send-burst not started due to system error.
QUE_ER_TEXTFULL -1627 Text space is not available when

QUE_REPLICATE or
QUE_REPLACE_XX is specified, causing
call to fail.

Appendices 5—27

Date: 01/20/2004 - Revision: 4

Symbolic Error Name Number Description
call to fail.

QUE_ER_TIMEOUT -1099 The blocked operation timed out.
QUE_ER_TOOBIG -1631 The size of the message exceeds the byte

capacity of one of the listed Qids (=
*QidPtr).

QUE_ER_TRIGGERNOTEXIS
T

-1052 Trigger not previously defined

QUE_ER_WAITEDON -1623 A user is waiting for a message on Qid.

5.4.2 QUESYS ERROR CODES: BY MESSAGE NUMBER

Numbe
r

Symbolic Error Name Description

-1002 QUE_ER_NOTLOGGEDIN User not logged into instance (User never
logged in, was aborted or disconnected).

-1004 QUE_ER_NOSUBSYSTEM QueSys is not configured in the instance.
-1006 QUE_ER_NOASYNC An asynchronous operation was attempted

with no asynchronous environment present.
-1007 QUE_ER_ISFROZEN A BlockOpt of QUE_WAIT or

QUE_TIMEOUT() was specified after the
instance was frozen by the calling user.

-1008 QUE_ER_NOTFROZEN QueSys not frozen.
-1014 QUE_ER_BADLISTOFFSET Invalid offset value specified.
-1019 QUE_ER_BADBUFFER MsgBuf is NULL.
-1022 QUE_ER_BADFILENAME Invalid SpoolFileName specified.
-1023 QUE_ER_BADUID No user with specified Uid.
-1024 QUE_ER_BADVAL Illegal trigger parameter value.
-1030 QUE_ER_BADOPTION Invalid Options parameter.
-1031 QUE_ER_BADBLOCKOPT Invalid BlockOpt.
-1032 QUE_ER_DUPLICATE Queue with Name already exists.
-1033 QUE_ER_NOTFOUND Queue with Name does not exist.
-1034 QUE_ER_NOWAIT BlockOpt of QUE_NOWAIT specified and

request was not immediately satisfied.
-1035 QUE_ER_DESTROYED [A]Another user destroyed a queue that a

blocked QueBurstSend() call was waiting to
enqueue onto. The blocked QueBurstSend()
operation was canceled. No message was
enqueued.

-1037 QUE_ER_NOTLOCAL Instance is not local.
-1038 QUE_ER_NOMORE No more queues.
-1051 QUE_ER_BADTRIGGERCODE Bad trigger code.
-1052 QUE_ER_TRIGGERNOTEXIS

T
Trigger not previously defined

-1097 QUE_ER_ASYNC Operation is being performed asynchronously.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

5—28

Numbe
r

Symbolic Error Name Description

-1098 QUE_ER_ASYNCABORT Asynchronous operation aborted before
completion. This error code is not returned by
the function call. It is set in the Asynchronous
Result Control Block RetCode field.

-1099 QUE_ER_TIMEOUT The blocked operation timed out.
-1100 QUE_ER_INTERRUPT Operation was interrupted.
-1101 QUE_ER_SYSERR Send-burst not started due to system error.
-1610 QUE_ER_BADSID Sid is not a valid semaphore ID.
-1611 QUE_ER_BADQUENAME Invalid Name parameter.
-1612 QUE_ER_BADQID Bad TargetQid, or QUE_NULL_QID was

specified when valid Qid is required.
-1613 QUE_ER_BADQIDLIST Invalid QidList parameter.
-1614 QUE_ER_BADLENGTH Invalid MsgLength parameter.
-1615 QUE_ER_BADLIMIT Invalid LimitMsgs or LimitBytes

parameter.
-1616 QUE_ER_BADPRIORITY Invalid Priority parameter.
-1617 QUE_ER_BADTEXT MsgHdr has invalid text pointer.
-1618 QUE_ER_BADMSGSELECTCO

DE
Invalid MsgSelectCode within QidList.

-1619 QUE_ER_BADQUESELECTCO
DE

Invalid QueSelectCode parameter.

-1620 QUE_ER_BADDIRECTION Invalid Direction parameter.
-1621 QUE_ER_PURGED Another user purged a queue that the blocked

QueSend() call was waiting on. The blocked
QueSend() operation was cancelled. No
message was sent.

