

Envoy Connect XIPC Connector
Version 3.4.0

MomSys
User Guide

Envoy Technologies Inc.
555 Route 1 South
Iselin, NJ 08830

http://www.envoytech.com

Copyright © 2004 Envoy Technologies Inc. All rights reserved

This document and the software supplied with this document are the property of Envoy Technologies Inc. and are furnished
under a licensing agreement. Neither the software nor this document may be copied or transferred by any means, electronic
or mechanical, except as provided in the licensing agreement. The information in this document is subject to change without
prior notice and does not represent a commitment by Envoy Technologies Inc. or it's representatives.

Printed in the United States of America.

Envoy XIPC, Envoy Connect XIPC are either trademarks or registered trademarks of Envoy Technologies Inc. Other
product and company names mentioned herein might be the trademarks of their respective owners.

Envoy Connect XIPC is represented throughout the documentation as X IPC.

I

Date: 1/20/2004 - Revision: 14

X©IPC VERSION 3.4.0

MomSys USER GUIDE

 Table of Contents

1. INTRODUCTION..1-1

2. MOMSYS ARCHITECTURE AND PROGRAMMING MODEL2-1
2.1 The “30,000 Foot” View...2-1
2.1.1 XsIPC NAMESPACE ..2-1
2.2 The “20,000 Foot” View ...2-2
2.2.1 “LOCAL INSTANCES”..2-2
2.3 The “10,000 Foot” View...2-3
2.3.1 XsIPC CATALOG SERVERS ..2-3
2.3.2 MESSAGE REPOSITORY...2-3
2.3.3 COMMUNICATION MANAGER ..2-4
2.4 The Reliable Messaging Programming Model ...2-5
2.5 MomSys Terminology...2-5

3. BUILDING A SIMPLE MOMSYS APPLICATION...3-1
3.1 The Environment..3-1

3.2 Programming Steps..3-1
3.2.1 SENDER PSEUDO-CODE..3-1
3.2.2 RECEIVER PSEUDO-CODE..3-1
3.2.3 SENDER PROGRAM...3-2
3.2.4 RECEIVER PROGRAM...3-3
3.3 Summary...3-3

4. BASIC MOMSYS PROGRAMMING FUNCTIONALITY4-1
4.1 Creating an App-Queue ...4-1
4.1.1 WHAT IS AN APP-QUEUE? ...4-1
4.1.2 BASIC APP-QUEUE ATTRIBUTES...4-1
4.1.3 THE MOMCREATE() FUNCTION...4-2
4.1.4 PREDEFINED MOM_ATTRBLOCK_APPQUEUE BLOCKS...4-2
4.1.5 EXAMPLES OF CREATING AN APP-QUEUE...4-2

 XsIPC Version 3.4.0: MomSys User Guide

Date: 1/20/2004 - Revision: 14

II

4.1.6 RELOCATING APP-QUEUES..4-4
4.2 Accessing an App-Queue - MomAccess()..4-5
4.2.1 LOCAL APP-QUEUE NAMES...4-6
4.2.2 REMOTE APP-QUEUE NAMES ...4-6
4.2.3 VIRTUAL AQID HANDLES...4-6
4.2.4 AQID SEMANTICS ...4-7
4.3 MomDeaccess(AQid); Message Sending - MomSend().............................4-8
4.3.1 OPTIONAL ARGUMENTS TO MOMSEND()...4-9
4.3.2 BLOCKING OPTIONS..4-9
4.3.3 OPTIONAL FLAGS TO MOMSEND()...4-10
4.4 Message Receiving - MomReceive()...4-11
4.4.1 MESSAGE SELECTION ..4-12
4.4.2 OPTIONAL FLAGS TO MOMRECEIVE() ..4-13
4.5 Message Tracking ..4-14
4.5.1 MESSAGE STATUS VALUES...4-15
4.5.2 MESSAGE TRACKING LEVELS..4-15
4.6 Client/Server Interaction...4-16
4.6.1 REQUEST-RESPONSE PROGRAMMING STEPS...4-16
4.6.2 CLIENT-SIDE PROGRAMMING EXAMPLE...4-16
4.6.3 SERVER-SIDE PROGRAMMING EXAMPLE...4-18
4.6.4 REQUEST-RESPONSE CORRELATION ..4-19

5. BASIC MOMSYS CONFIGURATION AND ADMINISTRATION...........................5-1

5.1 The XsIPC Platform Environment ..5-1
5.2 Establishing a Namespace ..5-1
5.2.1 NAMESPACE CONFIGURATION..5-1

5.3 XsIPC Instance Namespace Affiliation...5-4

5.4 XsIPC Configuration: A Client/Server Example ..5-4
5.4.1 AN XsIPC SOLUTION..5-5
5.5 Platform Configuration Parameters ...5-6
5.5.1 GENERAL CATALOG PARAMETERS..5-7
5.5.2 PROTOCOL-SPECIFIC CATALOG PARAMETERS...5-7
5.6 Platform Utility Commands ..5-8
5.6.1 PLATFORM STARTUP - XIPCINIT..5-8
5.6.2 PLATFORM SHUTDOWN - XIPCTERM..5-8
5.7 MomSys Subsystem - Instance Configuration Parameters.......................5-8

5.7.1 GENERAL XsIPC PARAMETERS ...5-9
5.7.2 GENERAL MOMSYS PARAMETERS..5-9

III

Date: 1/20/2004 - Revision: 14

5.7.3 MESSAGE REPOSITORY PARAMETERS...5-10
5.7.4 COMMUNICATION MANAGER PARAMETERS..5-12
5.7.5 PROTOCOL SPECIFIC PARAMETERS...5-12
5.8 Instance Utility Commands..5-12
5.8.1 INSTANCE STARTUP - XIPCSTART...5-13
5.8.2 INSTANCE SHUTDOWN - XIPCSTOP...5-13

5.9 Interactive Command Interpreter - “xipc>” ..5-14
5.9.1 SAMPLE USAGE OF MOMSYS INTERACTIVE COMMANDS..5-14
5.10 Monitoring MomSys Activity..5-15
5.10.1 MOMVIEW MONITOR AND DEBUGGER...5-15
5.10.2 STARTING MOMVIEW...5-15
5.10.3 MOMVIEW LAYOUT...5-15
5.10.4 MOMVIEW ZOOM WINDOWS...5-17
5.10.5 GENERAL MOMVIEW COMMANDS..5-19
5.10.6 BROWSING MESSAGES WITH MOMVIEW...5-20
5.10.7 MONITORING INSTANCE LINKS - THE “LINKS” WINDOW ...5-22
5.10.8 LOCAL AND REMOTE APP-QUEUE DISPLAY MODES...5-23
5.10.9 PANNING WITHIN MOMVIEW’S MAIN WINDOW..5-24
5.10.10 STOPPING MOMVIEW...5-24

6. ADVANCED MOMSYS PROGRAMMING FUNCTIONALITY6-1
6.1 Message Prioritization...6-1
6.1.1 TWO STEPS IN A MESSAGE’S TRIP..6-1
6.1.2 SPECIFYING MESSAGE PRIORITY VALUES ...6-2
6.2 Application Message Load Management...6-3
6.2.1 LOAD SHARING...6-3
6.3 MomSys Events ..6-3
6.3.1 THE MOMEVENT() FUNCTION..6-3
6.3.2 SUPPORTED MOMSYS EVENTS..6-3
6.3.3 MOMEVENT() “NOTIFICATION” OPTION ..6-4
6.3.4 MOMEVENT() EVENT SEMANTICS..6-6
6.3.5 MOMSYS EVENT MONITORING...6-6
6.4 Information Verbs ...6-6
6.4.1 UNDERSTANDING MOMSYS INFORMATION VERBS ..6-6
6.4.2 CODING EXAMPLES OF MOMSYS INFORMATION VERBS...6-7

7. ADVANCED MOMSYS CONFIGURATION CONCEPTS......................................7-1
7.1 Accessing Multiple Namespaces..7-1

7.2 Configuring XsIPC ‘s Platform Environment for Multiple Namespaces..7-2

 XsIPC Version 3.4.0: MomSys User Guide

Date: 1/20/2004 - Revision: 14

IV

8. ADVANCED MOMSYS ADMINISTRATION CONCEPTS.....................................8-1
8.1 Message Repository..8-1
8.1.1 COMPONENTS ...8-1
8.1.2 OPTIMIZATION ...8-2
8.1.3 MESSAGE EXPIRATION...8-2
8.1.4 MESSAGE RETIREMENT...8-2
8.1.5 MR CLEANING..8-2
8.2 Communication Manager...8-4
8.2.1 COMMUNICATION SERVERS...8-4
8.2.2 INSTANCE LINKS..8-5

9. APPENDICES..9-1
9.1 Appendix A: Message Status and Tracking Levels....................................9-1
9.1.1 MESSAGE STATUS VALUES...9-1
9.1.2 MESSAGE STATE-DIAGRAM...9-2
9.1.3 MESSAGE TRACKING LEVELS..9-3
9.2 Appendix B: Message Priority Specification...9-5
9.2.1 INTRODUCTION ..9-5
9.2.2 TWO STEPS IN A MESSAGE’S JOURNEY..9-5
9.2.3 WHY PRIORITIZATION MATTERS...9-6
9.2.4 SPECIFYING MESSAGE PRIORITY VALUES ...9-6
9.2.5 CONCLUSION ..9-8
9.3 Appendix C: Message Specification in MomReceive()9-9
9.3.1 WHAT IS AN APP-QUEUE? ...9-9
9.3.2 TERMINOLOGY ..9-9
9.3.3 POSSIBLE MSGSPECIFIER VALUES ...9-10
9.3.4 THE TWO COMPONENTS OF A “MSGSPECIFIER” ..9-10
9.3.5 PULLING IT TOGETHER ..9-11
9.3.6 MSGSPECIFIER SYNTAX ..9-11
9.4 Appendix D: MomStatus() and MomStatusWait() Function Definitions...9-13
9.4.1 SAMPLE MOMSTATUS() DEFINITION ..9-13
9.4.2 SAMPLE MOMSTATUSWAIT() DEFINITION ..9-13

10. INDEX..10-1

Introduction

Date: 1/20/2004 - Revision: 14

1-1

1. INTRODUCTION

XsIPC Version 3, a Message Oriented Middleware product from Envoy Technologies Inc., is arguably the most
advanced application messaging middleware product in the industry. XsIPC Version 3 defines a new level of
Message Oriented Middleware technology.

The primary goal of XsIPC Version 3 has been to provide features which address the new generation of large-scale
distributed and client/server applications. To that end, numerous capabilities have been incorporated in the product
for building large, highly-scalable, enterprise messaging applications.

XsIPC Version 3 is a multi-modal communications toolset that is comprised of subsystems for supporting a variety of
communication modes. Included are mechanisms for program-to-program messaging, memory-sharing and
semaphore-synchronization.

The essential focus of XsIPC Version 3 is application-to-application message communication (i.e., application
messaging). This class of technology is known in the industry as Message Oriented Middleware. A new subsystem,
the Message Oriented Middleware Subsystem, or “MomSys,” is introduced in XsIPC Version 3 as the focal point of
the new release. With XsIPC MomSys, it is possible to address a wide cross-section of messaging application
requirements, ranging from:

Small LAN-based applications, to large WAN Enterprise or Internet applications;

Synchronous, on-line, client/server applications, to asynchronous, disconnected mobile applications;

High-performance, memory-based messaging applications, to industrially-strong, store-and-forward, guaranteed
message delivery applications.

This document describes the XsIPC Version 3 MomSys subsystem, its programming model, functionality and
application programming interface (API). It outlines as well some of the more notable messaging features inherent
in the product for building, configuring and scaling the full range of messaging applications.

MomSys Architecture and Programming Model

Date: 1/20/2004 - Revision: 14

2-1

2. MOMSYS ARCHITECTURE AND PROGRAMMING MODEL

This section presents a top-down sketch of the architecture and programming components of XsIPC Version 3’s
MomSys subsystem.

2.1 The “30,000 Foot” View

At a very high-level, MomSys has the following appearance:

The model depicted is rather simple: Application programs (circles in the above diagram), send messages to other
programs by placing them onto “Application Queues” (open-rectangles in the above diagram) from which they are
read by the targeted programs.

Message movement between nodes follow a store-and-forward route (dashed-lines above) for providing guaranteed
and possibly deferred message delivery.

2.1.1 XsIPC NAMESPACE

Application queue names and locations are managed globally within an XsIPC namespace. An XsIPC namespace is
implemented via fault-tolerant namespace catalog servers. A program need not know the location of an application
queue when sending it messages. It need only reference a targeted app-queue by its name. Mapping between app-
queue name and app-queue location is handled dynamically by XsIPC.

XsIPC
Namespace

 XsIPC Version 3.4.0: MomSys User Guide

Date: 1/20/2004 - Revision: 14

2-2

2.2 The “20,000 Foot” View

A closer look at the programming model reveals the following additional detail:

2.2.1 “LOCAL INSTANCES”
A process wishing to perform work within an XsIPC namespace must first log into an XsIPC instance that is affiliated
with the namespace. This instance, which is typically local to the process (i.e., on the same network node), acts as
an access point into the XsIPC namespace. (For an introductory discussion on the topic of XsIPC Instances, refer to
“XsIPC Instances” in the XsIPC User Guide.)

Consider the above diagram. Each network node (rectangle) contains an XsIPC instance (shaded ovals).These
instances act as access points for processes wishing to perform messaging operations within the depicted XsIPC
namespace named “foo” (the large rounded rectangle). Processes (circles) log into local instances for accessing the
XsIPC namespace. Once a process logs into to an instance it gains access to the XsIPC namespace with which that
instance is affiliated. That instance is referred to as the process’ “local instance” within the namespace.

(An instance has an affiliation with a single XsIPC namespace. For situations where a process needs to work with a
second namespace, a second local instance, affiliated with the second namespace, may be accessed and the process
can then toggle between the two, as needed. This is an advanced topic that will be addressed later in this guide.)

Processes which plan to receive messages create application-queues (abbreviated as “app-queues”) that are
physically located within their local instance. The names of created app-queues may be known only within the
confines of the local instance, in which case they are only accessible by other process logged into the local
instance, or they may be registered within an XsIPC namespace, so that they can be reached by processes spread over
the network.

XsIPC Namespace “foo”

a

b

c

xyz

MomSys Architecture and Programming Model

Date: 1/20/2004 - Revision: 14

2-3

A process (such as “a” in the above diagram) sending messages to an app-queue (“xyz”) targets the app-queue by
specifying its name. XsIPC transmits the messages to the targeted app-queue, wherever it is within the namespace.
Enqueued messages are subsequently received from the app-queue by processes local to the app-queue (“b” and
“c”).

2.3 The “10,000 Foot” View

Working down to a level of still greater detail, we see the following:

2.3.1 XsIPC CATALOG SERVERS

XsIPC namespaces are implemented within a set of (one or more) redundant XsIPC catalog servers. We will see that
these programs support the network-transparent app-queue discovery mechanism within MomSys.

Namespace information may be automatically replicated between the catalog servers for two possible purposes:

Fault Tolerance - Should any one of the catalog servers fail, access to the namespace data is unaffected. This
automatic fail-over is dynamic, and transparent to the user.

Locality - If a namespace is to transcend a wide geographic region, it is possible to strategically position multiple
catalog servers for providing localized access to the single namespace via its replicated namespace data. Here
again, if one of the local catalog servers were to fail, the affected users would automatically start accessing one of
the other available servers.

2.3.2 MESSAGE REPOSITORY
Within each instance is a non-volatile message repository (indicated by the disk-drive, in the above diagram) This
is used by XsIPC MomSys for storing and tracking message movement between instances as they travel from sender

Catalog Server Catalog Server Catalog Server

Message

Communications
Mngr.

Message

Communications
Mngr.

Links

XsIPC Namespace “foo”

 XsIPC Version 3.4.0: MomSys User Guide

Date: 1/20/2004 - Revision: 14

2-4

to receiver in a store-and-forward, asynchronous, guaranteed delivery manner. Messages being sent to a disk-based
app-queue are moved via the local and then remo te message repositories. This guarantees that messages are not lost
as they go from sender to receiver.

A comprehensive set of message tracking-levels is provided for directing XsIPC , per message, as to just how far
along the message path tracking is desired. Event-driven message tracking is provided as well.

A critical component of a store and forward, message-oriented middleware technology that is to be used in “real-
world” applications is its ability to provide message tracking tools for accessing immediate and up-to-date status
information about previously sent messages. It is imperative that the user be allowed to immediately ascertain
where any previously sent message currently resides. XsIPC MomSys provides facilities for supporting this function.

Similarly, XsIPC provides a full set of options for defining message expiration periods, message repository clean-up
scheduling and message journaling.

2.3.3 COMMUNICATION MANAGER

2.3.3.1 Concept
Within each instance is a multi-threaded communication manager (indicated by the rounded rectangles, in the
above diagram). A communication manager supports an instance’s affiliation with an XsIPC namespace as well as its
communication links with other instances.

The communication manager is responsible to take outgoing messages from the local message repository and send
them to a counterpart communication manager in a destination instance. The destination communication manager
stores the messages in its message repository. The degree of internal message acknowledgments that occurs
between communication managers depends on the message tracking level specified per each message sent.
(Message tracking levels are described in detail in Appendix A “Message Status Values and Tracking Levels”.)

The communication manager additionally maintains a local cache of app-queue names and locations. It uses
this data to route outbound messages. Accordingly, it obtains periodic data updates from the XsIPC catalog
with namespace updates and related data. These updates do not occur in a broadcast manner, but are rather
designed to take place only as necessary.

2.3.3.2 Design
The communication manager is implemented as a set of process-pairs called communication servers. The
communication server programs control simplex communication lines - outgoing and incoming - with remote
instances. (The term “process” is used in its descriptive sense; operating system processes and “threads” are used
for actual implementation). This design allows XsIPC to keep multiple messages in flight over a network link at any
point in time. This asynchronous communication takes full advantage of the underlying network protocol
bandwidth.

Each communication manager handles multiple sessions, sending or receiving messages from multiple instances.
This architecture enables large-scale client/server implementations to be handled without consuming inordinate
amounts of computer resources.

The communication manager is configurable with regard to the number of concurrent sessions to keep, timeout
periods, retry intervals, catalog search intervals, and so on. These parameters are defined in the MomSys Reference
Manual, and will be listed at a later point in this User Guide.

MomSys Architecture and Programming Model

Date: 1/20/2004 - Revision: 14

2-5

2.4 The Reliable Messaging Programming Model

The XsIPC reliable messaging model is manifest in the MomSys subsystem of XsIPC . It comprises an API, a
Subsystem Manager, a Message Repository Manager and a scalable Communication Manager working as a unit,
and communicating with the MomSys subsystems of the other remote instance. The basic MomSys architecture is
depicted below.

Copies of sent messages are stored locally until they are known to have been successfully delivered.

2.5 MomSys Terminology

The following is a brief outline of the MomSys programming model components and the definitions that emerge.
Consider the following diagram:

User Application

API

Message
Repository
Manager

 MomSys
 Manager

Comm
Manager

User Application

API

Message
Repository
Manager

 MomSys
 Manager

Comm
Manager

Message Repository Message Repository

The MomSys Programming Model

 XsIPC Version 3.4.0: MomSys User Guide

Date: 1/20/2004 - Revision: 14

2-6

We see two XsIPC namespaces, A and B. Within namespace A are three instances. Three app-queues named “abc”,
“qrs” and “xyz” are situated in the three instances. We similarly see two instances each containing an app-queue,
within namespace B. (An instance, of course, can support many app-queues. The above example has one app-queue
per instance for purposes of clarity.) The solid and dashed lines indicate user processes logged into XsIPC instances.
Solid lines are connected XsIPC logins; dashed lines are disconnected XsIPC logins.

We also see processes p1 through p5 that have logged into the XsIPC instances as indicated. The dashed line
between process p1 and Inst-1 indicates that the process has disconnected from that login. Its current login is to
Inst-4. For a complete discussion of working with multiple XsIPC instances refer to “Working With XsIPC Instances”
in the Advanced Topics section of the XsIPC User Guide.

The following definitions clarify the terms and their relationships:

XsIPC Namespace

An XsIPC namespace is a collection of XsIPC named entities. In MomSys these entities are typically named
application queues. As shown earlier, a namespace is managed by a set of catalog servers.

An Instance’s Affiliated Namespace

An XsIPC instance may be affiliated with at most one namespace. This is referred to as the instance’s affiliated
namespace.

Local Instance

A process must log into an XsIPC instance that is affiliated with a namespace before performing MomSys operations
within that namespace. This instance is referred to as the process’ local instance within that namespace. A process
wishing to work additionally within a second namespace may do so by logging into an instance within that second
namespace. Such a process is said to have two local instances, one per namespace.

“qrs”

“xyz”

p1

p4

p2

“abc”

Inst-1

Inst-2

Inst-3

“efg”

Inst-4

“hij”

Inst-5

p5

Namespace B

Namespace A

p3

MomSys Architecture and Programming Model

Date: 1/20/2004 - Revision: 14

2-7

Current Local Instance, Current Namespace

The instance that a process is currently connected to is the process’ Current Local Instance. The corresponding
namespace is the process’ Current Namespace.