-1622 QUE_ER_NOTEMPTY The queue is not empty.
-1623 QUE_ER_WAITEDON A user is waiting for a message on Qid.
-1624 QUE_ER_MSGHDRREMOVED MsgHdr has been removed from queue.
-1625 QUE_ER_ENDOFQUEUE An end of the queue has been reached.
-1626 QUE_ER_MSGHDRNOTREMOV

ED
MsgHdr references a message header that has
not been dequeued.

-1627 QUE_ER_TEXTFULL Text space is not available when
QUE_REPLICATE or
QUE_REPLACE_XX is specified, causing
call to fail.

-1631 QUE_ER_TOOBIG The size of the message exceeds the byte
capacity of one of the listed Qids (=
*QidPtr).

-1641 QUE_ER_CAPACITY_USER QueSys user table full.
-1642 QUE_ER_CAPACITY_HEADE

R
QueSys header table full.

-1643 QUE_ER_CAPACITY_NODE QueSys node table full.
-1644 QUE_ER_CAPACITY_TABLE Queue table full.

Appendices 5—29

Date: 01/20/2004 - Revision: 4

Numbe
r

Symbolic Error Name Description

-1645 QUE_ER_CAPACITY_ASYNC
_USER

QueSys async user table full.

-1651 QUE_ER_FAILSTART QueSys initialization failed.
-1652 QUE_ER_FAILSTOP QueSys termination failed.
-1653 QUE_ER_GHOSTSTART Cannot register QueSys with XsIPC object

daemon.
-1654 QUE_ER_GHOSTSTOP Cannot deregister QueSyswith XsIPC object

daemon.
-1655 QUE_ER_NOSECCFG No [QUESYS] section in ".cfg" file.
-1656 QUE_ER_NOSECIDS No [QUESYS] section in ".ids" file.
-1663 QUE_ER_NOTINSENDBURST User not in send-burst.
-1665 QUE_ER_INSENDBURST User already in a send-burst.
-1666 QUE_ER_INRECEIVEBURST User is in a receive-burst.
-1667 QUE_ER_BADERROROPT Invalid ErrorOption parameter.
-1671 QUE_ER_BADREADAHEAD Invalid ReadAheadBufSize parameter.
-1674 QUE_ER_BADSYNCMODE Invalid Mode parameter.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

5—30

5.4.3 SEMSYS ERROR CODES: BY SYMBOLIC ERROR NAME

SYMBOLIC ERROR NAME NUMBE

R
DESCRIPTION

SEM_ER_ASYNC -1097 Operation is being performed asynchronously.
SEM_ER_ASYNCABORT -1098 Asynchronous operation aborted before

completion. This error code is not returned by
the function call. It is set in the Asynchronous
Result Control Block RetCode field.

SEM_ER_BADACQUIRETYPE -1317 Invalid AcquireType parameter.

SEM_ER_BADBLOCKOPT -1031 Invalid BlockOpt.
SEM_ER_BADCLEAROPT -1315 Invalid ClearOpt.
SEM_ER_BADLISTOFFSET -1014 Invalid offset value specified.
SEM_ER_BADOPTION -1030 Invalid Option parameter.
SEM_ER_BADSEMNAME -1311 Invalid Name parameter.
SEM_ER_BADSEMVALUE -1312 Invalid CreateValue parameter.
SEM_ER_BADSID -1314 SidList contains a bad Sid. *RetSid is set to the

invalid Sid.
SEM_ER_BADSIDLIST -1313 Bad SidList.
SEM_ER_BADUID -1023 Invalid Uid parameter.
SEM_ER_BADWAITTYPE -1316 Invalid WaitType parameter.
SEM_ER_CANCEL -1331 Another user issued a SemCancel() call for one

of the semaphores in SidList. The blocked
SemWait() operation was cancelled. *RetSid is
set to the Sid of the semaphore for which the
SemCancel() was issued.

SEM_ER_CAPACITY_ASYNC
_USER

-1344 SemSys async user table full.

SEM_ER_CAPACITY_NODE -1342 SemSys node table full.
SEM_ER_CAPACITY_NODE -1342 SemSys node table full.
SEM_ER_CAPACITY_TABLE -1343 Semaphore table full.
SEM_ER_CAPACITY_USER -1341 SemSys user table full.
SEM_ER_DESTROYED -1035 Another user destroyed a semaphore that was

being waited on by this user. The blocked
acquire operation was cancelled. *RetSid is set
to the Sid of the destroyed semaphore.