In the preceding diagram, Process p1 is working within namespaces A and B, and has accordingly logged into Inst-
1 and Inst-4. These are p1’s local instances. Note that p1’s login to Inst-4 is its current login. Hence, Inst-4 is p1’s
current local instance and namespace B is its current namespace.

Similarly, p2, p3 and p4 are working in namespace A. Both p2 and p3 are using Inst-2 as their local instance.
Process p4 is using Inst-3. Process p5, however, is working within namespace B. Its local instance is Inst-5.

Remote Instance

As just described, when a process works within a namespace, the instance that it logs into within that namespace is
that process’ local instance within that namespace. Remaining instances within that namespace, i.e., those not
logged into, are remote instances, relative to it. For example, Inst-2 and Inst-3 are p1’s remote instances within
namespace A. Inst-5 is a remote instance, relative to p1, within namespace B.

Local App-Queue

App-queues situated within a process’ local instance are referred to as local app-queues. For example, app-queue
“abc” in the above diagram is local relative to process p1. Similarly, app-queue “qrs” is local relative to processes
p2 and p3.

A process may perform all forms of app-queue manipulation operations on local app-queues, such as: MomSend(),
MomReceive(), MomDelete(), MomDestroy(), MomInfoAppQueue(), etc.

Remote App-Queue

App-queues situated within a process’ remote instances are referred to as remote app-queues. For example, app-
queue “qrs” is a remote app-queue relative to process p1. Similarly, app-queue “abc” is a remote app-queue relative
to processes p2 and p3.

The only operations which may be performed on remote app-queues are MomAccess(), MomSend() and
MomInfoAppQueue().

The above environment may deployed in a variety of scenarios without affecting the overall model. One possibility
involving four network nodes (depicted as dashed-line boxes) is the following:

“qrs”

“xyz”

p1
p4

p2

“abc”

Inst-1

Inst-2

Inst-3

“efg”

Inst-4

“hij”

Inst-5

p5

Namespace B

Namespace A

p3

 XsIPC Version 3.4.0: MomSys User Guide

Date: 1/20/2004 - Revision: 14

2-8

Note that one of the platforms supports more than one XsIPC instance. Specifically, Inst-1 and Inst-4 both reside on
a single platform. Process p1 employs them for accessing the two namespaces A and B.

Obviously, other scenarios are possible without changing any aspects of XsIPC ‘s utilization.

Building a Simple MomSys Application

Date: 1/20/2004 - Revision: 14

3-1

3. BUILDING A SIMPLE MOMSYS APPLICATION

In this section we will program a very simple MomSys application in which a program will send one guaranteed
delivery message to a second program. The point of this exercise is to demonstrate, by example, the MomSys
programming model. Following this example, it should be possible to start “connecting the dots” as to how
MomSys works, and how it will be useful for building mission-critical messaging applications.

3.1 The Environment

Our environment for this exercise will assume two nodes on a TCP/IP network having names n1 and n2. We will
further assume that the sending program “s” is running on n1 and will employ a local XsIPC instance I1; and that the
receiving program “r” is running on n2 and will employ local XsIPC instance I2.

The focus of our application is app-queue “xyz,” a disk-based app-queue created within instance I2 by receiver
program “r”. Sender program “s” will send its message to app-queue “xyz”. Receiver program “r’ will receive the
message. And with that, the application will end. (Note, of course, that the two programs may run in any sequence.)

3.2 Programming Steps

3.2.1 SENDER PSEUDO-CODE
Program “s” will be coded to perform the following steps:

Log into instance I1.

Access a handle for app-queue “xyz”.

Send message to app-queue “xyz”.

Log out of instance I1.

3.2.2 RECEIVER PSEUDO-CODE
Program “r” will be coded to perform the following steps:

Log into instance I2.

Create app-queue “xyz”.

Receive message from “xyz”.

Log out of instance I2.

n1 n2 s
r

xyz

I1 I2

n1 n2

 XsIPC Version 3.4.0: MomSys User Guide

Date: 1/20/2004 - Revision: 14

3-2

3.2.3 SENDER PROGRAM
The following is the program for “s”. Note: the datatypes VOID, XINT and CHAR are XsIPC provided datatypes for
enhancing an application’s portability between disparate machine architectures.

/*
 * Sender program “s”. Note, error checking is omitted
 * for enhancing program readability.
 */

#include “xipc.h”

VOID
main(argc, argv)
XINT argc;
CHAR **argv;

{
 XINT xyzAQid;

 XipcLogin(“@I1”, “s”);

 /*
 * MomAccess() accesses a handle to app-queue “xyz”.
 * The NOVERIFY flag specifies to XIPC that
 * MomAccess should not verify whether the app-
 * queue already exists. In a case where
 * the app-queue is not yet known, MomAccess will
 * return a “virtual” AQid handle. This is invisible
 * to the program.
 */

 xyzAQid = MomAccess(MOM_NOVERIFY(“@xyz”));

 MomSend(
 xyzAQid, /* The AQid handle of app-queue “xyz” */
 “Hello world”, /* Message being sent */
 12L, /* Size (in bytes) of message */
 MOM_PRIORITY_NORMAL, /* Priority of sent message */
 MOM_TRACK_DELIVERED, /* Track message until it is delivered */
 MOM_REPLY_NONE, /* No response expected */
 NULL, /* No need to know message-id */
 MOM_WAIT /* Block if system is busy */
);

 XipcLogout();
}

Building a Simple MomSys Application

Date: 1/20/2004 - Revision: 14

3-3

3.2.4 RECEIVER PROGRAM
The following is the program for “r”. Note: the datatypes VOID, XINT and CHAR are XsIPC provided datatypes for
enhancing an application’s portability between disparate machine architectures.

/*
 * Receiver program “r”. Note, error checking is omitted
 * for enhancing program readability.
 */

#include “xipc.h”

VOID
main(argc, argv)
XINT argc;
CHAR **argv;

{
 XINT xyzAQid;
 XINT InBufferLen = 12;
 CHAR InBuffer[12];

 XipcLogin(“@I2”, “r”);

 xyzAQid = MomCreate(“xyz”, MOM_APPQUEUE_DISK_REGISTER);

 MomReceive(
 xyzAQid, /* Handle of app-queue “xyz” */
 InBuffer /* Where to read message */
 InBufferLen, /* Size (in bytes) of buffer */
 MOM_MESSAGE_FIRST, /* Get first msg from app-queue */
 NULL, /* (we don’t need ReplyAQid) */
 NULL, /* (we don’t need MsgId) */
 NULL, /* (we don’t need detailed Msg Info) */
 MOM_WAIT /* Block message isn’t there */
);

 printf(“got message: %s\n”, InBuffer);

 XipcLogout();
}

3.3 Summary

Upon reviewing the above programs its should be evident what is occurring. There are, however, a few important
points, that may not be obvious, and that are worthy of mention:

It does not matter which program is started first. If the sender program “s” runs before the receiver “r” has started,
the sent message will be held within the message repository of instance I1 until “r” has started and created app-
queue “xyz”. This may occur a second later, a minute later or a week later.

In fact, node n2 may be shut down and off the network entirely at the time that “s” runs. It has no effect on sender
program “s”.

The sender program may “fire and forget”. It completes as soon as the message has been submitted within its local
instance. Once the message is sent, it is XsIPC ‘s responsibility to move the message forward as fast as possible,
independent of the sender.

The sent message may be tracked at any point in time to determine its latest status.

Basic MomSys Programming Functionality

Date: 1/20/2004 - Revision: 14

4-1

4. BASIC MOMSYS PROGRAMMING FUNCTIONALITY

4.1 Creating an App-Queue

4.1.1 WHAT IS AN APP-QUEUE?
Before addressing the topic of app-queue manipulation, it is instructive to first understand what an app-queue is. An
app-queue is a set of messages that are maintained according to a certain logical sequence. This sequence is
known as the app-queue’s “natural” sequence.

4.1.1.1 Natural Sequence
Every app-queue that is created has, as one of its defining attributes, a natural sequencing of its messages. This is
referred to as the app-queue’s natural message sequence. There are two possible natural sequences:

Time sequence

Priority sequence

By default, an app-queue’s natural sequence is the time sequence in which the messages arrive and are placed on
the queue, i.e., FIFO sequence. We will see later that the MomAttrSet() function can be used to override this
default to create an app-queue whose messages are sequenced by priority, i.e., highest priority at the front of the
app-queue.

An app-queue’s natural sequence defines the order in which messages are presented to users performing
MomReceive() operations on that app-queue. The topic of message selection will be addressed later, in the
description of the MomReceive() function call.

4.1.2 BASIC APP-QUEUE ATTRIBUTES

An app-queue is defined by other attributes in addition to those that define its message sequencing. The
following are brief descriptions of the basic app-queue attributes. Advanced app-queue attributes are
described in a later section. The complete list of app-queue attributes, their descriptions and default settings
are defined in the MomAttrSet() function definition in the MomSys Reference Manual.

4.1.2.1 The Time Sequence Attribute

The MOM_ATTR_SET_TIME app-queue attribute indicates that the app-queue employs a natural message
sequencing that stores incoming messages in time order (i.e., oldest arriving message at the front).

4.1.2.2 The Priority Sequence Attribute

The MOM_ATTR_SET_PRIORITY app-queue attribute indicates that the app-queue employs a natural
message sequencing that stores incoming messages in priority order (i.e., highest priority message at the
front).

The Time and Priority attributes are mutually exclusive.

4.1.2.3 The Disk-Based Communication Attribute
The MOM_ATTR_SET_DISK app-queue attribute indicates that the communication of messages to the app-queue
occurs via store-and-forward disk-based mechanisms. This can support the asynchronous guaranteed message
delivery of sent messages.

4.1.2.4 The Automatic Namespace Registration Attribute
A related attribute, the MOM_ATTR_SET_AUTO_REGISTER app-queue attribute, indicates that an app-queue is
automatically registered and deregistered within an XsIPC namespace upon its creation and deletion from its local

 XsIPC Version 3.4.0: MomSys User Guide

Date: 1/20/2004 - Revision: 14

4-2

instance. This is useful for developing applications that need to automatically insert and delete XsIPC namespace
entries without requiring program intervention.

4.1.2.5 The Automatic Namespace Registration Update Attribute
MOM_ATTR_SET_AUTO_REGISTER_UPDATE updates an app-queue's registration data. This attribute is
typically used to relocate an app-queue from its current location to a new location and to have all programs that are
currently sending messages to that app-queue have their messages subsequently be sent to the new location. (See
Section 4.1.6 for further details.)

4.1.3 THE MomCreate() FUNCTION
The MomCreate() API accepts two arguments: the name of the app-queue to be created, and a pointer to a data
structure of type MOM_ATTRBLOCK_APPQUEUE, as follows:

• The name argument is the name (i.e., character string) by which other programs will reference the app-queue,
once created. Alternatively, it is possible to create an app-queue having no name. This is called a “private”
app-queue, and it is created by specifying MOM_PRIVATE as the name argument to MomCreate(). Such an
app-queue is typically used in client/server communication settings, in which each client creates its own
private response app-queue, instead of having to invent a unique client-side app-queue name. This is
demonstrated later in this Guide in the section “Client/Server Interaction.”

• The second argument points to a MOM_ATTRBLOCK_APPQUEUE data block that describes the nature of the
app-queue to be created. Attribute values within the block may be set “manually” via the MomAttrSet() API,
in which case MomAttrSet() is called for setting each of the individual app-queue attributes; or alternatively
the programmer may employ one of the predefined attribute blocks provided by XsIPC . These are listed in the
next section. Examples of using both approaches are provided below.

MomCreate() will fail if an app-queue with the specified name (other than MOM_PRIVATE) already exists within
the caller’s current XsIPC instance. Similarly, if the app-queue is being registered within an XsIPC namespace,
MomCreate() will fail if an app-queue with the specified name already exists within the caller’s current namespace.

4.1.4 PREDEFINED MOM_ATTRBLOCK_APPQUEUE BLOCKS
The following predefined app-queue attribute blocks are provided by XsIPC for streamlining the coding necessary
for creating app-queues in many situations:

• MOM_APPQUEUE_DISK - is used for creating an app-queue that has all default attribute settings. Default
attribute settings are listed in the MomAttrSet() manual page definition.

• MOM_APPQUEUE_DISK_REGISTER - is used for creating an app-queue that has default attribute settings,
with the exception that the created app-queue is automatically registered within the caller’s current namespace.
(Auto-registration is not the default) It is an error to register an app-queue name that is already registered.

• MOM_APPQUEUE_DISK_REGISTER_UPDATE - is used for creating an app-queue that has default attribute
settings, with the exception that the created app-queue is automatically registered within the caller’s current
namespace. (Auto-registration is not the default) In case the app-queue already exists, its attributes are
updated with the attributes passed in the current call. It is typically used to relocate an app-queue from its
current location to a new location and to have all programs that are currently sending messages to that app-
queue have their messages now be sent to the new location. (See Section 4.1.6 for further details.)

4.1.5 EXAMPLES OF CREATING AN APP-QUEUE
The following sample code segments demonstrate the creation of a variety of app-queues:

Basic MomSys Programming Functionality

Date: 1/20/2004 - Revision: 14

4-3

/*
 * Create an app-queue named “abc” that is not automatically registered
 * in the XIPC namespace. Default attributes are applied to the created
 * app-queue. This means that the “natural” sequencing of messages on the
 * app-queue will be by time of arrival, i.e., FIFO sequencing of messages.
 */

RetCode = MomCreate (“abc”, MOM_APPQUEUE_DISK);

/*
 * Create an app-queue named “def” that is automatically registered
 * in the XIPC namespace. Default attributes are applied to the created
 * app-queue. This means that the “natural” sequencing of messages on the
 * app-queue will be by time of arrival, i.e., FIFO sequencing of messages.
 */

RetCode = MomCreate (“def”, MOM_APPQUEUE_DISK_REGISTER);
/*
 * Create an app-queue named “ghi” that has a priority-based “natural”
 * sequencing of messages, but that is not automatically registered in the
 * caller’s namespace.
 */

MOM_ATTRBLOCK_APPQUEUE AttrBlock;

RetCode = MomAttrSet(&AttrBlock, MOM_ATTR_SET_INITIALIZE);
RetCode = MomAttrSet(&AttrBlock, MOM_ATTR_SET_DISK);
RetCode = MomAttrSet(&AttrBlock, MOM_ATTR_SET_PRIORITY);

RetCode = MomCreate (“ghi”, &AttrBlock);

/*
 * Create an app-queue named “jkl” that has a priority-based “natural”
 * sequencing of messages, but that is automatically registered in the
 * caller’s namespace.
 */

MOM_ATTRBLOCK_APPQUEUE AttrBlock;

RetCode = MomAttrSet(&AttrBlock, MOM_ATTR_SET_INITIALIZE);
RetCode = MomAttrSet(&AttrBlock, MOM_ATTR_SET_DISK);
RetCode = MomAttrSet(&AttrBlock, MOM_ATTR_SET_PRIORITY);
RetCode = MomAttrSet(&AttrBlock, MOM_ATTR_SET_AUTO_REGISTER);

RetCode = MomCreate (“jkl”, &AttrBlock);

 XsIPC Version 3.4.0: MomSys User Guide

Date: 1/20/2004 - Revision: 14

4-4

4.1.6 RELOCATING APP-QUEUES
It is possible to relocate an app-queue from its current location to a new location and to have all programs that are
currently sending messages to that app-queue have their messages now be sent to the app-queue’s new location.
This occurs “on-the-fly,” without the sending programs needing to make any rerouting provisions in their code and
without them being aware of the targeted app-queue’s new location.

Consider the following example in which three programs (e.g., clients) are sending messages to an app-queue that
they have accessed (e.g., for a server to receive from), having the well-known app-queue name ‘X.’

Now, consider what will happen if the server upon which ‘X’ is located crashes, XsIPC allows the user to create a new
app-queue ‘X’ on a new server and, with that, XsIPC will cause all subsequent messages sent to ‘X’ to route to the
new ‘X.’ The client programs themselves remain entirely unaware of this relocation of the app-queue.

By creating the second ‘X’ and specifying that its registration should update the prior registration of ‘X,’ the new
app-queue becomes the target for all messages sent to ‘X’.

Even though the sending applications do not perform a new MomAccess(‘X’, ..) call, the information about
the new location of ‘X’ is automatically disemminated to those nodes on the network having registered a prior
interest in such an app-queue.

Aqid = MomAccess(‘X’…);

MomSend (Aqid …)

MomSend (Aqid …)

MomSend (Aqid …)

Aqid = MomAccess(‘X’…);

MomSend (Aqid …)

MomSend (Aqid …)

MomSend (Aqid …)

Aqid = MomAccess(‘X’…);

MomSend (Aqid …)

MomSend (Aqid …)

MomSend (Aqid …)

AppQueue ‘X’

MomCreate('X', MOM_APPQUEUE_DISK_REGISTER)

Basic MomSys Programming Functionality

Date: 1/20/2004 - Revision: 14

4-5

Messages are now sent to the new ‘X.’

4.2 Accessing an App-Queue - MomAccess()

The MomAccess() function provides an AQid (i.e., App-Queue ID) handle to an application program wishing to
send messages to an app-queue “somewhere” on the network. MomAccess() takes a single string argument that
identifies the name of the targeted app-queue and returns the corresponding AQid..

The Name argument to MomAccess() may be specified in a variety of formats for designating a target app-queue.
In the following sections we will review some of the possibilities.

Aqid = MomAccess(‘X’…);

MomSend (Aqid …)

MomSend (Aqid …)

MomSend (Aqid …)

. . .

Aqid = MomAccess(‘X’…);

MomSend (Aqid …)

MomSend (Aqid …)

MomSend (Aqid …)

Aqid = MomAccess(‘X’…);

MomSend (Aqid …)

MomSend (Aqid …)

MomSend (Aqid …)

AppQueue ‘X’

AppQueue ‘X’

MomCreate('X', MOM_APPQUEUE_DISK_REGISTER_UPDATE);

 XsIPC Version 3.4.0: MomSys User Guide

Date: 1/20/2004 - Revision: 14

4-6

4.2.1 LOCAL APP-QUEUE NAMES
A local app-queue is specified to MomAccess() using the string originally passed to the MomCreate() function
when the app-queue was created within the calling process’ local instance. Thus, the AQid handle of an app-queue
that was created locally via MomCreate(“abc”, …) is accessed via:

/*
 * Access an app-queue that is within the caller’s current instance.
 */

AQid = MomAccess(“abc”);

A call to MomAccess() specifying a local app-queue will fail if the specified app-queue does not exist within the
caller’s local instance at the time of the call.

4.2.2 REMOTE APP-QUEUE NAMES
A remote app-queue is specified to MomAccess() using a string starting with the ‘@’ character. A number of
variations are possible:

/*
 * Access an app-queue that is within the caller’s current namespace,
 * having the name “foo”.
 */

AQid = MomAccess(“@foo”);

The “@foo” argument indicates that the app-queue name “foo” is located somewhere within the calling process’
current namespace. When such a name is passed to MomAccess(), XsIPC resolves the location of the app-queue via
the XsIPC namespace catalog. This allows processes to send messages to app-queues without knowing where the
app-queues are located within the namespace.

/*
 * Access an app-queue by means of its fully-qualified identity: network node name;
 * instance name within that node; app-queue name within that instance.
 */

AQid = MomAccess(“@SomeNode:SomeInstance:foo”);

The above exa mple directs MomAccess() that app-queue “foo” is to be found within instance
“SomeInstance”, where that instance is to be found on node “SomeNode”. Such an app-queue is fully
qualified to XsIPC thus avoiding the need to query the XsIPC namespace catalog to resolve its location. This is
desirable for applications in which the usage of an XsIPC namespace is not appropriate.

4.2.3 VIRTUAL AQID HANDLES
The normal behavior of MomAccess(), when referencing a remote app-queue, is to fail when the specified remote
app-queue is not currently verified to exist at the time of the MomAccess() call. In the case that “@foo” was
specified this will occur because no app-queue having the name “foo” was registered at the time of the
MomAccess() call. In the case that “@SomeNode:SomeInstance:foo” was specified, this will occur if no
app-queue “foo” is found within instance “SomeInstance” on node “SomeNode” at the time of the
MomAccess() call.

By specifying the Name argument to MomAccess() as MOM_NOVERIFY(Name), you can force MomAccess() to
succeed even if the named app-queue is not found at the time of the call. In such an event, the AQid handle
returned by MomAccess() is a virtual app-queue handle. Thus, continuing with our “foo” example, messages sent
using that virtual handle are stored in the local message repository until an app-queue identified as “foo” is

Basic MomSys Programming Functionality

Date: 1/20/2004 - Revision: 14

4-7

subsequently created (and registered, in the case of “@foo”). At that point, XsIPC forwards messages to that app-
queue.