SEM_ER_DUPLICATE -1032 Semaphore with Name already exists.
SEM_ER_FAILSTART -1351 SemSys initialization failed.
SEM_ER_FAILSTOP -1352 SemSys termination failed.
SEM_ER_GHOSTSTART -1353 Cannot register SemSys with XsIPC object

daemon.
SEM_ER_GHOSTSTOP -1354 Cannot deregister SemSys with XsIPC object

daemon.

Appendices 5—31

Date: 01/20/2004 - Revision: 4

SYMBOLIC ERROR NAME NUMBE
R

DESCRIPTION

SEM_ER_INTERRUPT -1100 The blocked operation was interrupted by an
asynchronous event (such as a signal). The
operation has been canceled.

SEM_ER_INVALIDSID -1318 Invalid semaphore identifier specified.
SEM_ER_ISFROZEN -1007 A BlockOpt of SEM_WAIT or

SEM_TIMEOUT() was specified after the
instance was frozen by the calling user.

SEM_ER_NOASYNC -1006 An asynchronous operation was attempted with
no asynchronous environment present.

SEM_ER_NOMORE -1038 No more data.
SEM_ER_NOSECCFG -1355 No [SEMSYS] section in ".cfg" file.
SEM_ER_NOSECIDS -1356 No [SEMSYS] section in ".ids" file.
SEM_ER_NOSUBSYSTEM -1004 SemSys is not configured in the instance.
SEM_ER_NOTFOUND -1033 Semaphore with Name does not exist.
SEM_ER_NOTFROZEN -1003 SemSys not frozen.
SEM_ER_NOTLOGGEDIN -1002 User not logged into instance (User never logged

in, was aborted or disconnected).
SEM_ER_NOWAIT -1034 BlockOpt of SEM_NOWAIT was specified and

the request was not immediately satisfied.
SEM_ER_SEMBUSY -1321 Semaphore Sid held or blocked on by other

users.
SEM_ER_SEMCLEAR -1324 SidList contains a Sid of a semaphore which is

already clear. *RetSid is set to that Sid.
SEM_ER_SEMNOTHELD -1322 SidList contains a Sid of a semaphore not

currently held by the user. *RetSid is set to that
Sid.

SEM_ER_SEMSET -1323 SidList contains a Sid of a semaphore which is
already set. *RetSid is set to that Sid.

SEM_ER_SYSERR -1101 An internal error has occurred while processing
the request.

SEM_ER_TIMEOUT -1099 The time out period for the blocked operation
has expired without satisfying the request.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

5—32

5.4.4 SEMSYS ERROR CODES: BY MESSAGE NUMBER

NUMBE
R

SYMBOLIC ERROR NAME DESCRIPTION

-1002 SEM_ER_NOTLOGGEDIN User not logged into instance (User never logged
in, was aborted or disconnected).

-1003 SEM_ER_NOTFROZEN SemSys not frozen.
-1004 SEM_ER_NOSUBSYSTEM SemSys is not configured in the instance.
-1006 SEM_ER_NOASYNC An asynchronous operation was attempted with

no asynchronous environment present.
-1007 SEM_ER_ISFROZEN A BlockOpt of SEM_WAIT or

SEM_TIMEOUT() was specified after the
instance was frozen by the calling user.

-1014 SEM_ER_BADLISTOFFSET Invalid offset value specified.
-1023 SEM_ER_BADUID Invalid Uid parameter.
-1030 SEM_ER_BADOPTION Invalid Option parameter.
-1031 SEM_ER_BADBLOCKOPT Invalid BlockOpt.
-1032 SEM_ER_DUPLICATE Semaphore with Name already exists.
-1033 SEM_ER_NOTFOUND Semaphore with Name does not exist.
-1034 SEM_ER_NOWAIT BlockOpt of SEM_NOWAIT was specified and

the request was not immediately satisfied.
-1035 SEM_ER_DESTROYED Another user destroyed a semaphore that was

being waited on by this user. The blocked
acquire operation was cancelled. *RetSid is set
to the Sid of the destroyed semaphore.

-1038 SEM_ER_NOMORE No more data.
-1097 SEM_ER_ASYNC Operation is being performed asynchronously.
-1098 SEM_ER_ASYNCABORT Asynchronous operation aborted before

completion. This error code is not returned by
the function call. It is set in the Asynchronous
Result Control Block RetCode field.

-1099 SEM_ER_TIMEOUT The time out period for the blocked operation
has expired without satisfying the request.

-1100 SEM_ER_INTERRUPT The blocked operation was interrupted by an
asynchronous event (such as a signal). The
operation has been canceled.

-1101 SEM_ER_SYSERR An internal error has occurred while processing
the request.

-1311 SEM_ER_BADSEMNAME Invalid Name parameter.
-1312 SEM_ER_BADSEMVALUE Invalid CreateValue parameter.
-1313 SEM_ER_BADSIDLIST Bad SidList.
-1314 SEM_ER_BADSID SidList contains a bad Sid. *RetSid is set to the

invalid Sid.
-1315 SEM_ER_BADCLEAROPT Invalid ClearOpt.
-1316 SEM_ER_BADWAITTYPE Invalid WaitType parameter.

Appendices 5—33

Date: 01/20/2004 - Revision: 4

NUMBE
R

SYMBOLIC ERROR NAME DESCRIPTION

-1317 SEM_ER_BADACQUIRETYPE Invalid AcquireType parameter.

-1318 SEM_ER_INVALIDSID Invalid semaphore identifier specified.
-1321 SEM_ER_SEMBUSY Semaphore Sid held or blocked on by other

users.
-1322 SEM_ER_SEMNOTHELD SidList contains a Sid of a semaphore not

currently held by the user. *RetSid is set to that
Sid.

-1323 SEM_ER_SEMSET SidList contains a Sid of a semaphore which is
already set. *RetSid is set to that Sid.

-1324 SEM_ER_SEMCLEAR SidList contains a Sid of a semaphore which is
already clear. *RetSid is set to that Sid.

-1331 SEM_ER_CANCEL Another user issued a SemCancel() call for one
of the semaphores in SidList. The blocked
SemWait() operation was cancelled. *RetSid is
set to the Sid of the semaphore for which the
SemCancel() was issued.

-1341 SEM_ER_CAPACITY_USER SemSys user table full.
-1342 SEM_ER_CAPACITY_NODE SemSys node table full.
-1343 SEM_ER_CAPACITY_TABLE Semaphore table full.
-1344 SEM_ER_CAPACITY_ASYNC

_USER
SemSys async user table full.

-1351 SEM_ER_FAILSTART SemSys initialization failed.
-1352 SEM_ER_FAILSTOP SemSys termination failed.
-1353 SEM_ER_GHOSTSTART Cannot register SemSys with XsIPC object

daemon.
-1354 SEM_ER_GHOSTSTOP Cannot deregister SemSys with XsIPC object

daemon.
-1355 SEM_ER_NOSECCFG No [SEMSYS] section in ".cfg" file.
-1356 SEM_ER_NOSECIDS No [SEMSYS] section in ".ids" file.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

5—34

5.4.5 MEMSYS ERROR CODES: BY SYMBOLIC ERROR NAME

SYMBOLIC ERROR NAME NUMBE

R
DESCRIPTION

MEM_ER_ACCESSDENIED -1936 Specified Section is currently owned by another
user.

MEM_ER_ALREADYLOCKED -1935 MidList contains a memory section that is already
locked by the user. *SecPtr identifies the invalid
sectionl

MEM_ER_ASYNC -1097 Operation is being performed asynchronously.
MEM_ER_ASYNCABORT -1098 Asynchronous operation aborted before

completion. This error code is not returned by the
function call. It is set in the Asynchronous Result
Control Block RetCode field.

MEM_ER_BADBLOCKOPT -1031 Invalid BlockOpt.
MEM_ER_BADBUFFER -1019 Buffer is NULL.
MEM_ER_BADLISTOFFSET -1014 Invalid offset value specified.
MEM_ER_BADLOCKTYPE -1010 Invalid LockType parameter.
MEM_ER_BADMID -1912 Invalid Memory Segment ID Mid.
MEM_ER_BADMIDLIST -1913 Invalid MidList parameter.
MEM_ER_BADOPTION -1030 Invalid Options parameter.
MEM_ER_BADOWNTYPE -1918 Invalid OwnType parameter.
MEM_ER_BADPRIVILEGE -1920 Invalid OwnerPrivilege or OtherPrivilege

parameter(s).
MEM_ER_BADSECTION -1916 MidList contains a bad section. *RetSec identifies

the invalid section.
MEM_ER_BADSEGNAME -1911 Invalid Name parameter.
MEM_ER_BADSID -1910 Sid is not a valid semaphore ID.
MEM_ER_BADSIZE -1915 Invalid Size parameter.
MEM_ER_BADTARGET -1914 Invalid target specification.
MEM_ER_BADTRIGGERCOD
E