/*
 * Access an app-queue that is now or will be registered within the caller’s
 * current namespace, having the name “foo”.
 */

AQid = MomAccess(MOM_NOVERIFY(“@foo”));

/*
 * Access an app-queue that is now or will be located within instance
 * “SomeInstance” on node “SomeNode”, having the name “foo”.
 */

AQid = MomAccess(MOM_NOVERIFY(“@SomeNode:SomeInstance:foo”));

We saw an additional example of this in the simple MomSys application built in Chapter 3.

4.2.4 AQID SEMANTICS
The validity-time of AQid values returned by MomCreate() and/or MomAccess() is defined as the period of time
during which the AQid can be used for referencing its intended app-queue. This period depends on whether the
AQid references a local app-queue (i.e., it is a LocalAQid) or the AQid references a remote app-queue (i.e., it is a
RemoteAQid).

4.2.4.1 LocalAQid Semantics
An AQid of a local app-queue is valid within an instance so long as the app-queue it was originally derived from,
via MomCreate() or MomAccess(), still exists within the local instance. Once the app-queue is deleted from the
local instance via MomDelete() or MomDestroy(), the LocalAQid is invalidated.

4.2.4.2 RemoteAQid Semantics
An AQid of a remote app-queue (i.e., a RemoteAQid) is valid within an instance so long as the AQid is still being
referenced by one or more users of the instance (i.e., they have performed a MomAccess() call referencing the
remote app-queue). Following the logout from the instance by the last such user, XsIPC invalidates that
RemoteAQid (unless there are messages that have not yet been delivered).

4.2.4.3 De-accessing an App-Queue – MomDeaccess()
The MomDeaccess() function frees the association of the user with a remote app-queue that had been previously
accessed. As stated above, MomSys keeps track of the number of local users accessing a remote app-queue. When
the count drops to zero, MomSys frees the internal resources that supported the remote access. A user logging out
from an instance decrements this count. The MomDeaccess() verb enables a program to de-access an app-queue,
independent of logging out of the instance. It is a good practice to de-access remote app-queues once they are no
longer needed.

 AQid should reference a remote app-queue. If AQid represents a local app-queue, MomDeaccess() returns
“success.” This has no effect, however, on MomSys resources.

Example:

 /*
 * De-access remote app-queue AQid.
 */

 XsIPC Version 3.4.0: MomSys User Guide

Date: 1/20/2004 - Revision: 14

4-8

4.3 MomDeaccess(AQid); Message Sending - MomSend()

The MomSend() verb is used for sending a message. As demonstrated in the simple application presented in
Chapter 3, the basic utilization of MomSend() is straight-forward. We will now review the arguments to
MomSend() by way of a second example.

Consider the following MomSend() call:

 /*
 * Send a message to app-queue “abc”.
 */

 XINT TargetAQid;
 MOM_MSGID RetMsgId;
 CHAR *MsgText = “hello world”;
 XINT MsgLen = 12;

 TargetAQid = MomAccess(“@abc”);

 MomSend(
 TargetAQid, /* Handle of target AQid */
 MsgText, /* Message being sent */
 MsgLen, /* Size (in bytes) of message */
 MOM_PRIORITY_NORMAL, /* Priority of sent message */
 MOM_TRACK_DELIVERED, /* Track message till it is received */
 MOM_REPLY_NONE, /* No reply expected */
 &RetMsgId, /* Message-id assigned to sent message */
 MOM_WAIT /* Block if system is busy */
);

The MomSend() verb takes eight basic arguments and one optional argument. We will now review the basic
arguments in the context of the above example. A subsequent example, describing client/server communication,
will demonstrate the optional argument to MomSend().

• TargetAQid defines the AQid of the app-queue being targeted. Typically (as in the above case), the value
for TargetAQid is acquired via a prior call to MomAccess().

• MsgText is a pointer to the message buffer being sent. Messages sent by MomSend() can be in any form –
text, structures, images, etc.– and are not interpreted by MomSend().

• MsgLen is the length of data bytes to be sent by the MomSend() call.

• MOM_PRIORITY_NORMAL directs XsIPC to send the message with a “normal” priority. There are a wide range
of possible priority values that may be specified. In addition to normal priority, two of the other more common
values are: MOM_PRIORITY_HIGH and MOM_PRIORITY_LOW. (Refer to Appendix B, Message Priority
Specification, for additional details on priority specification.)

• MOM_TRACK_DELIVERED directs XsIPC to track the message being sent until it is dequeued from the target
AQid. Other tracking level values may be specified. (Refer to Appendix A, Message Status and Tracking
Levels, for additional details on message tracking levels.)

• MOM_REPLY_NONE alerts XsIPC to the fact that no return message is expected in response to this message
being sent. We will see later, in the discussion of client/server inquiry-response communication, that this
MomSend() argument may be used to correlate inquiry and response messages.

• &RetMsgId is a pointer to a variable of type MOM_MSGID. It is returned populated with message-id data
about the message sent. We will see that a message-id is an important tool for message tracking and inquiry-
response correlation. Alternatively, NULL could have been specified.

• MOM_WAIT is one of the six XsIPC blocking options. It directs XsIPC to block, if necessary, when submitting the
message into the MomSys subsystem. This will occur if the subsystem is momentarily congested at the time of
the call.

Basic MomSys Programming Functionality

Date: 1/20/2004 - Revision: 14

4-9

4.3.1 OPTIONAL ARGUMENTS TO MOMSEND()
The Reference Manual pages for MomSend() lists a number of optional arguments that may be specified as part of
a call to MomSend(). These optional arguments are useful for accomplishing various objectives when sending a
message. Note that these optional arguments are inserted in the argument list prior to the call's blocking option. See
the MOM_EXPIRE() example below.

4.3.1.1 The MOM_REPLYTO() Option
One of the more important optional arguments to MomSend() is the MOM_REPLYTO(MsgId) argument. We will
see later, in the discussion of client/server inquiry-response communication, that this argument may be used for
correlating a response message back to its particular inquiry messages.

4.3.1.2 The MOM_EXPIRE() Option
Another optional argument is the MOM_EXPIRE(TimeLimit) argument. Using this argument, a programmer
can establish an expiration time for the particular message being sent. The TimeLimit value is treated as an
integer number of seconds. This value overrides other instance-defined expiration time-limits.

 /*
 * Send a message to app-queue “abc” having an expiration time-limit
 * of one hour (3600 seconds).
 */

 XINT TargetAQid;
 MOM_MSGID RetMsgId;
 CHAR *MsgText = “hello world”;
 XINT MsgLen = 12;

 TargetAQid = MomAccess(“@abc”);

 MomSend(
 TargetAQid, /* Handle of target AQid */
 MsgText, /* Message being sent */
 MsgLen, /* Size (in bytes) of message */
 MOM_PRIORITY_NORMAL, /* Priority of sent message */
 MOM_TRACK_DELIVERED, /* Track message till it is delivered */
 MOM_REPLY_NONE, /* No reply expected */
 &RetMsgId, /* Message-id assigned to sent message */
 MOM_EXPIRE(3600), /* Msg expires in one hour (3600 secs) */
 MOM_WAIT /* Block if system is busy */
);

Messages that do not reach their tracking-level state within their expiration time-limit are automatically expired.
Depending on instance configuration parameters, such messages are then either journaled or deleted from XsIPC
without a trace. Refer to Appendix A, Message Status and Tracking Levels, for a more detailed discussion of
message tracking.

4.3.2 BLOCKING OPTIONS
The last argument in the MomSend() call is the function’s “blocking option” argument. XsIPC blocking options
define what an API function does when it can’t immediately complete at the time of the call. XsIPC provides a range
of six possible blocking options for all verbs that have the potential to block. (For a complete discussion of this
topic refer to the section on XsIPC Blocking Options in the XsIPC User Guide.)

It is important to understand what the phrase “can’t immediately complete at the time of the call” means in the
context of the MomSend() function call. This requires a brief description of how messages in general move in the
MomSys subsystem of XsIPC .

 XsIPC Version 3.4.0: MomSys User Guide

Date: 1/20/2004 - Revision: 14

4-10

A call to MomSend() dispatches a message into the caller’s local instance. The message is then moved forward
towards its target app-queue as fast as possible. Of course, if the network is down or the remote node is down, or
the targeted app-queue is not around, then XsIPC is responsible to move the message forward as these impediments
become corrected.

The blocking option argument to MomSend() deals with the first part of the process: submitting the message into
the local instance environment. If the local instance is capable of accepting the message immediately, then
MomSend() is said to have been able to “complete immediately” at the time of its call. Hence, in such cases the
blocking option is not employed. This should be the typical behavior in a properly configured local instance. In
such settings, calls to MomSend() should be forced to block only occasionally, if at all.

When the local instance is congested to the extent that its internal resources do not permit the local instance to
accept the message being submitted by MomSend(), then the MomSend() call will “block” as designated by the
specified blocking option until the local instance can accept the message.

The above example is coded with the MOM_WAIT blocking option, indicating that the caller wishes the MomSend()
verb to block if necessary before submitting the message into the local instance and returning control to the user.

4.3.3 OPTIONAL FLAGS TO MOMSEND()
The Reference Manual definition of MomSend() describes the optional flags that may be specified as part of a call
to MomSend(). (The flags should be ORed to the left of the blocking option argument.)

4.3.3.1 The MOM_FASTPATH Option
The MOM_FASTPATH optional flag allows the user to specify to XsIPC that the current MomSend() operation should
be completed (i.e., sending the specified message into XsIPC and returning control to the user) without
synchronizing the message's data to disk. This has the advantage of increasing the performance of such
MomSend() operations, but has the disadvantage that messages sent with such a flag are not recoverable following
a system failure.

The following diagrams illustrate the difference between using MOM_FASTPATH and not.

1

2

3

4

Steps of execution when MomSend() is
called without MOM_FASTPATH:

1.User’s message is submitted to the XsIPC
instance.

2.Instance initiates the writing of message
data to the disk.

3.Instance is notified that message is
safely on the disk.

4.User’s MomSend() call completes
execution.

Program calling MomSend()

XsIPC instance

Basic MomSys Programming Functionality

Date: 1/20/2004 - Revision: 14

4-11

4.3.3.1.1 Performance Considerations
MOM_FASTPATH can be specified on a per-message basis. This allows the application developer to decide, at run-
time, which messages require synchronous disk updating and which do not. Synchronization of an instance's
Message Repository to disk occurs at the instance level. As long as MomSend() calls specify MOM_FASTPATH,
message data is stored in fast but volatile memory, either in RAM or on disk, depending on the operating system's
own needs. Issuing calls to MomSend() without MOM_FASTPATH, by contrast, forces the operating system to
perform a disk flush of message data as part of each MomSend() call.

Mixing such calls within a single instance will produce mixed results with regard to instance performance. The
greater the relative number of MomSend() operations specifying MOM_FASTPATH, the better the overall instance
performance. The inverse is true as well.