-1051 Bad trigger code

MEM_ER_BADUID -1023 Invalid AUid parameter.
MEM_ER_BADVAL -1024 Illegal trigger parameter value
MEM_ER_CAPACITY_ASYN
C_USER

-1946 MemSys async user table full.

MEM_ER_CAPACITY_NODE -1943 MemSys node table full.
MEM_ER_CAPACITY_NODE -1943 MemSys node table full.
MEM_ER_CAPACITY_POOL -1942 MemSys text pool full.
MEM_ER_CAPACITY_SECT
ION

-1944 MemSys section table full.

MEM_ER_CAPACITY_TABL
E

-1945 MemSys segment table full.

Appendices 5—35

Date: 01/20/2004 - Revision: 4

SYMBOLIC ERROR NAME NUMBE
R

DESCRIPTION

MEM_ER_DESTROYED -1035 Another user destroyed the memory segment
targeted by the blocked MemWrite operation.

MEM_ER_DUPLICATE -1032 Section already exists.
MEM_ER_FAILSTART -1951 MemSys initialization failed.
MEM_ER_FAILSTOP -1952 MemSys termination failed.
MEM_ER_GHOSTSTART -1953 Cannot register MemSys with XsIPC object

daemon.
MEM_ER_GHOSTSTOP -1954 Cannot deregister MemSys with XsIPC object

daemon.
MEM_ER_INTERRUPT -1100 Operation was interrupted.
MEM_ER_ISFROZEN -1007 A BlockOpt of MEM_WAIT or

MEM_TIMEOUT() was specified after the
instance was frozen by the calling user.

MEM_ER_MEMBUSY -1933 MemSys Segment has one or more sections
defined over it.

MEM_ER_NOASYNC -1066 An asynchronous operation was attempted with
no asynchronous environment present.

MEM_ER_NOMORE -1038 No more data.
MEM_ER_NOSECCFG -1955 No [MEMSYS] section in ".cfg" file.
MEM_ER_NOSECIDS -1956 No [MEMSYS] section in ".ids" file.
MEM_ER_NOSUBSYSTEM -1004 MemSys is not configured in the instance.
MEM_ER_NOTFOUND -1033 Memory Segment with Name does not exist.
MEM_ER_NOTFROZEN -1008 MemSys not frozen.
MEM_ER_NOTLOCAL -1037 Instance is not local.
MEM_ER_NOTLOCKED -1932 MidList contains a memory section not currently

locked by the user. *RetSec identifies the invalid
section.

MEM_ER_NOTLOGGEDIN -1002 User not logged into instance (User never logged
in, was aborted or disconnected).

MEM_ER_NOTOWNER -1931 MidList contains a memory section not currently
owned by the user. *RetSec identifies the invalid
section.

MEM_ER_NOWAIT -1934 BlockOpt of MEM_NOWAIT was specified and
the request was not immediately satisfied.

MEM_ER_SYSERR -1101 An internal error has occurred while processing
the request.

MEM_ER_TIMEOUT -1099 The time out period for the blocked lock
operation has expired without satisfying the
request.

MEM_ER_TRIGGERNOTEXI
ST

-1052 Trigger not previously defined

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

5—36

5.4.6 MEMSYS ERROR CODES: BY MESSAGE NUMBER

NUMBE
R

ERROR CODE DESCRIPTION

-1002 MEM_ER_NOTLOGGEDIN User not logged into instance (User never logged
in, was aborted or disconnected).

-1004 MEM_ER_NOSUBSYSTEM MemSys is not configured in the instance.
-1007 MEM_ER_ISFROZEN A BlockOpt of MEM_WAIT or

MEM_TIMEOUT() was specified after the
instance was frozen by the calling user.