4.3.3.2 The MOM_RETURN Option
The MOM_RETURN option, which is only valid when accompanying one of the three asynchronous blocking
options, directs XsIPC to complete the operation synchronously if there is no need to “block” (e.g., the desired
message is on the app-queue) and to “go asynchronous” only if the operation cannot be completed immediately.
(Refer to the section on XsIPC Blocking Options in the XsIPC User Guide for a detailed discussion of this option.)

4.4 Message Receiving - MomReceive()

The MomReceive() verb is used for receiving a message from an app-queue. As demonstrated in the earlier simple
application, the basic utilization of MomReceive() is straight-forward. We now review the arguments to
MomReceive() by way of a second example.

Consider the following call:

 /*
 * Receive message from app-queue “abc”.
 * /

 XINT SourceAQid, MsgLen;
 XINT InBufLen = 16;
 CHAR InBuf[16];
 MOM_MSGID RetMsgId;
 MOMINFOMSG RetInfoMsg;

 SourceAQid = MomCreate(“abc”, MOM_APPQUEUE_DISK_REGISTER);

1

2

3

Steps of execution when MomSend() is
called with MOM_FASTPATH:

1.User’s message is submitted to the XsIPC
instance.

2.Instance writes message data to fast, but
volatile, memory.

3.User’s MomSend() call completes
execution.

Program calling
 MomSend(...MOM_FASTPATH...)

XsIPC instance

 XsIPC Version 3.4.0: MomSys User Guide

Date: 1/20/2004 - Revision: 14

4-12

 MsgLen = MomReceive(
 SourceAQid, /* Handle of source AQid */
 InBuf, /* Buffer for receiving message */
 InBufLen, /* Size (in bytes) of receive buffer */
 MOM_MESSAGE_FIRST, /* Request first (front) message on app-queue */
 &RetReplyAQid, /* AQid of app-queue to send response msg */
 &RetMsgId, /* Message-id of received message */
 &RetInfoMsg, /* Detailed info on received message */
 MOM_WAIT /* Block if system is busy */
);

MomReceive(), when successful, returns the length (in bytes) of the message that is
received. MomReceive() always accepts eight arguments. In the context of the above
example, they are:

SourceAQid defines the AQid of the app-queue being received from. This app-queue must be within the caller’s
local instance. Typically (as in the above case), the value for SourceAQid is acquired via a prior call to
MomCreate().

InBuf is a pointer to the receiving message buffer.

InBufLen is the length (in bytes) of the receiving buffer (i.e., InBuf in the above example)

MOM_MESSAGE_FIRST directs XsIPC to retrieve the “first” message from app-queue “abc”. When created, app-
queue “abc” employs a default natural sequencing of messages that is based on message arrival time. Thus, the
specification of MOM_MESSAGE_FIRST returns the first (i.e., oldest) message in that sequence.
MOM_MESSAGE_FIRST is one of the message-specifiers (known as MsgSpecifier) that are predefined by XsIPC for
supporting different message-selection scenarios that can arise. These are listed below. Moreover, XsIPC allows a
user to define his own customized message specifiers (Refer to Appendix C for more detailed information on
Advanced Message Selection.)

&RetReplyAQid is a pointer to an integer variable. It is returned populated with an AQid where a response
message should be sent. Alternatively, it may be returned populated with the value MOM_REPLY_NONE,
indicating that no reply-AQid was stipulated by the sender of the message. The NULL pointer may be passed if no
reply AQid is desired.

&RetMsgId is a pointer to a variable of type MOM_MSGID. It is returned populated with message-id data about
the received message. The NULL pointer may be passed if no message-ID is desired.

&RetInfoMsg is a pointer to a variable of type MOMINFOMSG. This structure is returned populated with
extended data about the returned message (who sent it, when it was sent, where it was sent from, etc.). The NULL
pointer may be passed if no extended message data is desired.

MOM_WAIT is one of XsIPC ‘s six blocking options. It directs XsIPC to block, if necessary, when retrieving the
message from the MomSys subsystem. This will occur if the app-queue is empty or if the specified message is not
on the app-queue at the time of the call.

4.4.1 MESSAGE SELECTION
Message specification is accomplished via the MsgSpecifier argument to MomReceive(). MsgSpecifier identifies
which message is to be retrieved from SourceAQid. Proper utilization of this argument requires a basic
understanding of how messages reside on an app-queue.

When an app-queue is created one of its defining attribute specifies the natural sequencing of messages on that
app-queue. (Refer to the MomAttrSet() function call for details on app-queue attribute specification.) An app-queue
has one of the following attributes: natural sequencing by Time or natural sequencing by Priority.

Basic MomSys Programming Functionality

Date: 1/20/2004 - Revision: 14

4-13

Message specification semantics can differ depending on the natural sequencing of messages on an app-queue. For
example, specifying the “first” message on an app-queue means the “oldest” message if the natural sequencing is
by Time; it means the “highest” priority message if the natural sequencing is by Priority.

The following are the MsgSpecifier values that are provided:

MOM_MESSAGE_FIRST Retrieve the first message from natural sequence. If Time, the oldest
message is returned. If Priority, the highest priority message is returned.

MOM_MESSAGE_LAST Retrieve the last message from natural sequence. If Time, the newest
message is returned. If Priority, the lowest priority message is returned.

MOM_MESSAGE_NEXT(MsgId) Retrieve the next message from within natural sequence following the
message identified by MsgId.* . If Time, the next oldest message is
returned. If Priority, the next highest priority message is returned.

MOM_MESSAGE_PREV(MsgId) Retrieve the previous message from within natural sequence following
the message identified by MsgId.* If Time, the previous oldest message
is returned. If Priority, the previous highest priority message is returned.

MOM_MESSAGE_DIRECT(MsgId) Retrieve the message identified by MsgId. *

MOM_MESSAGE_DIRECT_RMT
 (RmtNode,
 RmtInstance,
 RmtMsgId)

Retrieve a message based on its Remote identification:

RmtNode is name of sender node

RmtInstance is name of sender instance

RmtMsgId is the MsgId that was assigned to the message when it was
sent via the sender instance

MOM_MESSAGE_REPLYTO(MsgId) Retrieve the response message to the request message that was
previously sent by MomSend() and identified as MsgId.

(* Note: The message represented by MsgId, where indicated with an asterisk, must still be on the app-queue at the
time of the MomReceive() call. This is typically accomplished by having performed an earlier call to
MomReceive() in which the MOM_NOREMOVE flag was set. The MsgId returned from that call can serve as the
“cursor” for subsequent MomReceive() calls.)

The above listed values for MsgSpecifier are actually macros that are based on a more general syntax of message
specification. Refer to Appendix C, Message Specification in MomReceive(), for details of this syntax.

4.4.2 OPTIONAL FLAGS TO MOMRECEIVE()
The Reference Manual definition of MomReceive() lists a number of optional flags that may be specified as part of
a call to MomReceive(). MomReceive() takes the same blocking options as MomSend() (See section 4.3.3); the
optional flags should be ORed to the left of the blocking option. These flags are:

• MOM_NOREMOVE

• MOM_RETURN

The following sections briefly describe these flags. Refer to the MomSys Reference Manual definition for further
details.

4.4.2.1 The MOM_NOREMOVE Option
The MOM_NOREMOVE flag allows an application program to receive a “copy” of a message from an app-queue, but
leaves the message remaining on the app-queue. This form of message previewing, when combined with the
“navigational” message-specifiers (e.g., next, previous, etc.) facilitates development of applications that can browse
and examine sequences of app-queue messages.

Example:

 XsIPC Version 3.4.0: MomSys User Guide

Date: 1/20/2004 - Revision: 14

4-14

 /*
 * Receive message copy but leave actual message still on app-queue.
 * /

 MsgLen = MomReceive(
 SourceAQid, /* Handle of source AQid */
 InBuf, /* Buffer for receiving message */
 InBufLen, /* Size (in bytes) of receive buffer */
 MOM_MESSAGE_FIRST, /* Request first message on app-queue */
 &RetReplyAQid, /* AQid of app-queue to send response msg */
 &RetMsgId, /* Message-id of received message */
 &RetInfoMsg, /* Detailed info on received message */
 MOM_NOREMOVE | MOM_WAIT /* Don’t remove msg. Block if necessary */
);

Refer to the MomSys Reference Manual definition for details on employing the MOM_NOREMOVE flag.

4.4.2.2 The MOM_RETURN Option
The MOM_RETURN option, which is only valid when accompanying one of the three asynchronous blocking
options, directs XsIPC to complete the operation synchronously if there is no need to “block” (e.g., the desired
message is on the app-queue) and to “go asynchronous” only if the operation cannot be completed immediately.
(Refer to the section on XsIPC Blocking Options in the XsIPC User Guide for a detailed discussion of this option.)

4.5 Message Tracking

As was shown in the above coding examples, the MomSend() function requires that a tracking-level argument
be defined for each message that is sent. This argument to MomSend() has a great influence on how far the
message is tracked by XsIPC in the course of its trip.

A general understanding of message movement within the XsIPC MomSys programming model is a
prerequisite to proper utilization of the subsystem.

Basic MomSys Programming Functionality

Date: 1/20/2004 - Revision: 14

4-15

Consider the following diagram:

4.5.1 MESSAGE STATUS VALUES

An XsIPC MomSys message goes through three well-defined, trackable stages as it moves from sender to
receiver program. These stages are identified numerically in the above diagram. The message status values
that correspond to these stages are:

MOM_STATUS_HELD Message is currently in the sender’s message repository, but has not yet
been shipped to the receiver node.

MOM_STATUS_SHIPPED Message has shipped to the receiver’s message repository and has been
logically inserted within the targeted app-queue, but it has not been
received and removed by a receiving program.

MOM_STATUS_DELIVERED Message has been received and removed from the app-queue by a
receiving program.

Two additional pseudo-status values that are occasionally employed within MomSys are:

MOM_STATUS_COMPLETE Message status has achieved the tracking-level that was specified for it
when the message was sent via MomSend().

MOM_STATUS_INCOMPLETE Message status has not yet achieved the tracking-level that was specified
for it when the message was sent via MomSend().

MomEvent() is an example of a function that employs the MOM_STATUS_COMPLETE for creating an event that
occurs when a given message reaches the tracking-level that it was sent with. Refer to the description of
MomEvent()for details.

4.5.2 MESSAGE TRACKING LEVELS

Just how far a message is actually tracked by XsIPC is a function of the tracking-level that is specified within
the MomSend() verb when the message is sent. The two message tracking levels that may be specified are:

MOM_TRACK_SHIPPED Track the message being sent until it has attained the status of
MOM_STATUS_SHIPPED .

MOM_TRACK_DELIVERED Track the message being sent until it has attained the status of
MOM_STATUS_DELIVERED.

Note that a message status is updated in the sender’s message repository up to the level requested by the
tracking level argument of the MomSend() function - but no further.

Sender Receiver

1 2 3

 XsIPC Version 3.4.0: MomSys User Guide

Date: 1/20/2004 - Revision: 14

4-16

Thus, a message sent with a tracking-level of MOM_TRACK_SHIPPED is tracked up to the point that the
message attains a status of MOM_STATUS_SHIPPED, after which point no further tracking is performed. A
more complete description of message tracking is presented in Appendix A, Message Status and Tracking
Levels.

4.6 Client/Server Interaction

Critical to utilizing a message-oriented middleware technology for developing large scalable client/server
applications is the ability to support massive client population deployments whose composition is in a continuous
state of flux, and to do so without requiring any server-side involvement (e.g., reconfiguration, table definitions,
etc.). This is readily achievable using MomSys.

MomSys allows a server application to receive inquiry messages from a large population of client programs and to
send response messages to each and every respective client without the need to know who, or where, the inquiring
clients are.

4.6.1 REQUEST-RESPONSE PROGRAMMING STEPS
The following steps summarize what occurs during a typical client/server request-response exchange of messages.
A coding example is presented in the next section.

A client creates a private app-queue (i.e., created with name MOM_PRIVATE) within its local instance for receiving
response messages. There is no need for each client to uniquely name its response application queue, nor is there a
need to register the app-queue in the catalog.

The client sends an inquiry message to a server via a call to MomSend() in which it specifies the AQid of its
private app-queue as the reply-AQid where it expects to receive a response message.

The server receives the inquiry message via a call to MomReceive() and with it is given the message-ID of the
received inquiry message, as well as the reply-AQid of the response app-queue (i.e., the AQid of the client’s
private app-queue).

The server processes the message and sends a response message to the client via a call to MomSend() by specifying
the client’s private app-queue AQid as the target, and by specifying the MOM_REPLYTO(MsgId) option, where
MsgID identifies the received inquiry message. This option causes the response message being sent to correlate
with the client’s original inquiry message.

The client issues a MomReceive() call on its private app-queue to receive the response message to its inquiry
message. The MomReceive() call specifies the MOM_MESSAGE_REPLYTO(MsgId) message-specifier, where
MsgID identifies the client’s originally sent message, so that it receives the response message sent by the server.

It is important to note that, in this manner, a client may issue multiple inquiry messages to multiple unrelated
servers where all response messages are directed to arrive on the client’s single private app-queue. Using the
MOM_MESSAGE_REPLYTO() MomReceive() message-specifier, the client can selectively retrieve the responses
to its outstanding inquiries in the order that it wants them. (This will be elaborated on later in section 4.6.4 on
Inquiry-Response Correlation.)

Furthermore, client-sent messages that arrive at a server may be responded to by the server without any awareness
of the location or identification of the originating client.

4.6.2 CLIENT-SIDE PROGRAMMING EXAMPLE
/*
 * Client program “client”. Note, error checking is omitted
 * to enhance program readability.
 */

#include “xipc.h”

VOID
main(argc, argv)

Basic MomSys Programming Functionality

Date: 1/20/2004 - Revision: 14

4-17

XINT argc;
CHAR **argv;

{
 XINT ServerQ_AQid, ReplyQ_AQid;
 MOM_MSGID RequestMsgId;
 CHAR InBuffer[64];
 XINT InBufferLen = 64;

 /*
 * Log in to client’s local instance I1,.. then ...
 * Create client’s private app-queue, then ...
 * Access handle to the server app-queue “ServerQ”
 */

 XipcLogin(“@I1”, “client”);
 ReplyQ_AQid = MomCreate(MOM_PRIVATE, MOM_APPQUEUE_DISK);
 ServerQ_AQid = MomAccess(“@ServerQ”);

 /*
 * Send request message to ServerQ. Note that the returned message-id
 * value (returned within RequestMsgId) will be used in the next
 * step for requesting a response to original request.
 */

 MomSend(
 ServerQ_AQid, /* AQid of app-queue “ServerQ” */
 “hello world”, /* Message being sent */
 12L, /* Size (in bytes) of message */
 MOM_PRIORITY_NORMAL, /* Priority of sent message */
 MOM_TRACK_DELIVERED, /* Track msg until received by server */
 ReplyQ_AQid, /* AQid of client’s reply app-queue */
 &RequestMsgid, /* Message-id of inquiry msg being sent */
 MOM_WAIT /* Block if system is busy */
);

 /*
 * Receive response message.
 */

 MomReceive(
 ReplyQ_AQid, /* AQid of client’s private app-queue */
 InBuffer, /* Buffer to accept reply message */
 InBufferLen, /* Size (in bytes) if InBuffer */
 MOM_MESSAGE_REPLYTO(RequestMsgId), /* Select to receive reply msg */
 /* to sent request msg */
 NULL, /* (we don’t expect a ReplyAQid) */
 NULL, /* (we don’t need MsgId of reply) */
 NULL, /* (we don’t need detailed Msg Info) */
 MOM_WAIT /* Block until reply message arrives */
);

 printf(“got reply message: %s\n”, InBuffer);
 XipcLogout();
}

 XsIPC Version 3.4.0: MomSys User Guide

Date: 1/20/2004 - Revision: 14

4-18

4.6.3 SERVER-SIDE PROGRAMMING EXAMPLE
/*
 * Server program “server”. Note, error checking is omitted
 * to enhance program readability.
 */

#include “xipc.h”

VOID
main(argc, argv)
XINT argc;
CHAR **argv;
{
 XINT ServerQ_AQid, ReplyQ_AQid;
 MOM_MSGID RequestMsgId;
 CHAR Buffer[64], *p;
 XINT BufferLen = 64;

 /*
 * Log in to server’s local instance I2, then ...
 * Create server app-queue “ServerQ”. Note that the
 * MOM_APPQUEUE_DISK_REGISTER argument to MomCreate()
 * causes the created app-queue to be registered automatically.
 */

 XipcLogin(“@I2”, “server”);
 ServerQ_AQid = MomCreate(“ServerQ”, MOM_APPQUEUE_DISK_REGISTER);

 /*
 * Receive request message from client.
 */

 MomReceive(
 ServerQ_AQid, /* Recv msg from ServerQ */
 Buffer, /* Buffer to accept request message */
 BufferLen, /* Size (in bytes) of buffer */
 MOM_MESSAGE_FIRST, /* Select to receive first msg on app-queue */
 &ReplyQ_AQid, /* Set with AQid to send response to */
 &RequestMsgId, /* Set with MsgId of request message */
 NULL, /* (we don’t need detailed Msg Info) */
 MOM_WAIT /* Block until reply message arrives */
);

 /*
 * Process the request message. Our “fancy” server takes a null-terminated string
 * sent by the client, changes all characters to upper case and returns the
 * modified string to the client.
 */

 p = Buffer;
 while (*p++)
 toupper(*p);

 /*
 * Send response message to originating client. Note that the request
 * msg’s message-id value (returned within RequestMsgId) is used
 * for correlating response to original client requester.
 */

Basic MomSys Programming Functionality

Date: 1/20/2004 - Revision: 14

4-19

 MomSend(
 ReplyQ_AQid, /* Handle of client’s private app-queue */
 Buffer, /* Message being sent */
 strlen(Buffer)+1, /* Size (in bytes) of response message */
 MOM_PRIORITY_NORMAL, /* Priority of sent message */
 MOM_TRACK_SHIPPED, /* Track msg till shipped & stored in rmt node */
 MOM_REPLY_NONE, /* AQid of client’s reply app-queue */
 NULL, /* (we don’t need MsgId of reply) */
 MOM_REPLYTO(RequestMsgid), /* Direct XIPC to correlate this message */
 /* as a response to the original request msg.*/
 MOM_WAIT /* Block if system is busy */
);

 XipcLogout();
}

4.6.4 REQUEST-RESPONSE CORRELATION
The issue of inquiry-response message correlation becomes important in situations where a client wishes to send
multiple inquiries “in flight” simultaneously to multiple servers, and to subsequently receive the response messages
in a specific sequence. Because the client does not know the order in which response messages will arrive on its
private response queue, it cannot simply ask for the “next ” message. In such a situation, the message specifier
MOM_MESSAGE_REPLYTO(RequestMsgId) is critical in selecting the specific response that is desired.

Thus, if the client performed three MomSend() calls that sent three request messages to three servers, it would save
the three message-ids returned from the MomSend() calls and subsequently specify them as part of the
MOM_MESSAGE_REPLYTO() message-specifier in the MomReceive() calls that received the responses.

Consider the following client code segment:

main(...)
...
{
 /*
 * Issue three requests to three servers.
 * Returned message-ids are saved.
 */

 MomSend (Server1_AQid, ..., &RetMsgId1, ...);
 MomSend (Server2_AQid, ..., &RetMsgId2, ...);
 MomSend (Server3_AQid, ..., &RetMsgId3, ...);

 /*
 * Receive the three response messages in the
 * reverse order from which the requests were sent.
 * Returned message-ids are used for this purpose.
 */

 MomReceive (ReplyAQid, ..., MOM_MESSAGE_REPLYTO(RetMsgId3), ...);
 MomReceive (ReplyAQid, ..., MOM_MESSAGE_REPLYTO(RetMsgId2), ...);
 MomReceive (ReplyAQid, ..., MOM_MESSAGE_REPLYTO(RetMsgId1), ...);
}

Its important to note that there is no special server-side logic needed to support this form of client-side activity so
long as the servers are coded to handle inquiry and response messages in the general manner described in the prior
examples.

Basic MomSys Configuration and Administration

Date: 1/20/2004 - Revision: 14

5-1

5. BASIC MOMSYS CONFIGURATION AND ADMINISTRATION

5.1 The XsIPC Platform Environment

Recall from the XsIPC User Guide that any platform supporting XsIPC activity must first initialize the “XsIPC Platform
Environment” on that platform. This topic is described in detail in the XsIPC User Guide.

Accordingly, application programs that employ the XsIPC MomSys subsystem (or any part of XsIPC for that matter)
cannot be run until the XsIPC platform environment has been started on that platform. As described in the XsIPC User
Guide, the utility command for starting an XsIPC platform environment is xipcinit; and for terminating the
environment, xipcterm. The xipcinit command reads its configuration parameters from the XsIPC Platform
Environment File (i.e., xipc.env). This file directs xipcinit as to what form (i.e., capacity) the platform
environment will take; as well as what XsIPC namespaces are to be supported.