-1008 MEM_ER_NOTFROZEN MemSys not frozen.
-1010 MEM_ER_BADLOCKTYPE Invalid LockType parameter.
-1014 MEM_ER_BADLISTOFFSET Invalid offset value specified.
-1019 MEM_ER_BADBUFFER Buffer is NULL.
-1023 MEM_ER_BADUID Invalid AUid parameter.
-1024 MEM_ER_BADVAL Illegal trigger parameter value
-1030 MEM_ER_BADOPTION Invalid Options parameter.
-1031 MEM_ER_BADBLOCKOPT Invalid BlockOpt.
-1032 MEM_ER_DUPLICATE Section already exists.
-1033 MEM_ER_NOTFOUND Memory Segment with Name does not exist.
-1035 MEM_ER_DESTROYED Another user destroyed the memory segment

targeted by the blocked MemWrite operation.
-1037 MEM_ER_NOTLOCAL Instance is not local.
-1038 MEM_ER_NOMORE No more data.
-1051 MEM_ER_BADTRIGGERCOD

E
Bad trigger code

-1052 MEM_ER_TRIGGERNOTEXI
ST

Trigger not previously defined

-1066 MEM_ER_NOASYNC An asynchronous operation was attempted with
no asynchronous environment present.

-1097 MEM_ER_ASYNC Operation is being performed asynchronously.
-1098 MEM_ER_ASYNCABORT Asynchronous operation aborted before

completion. This error code is not returned by
the function call. It is set in the Asynchronous
Result Control Block RetCode field.

-1099 MEM_ER_TIMEOUT The time out period for the blocked lock
operation has expired without satisfying the
request.

-1100 MEM_ER_INTERRUPT Operation was interrupted.
-1101 MEM_ER_SYSERR An internal error has occurred while processing

the request.
-1910 MEM_ER_BADSID Sid is not a valid semaphore ID.
-1911 MEM_ER_BADSEGNAME Invalid Name parameter.
-1912 MEM_ER_BADMID Invalid Memory Segment ID Mid.
-1913 MEM_ER_BADMIDLIST Invalid MidList parameter.

Appendices 5—37

Date: 01/20/2004 - Revision: 4

NUMBE
R

ERROR CODE DESCRIPTION

-1914 MEM_ER_BADTARGET Invalid target specification.
-1915 MEM_ER_BADSIZE Invalid Size parameter.
-1916 MEM_ER_BADSECTION MidList contains a bad section. *RetSec

identifies the invalid section.
-1918 MEM_ER_BADOWNTYPE Invalid OwnType parameter.
-1920 MEM_ER_BADPRIVILEGE Invalid OwnerPrivilege or OtherPrivilege

parameter(s).
-1931 MEM_ER_NOTOWNER MidList contains a memory section not currently

owned by the user. *RetSec identifies the invalid
section.

-1932 MEM_ER_NOTLOCKED MidList contains a memory section not currently
locked by the user. *RetSec identifies the invalid
section.

-1933 MEM_ER_MEMBUSY MemSys Segment has one or more sections
defined over it.

-1934 MEM_ER_NOWAIT BlockOpt of MEM_NOWAIT was specified and
the request was not immediately satisfied.

-1935 MEM_ER_ALREADYLOCKED MidList contains a memory section that is
already locked by the user. *SecPtr identifies
the invalid sectionl

-1936 MEM_ER_ACCESSDENIED Specified Section is currently owned by another
user.

-1942 MEM_ER_CAPACITY_POOL MemSys text pool full.
-1943 MEM_ER_CAPACITY_NODE MemSys node table full.
-1944 MEM_ER_CAPACITY_SECT

ION
MemSys section table full.

-1945 MEM_ER_CAPACITY_TABL
E

MemSys segment table full.

-1946 MEM_ER_CAPACITY_ASYN
C_USER

MemSys async user table full.

-1951 MEM_ER_FAILSTART MemSys initialization failed.
-1952 MEM_ER_FAILSTOP MemSys termination failed.
-1953 MEM_ER_GHOSTSTART Cannot register MemSys with XsIPC object

daemon.
-1954 MEM_ER_GHOSTSTOP Cannot deregister MemSys with XsIPC object

daemon.
-1955 MEM_ER_NOSECCFG No [MEMSYS] section in ".cfg" file.
-1956 MEM_ER_NOSECIDS No [MEMSYS] section in ".ids" file.

XsIPC Version 3.4.0: QueSys/MemSys/SemSys Reference Manual

Date: 01/20/2004 - Revision: 4

5—38