One of the primary functions of the xipcinit command in starting up a platform’s XsIPC environment is to start
up the platform’s XsIPC namespace catalog server. The next few sections examine the topic of catalog server
configuration. Refer to the XsIPC User Guide for a more general discussion of the XsIPC Environment Platform and
the means for invoking xipcinit and xipcterm.

Before actually listing and defining the xipc.env parameters that are related to the catalog server, it is useful to
step back and review the general topic of XsIPC namespaces from the catalog server perspective. Along the way we
will also see how XsIPC instances affiliate themselves with an existing namespace.

(The following discussion references certain configuration parameters that are required for catalog and instance
configuration. These examples are presented for the purpose of describing configuration concepts. Tables
containing the complete list of parameters and their possible and default values are presented towards the end of the
section.)

5.2 Establishing a Namespace

We have thus far described XsIPC namespaces as being “somehow” managed by XsIPC catalog server programs, but
we have not gone into detail as to how catalog servers are configured to perform this function.

Within a typical XsIPC environment a single catalog server program is present on each network node. The catalog
server programs active on a network perform a range of XsIPC namespace related work, including:

Support the abstraction of XsIPC namespace location transparency

Support actual namespace data (usually on a small subset of the network’s nodes)

Perform dynamic namespace discovery functions

Support catalog data redundancy for handling catalog fail-over and recoverability

5.2.1 NAMESPACE CONFIGURATION

The primary function of the XsIPC catalog server programs is to support the abstraction of XsIPC namespaces “spread
over the network”. Based on this abstraction, programs are able to access app-queues network-wide, without
concern for their location.

In fact, beneath this abstraction, actual data for each existing XsIPC namespace must physically reside on some set of
network nodes. These nodes are referred to as the “anchor nodes” for the namespace.

 XsIPC Version 3.4.0: MomSys User Guide

Date: 1/20/2004 - Revision: 14

5-2

5.2.1.1 Namespace Definition
A namespace is established by defining the set of nodes upon which the namespace’s data will physically reside,
i.e. its anchor nodes. This set is specified within the xipc.env files of the anchor nodes, as well as other nodes
that are to have access to the namespace, via the NAMESPACE statement, as follows:

Syntax:

[CATALOG.protocol]
NAMESPACE namespace-name:node-list

where:

• [CATALOG.protocol] is the section header for catalog parameters specific to a particular network
protocol. TCP/IP is currently the only supported protocol.

• namespace-name identifies the specific namespace being defined.

• node-list identifies the network nodes that will serve as anchor nodes for the namespace.

Example:

[CATALOG.TCPIP]
NAMESPACE xyz:Server1,Server2 # Defines namespace “xyz”.
 # “xyz” will be anchored
 # in replicated form on nodes
 # “Server1” and “Server2”

The above statements define namespace “xyz” as being anchored, in replicated form, on platforms Server1 and
Server2. Other network nodes planning to reference the namespace must specify that intent by including the
namespace statement within their xipc.env files, as well:

5.2.1.2 Namespace Configuration Example
Consider the following five-node network (nodes are named: a, b, c, d, e), on which we would like to define two
XsIPC namespaces “foo” and “bar”, where:

• Namespace foo is to be anchored on nodes a and b, and is to be accessible from any of the nodes on
the network, and

• Namespace bar is to be anchored on nodes c and d, but is to be only accessible from nodes c, d and e.

Basic MomSys Configuration and Administration

Date: 1/20/2004 - Revision: 14

5-3

The following diagram depicts our network, as well the NAMESPACE statements to be inserted within the
respective xipc.env platform configuration files for creating the desired namespace environments.

Namespace foo is anchored on nodes a and b, and is generally accessible from the entire network, This is
accomplished by inserting in each platform’s xipc.env file the following NAMESPACE statement:

NAMESPACE foo:a,b

Namespace bar is anchored on nodes c and d, and is only accessible from nodes c, d and e. This is accomplished
by inserting within the platform’s xipc.env files on nodes c, d and e the following NAMESPACE statement:

NAMESPACE bar:c,d

By not including this statement in the xipc.env files of nodes a and b we have made namespace bar
inaccessible from instances on those nodes; that is, they cannot affiliate with namespace bar. Instance affiliation to
namespaces is described in the next section.

NAMESPACE foo:a,b

xipc.env

a

NAMESPACE foo:a,b

NAMESPACE bar:c,d

c

NAMESPACE foo:a,b

NAMESPACE bar:c,d

d

NAMESPACE foo:a,b

NAMESPACE bar:c,d

e

NAMESPACE foo:a,b

b Namespace
“foo”

Namespace
 “bar”

xipc.env

xipc.env xipc.env xipc.env

 XsIPC Version 3.4.0: MomSys User Guide

Date: 1/20/2004 - Revision: 14

5-4

5.3 XsIPC Instance Namespace Affiliation

Once an XsIPC namespace has been defined over a network, it becomes possible for XsIPC instances to affiliate
themselves with the namespace. As described earlier, the access point for a program to reach an XsIPC namespace is
via an XsIPC instance. A program must first log into an XsIPC instance (via the XipcLogin() function call) in order to
access an XsIPC namespace. The namespace that it accesses is the namespace that the instance is “affiliated” with.

An XsIPC instance can affiliate itself with at most one XsIPC namespace. An instance establishes its affiliation with a
namespace by declaring so within its instance configuration (.cfg) file, by including the following NAMESPACE
parameter statement within the [XIPC] section of that file, as follows:

Syntax:

[XIPC]
NAMESPACE namespace-name

where, namespace-name identifies the specific XsIPC namespace with which the instance will be affiliated.

Example:

[XIPC]
NAMESPACE foo # Affiliate instance with namespace “foo”

An instance configuration file that does not have a NAMESPACE statement will, when started by xipcstart,
create an instance that is not affiliated with any XsIPC namespace.

5.4 XsIPC Configuration: A Client/Server Example

We will now apply these namespace configuration concepts to a typical client/server example; one in which
scalability and simplicity of configuration are critical. Consider an application, having the following requirements:

• A TCP/IP network is to be set up as a client/server environment.

• Two nodes will support server programs. We will call these nodes S1 and S2. Server programs may execute on
either S1 or S2. Which server programs are running on which server platforms may change from day to day,
and should therefore be dynamically configured at run-time, without client awareness.

• There will initially be three client nodes – C1, C2 and C3 – but the population of client nodes will vary widely,
with new clients being added and old ones deleted on a continuous basis. The environment must be able to
support these changes dynamically.

• Programs running – clients and servers – must be able to exchange asynchronous, guaranteed-delivery
messages in a network-transparent and scalable manner.

S1 S2

C1 C2 C3

Basic MomSys Configuration and Administration

Date: 1/20/2004 - Revision: 14

5-5

5.4.1 AN XsIPC SOLUTION

We will now develop a high-level solution to the above set of requirements where XsIPC MomSys is employed as
the messaging infrastructure. The main focus of this exercise will be to study how platform and instance namespace
configuration is employed to address the application’s scalability needs.

Applying XsIPC MomSys to the above requirements yields the following configuration components:

The following points describe the above set of platform catalog and instance configurations:

An XsIPC namespace “foo” will be established on the network. Namespace “foo” will be accessible from all
points on the network.

Namespace “foo” data will physically be maintained - anchored - on servers S1 and S2 in a replicated manner.
This will provide a high-degree of availability of the namespace so that in the event that either server fails, the
namespace “foo” will survive. Namespace redundancy and fail-over activity will be transparent to all clients (and
servers).

Server programs will create app-queues that have well-known names and that will be registered in namespace
“foo”. Clients will send messages to these app-queues via their well-known names. Clients will receive response
messages on local private app-queues.

The XsIPC platform environment files (the xipc.env files referred to as “.env file” in the above diagram), to be
configured on servers and clients, will have the following statements:

[CATALOG.TCPIP]
NAMESPACE foo:S1,S2 # Namespace “foo” anchored on S1 and S2

An XsIPC instance will be started on all client and server nodes. These instances will all be affiliated with
namespace “foo”. This will be accomplished by coding all instance configuration files (referred to as “.cfg file”
in the above diagram) as having the following [XIPC] sections:

[XIPC]
NAMESPACE foo # Set instance affiliation with namespace “foo”

S1 S2

C1

.cfg file

.env file Catalog Svr.

Local
Instance

C3

.cfg file

.env file Catalog
Svr.

Local
Instance

C2

.cfg file

.env file Catalog
Svr.

Local
Instance .cfg file

.env file Catalog
Svr.

Local
Instance

.cfg file

.env file Catalog Svr.

Local
Instance

XsIPC Namespace “foo”

Future
Clients
Nodes

 XsIPC Version 3.4.0: MomSys User Guide

Date: 1/20/2004 - Revision: 14

5-6

5.5 Platform Configuration Parameters

Having examined platform configuration, generally, from the XsIPC catalog namespace perspective, it is now time
to look more closely at the actual contents of the xipc.env platform configuration file. As described, XsIPC
Version 3 introduces the concept of an XsIPC platform environment. This environment is the infrastructure used for
supporting all XsIPC activity on that platform. Included within the XsIPC platform environment are:

An internal (hidden) XsIPC instance for supporting internal interprocess communication

A number of XsIPC daemon/service programs that operate in the background

The XsIPC catalog for supporting the XsIPC namespaces

The XsIPC catalog server program, when started by xipcinit, receives its configuration parameters, from within
the XsIPC Environment Configuration File (i.e., xipc.env) that is set up on that node. The XsIPC platform
environment must be configured properly in order for XsIPC-based applications running on the platform to operate
properly.

The general layout of a platform configuration (xipc.env) file, in a TCP/IP environment, is as follows:

[xipcinit]
. . . any xipcinit parameters . . .

[xipclad]
. . . any xipclad parameter . . .

[xipciad]
. . . any xipciad parameters . . .

[xipcisd]
. . . any xipcisd parameters . . .

[xipcicd]
. . . any xipcicd parameters . . .

[xipcidld]
. . . any xipcidld parameters . . .

[xipcreg]
. . . any xipcreg parameters . . .

[xipcdreg]
. . . any xipcdreg parameters . . .

[CATALOG]
. . . general catalog parameters - listed below . . .

[CATALOG.TCPIP]
. . . TCP/IP specific catalog parameters - listed below . . .

The complete list of xipc.env file parameters are described in the XsIPC User Guide and Reference Manual. The
following sections describe the platform environment parameters that relate to the MomSys subsystem, and in
particular those parameters that deal with the XsIPC catalog server that is to run on the platform.

Basic MomSys Configuration and Administration

Date: 1/20/2004 - Revision: 14

5-7

5.5.1 GENERAL CATALOG PARAMETERS
The table below lists the general catalog configuration parameters. Each parameter is presented with its name,
description and default value. The order that parameters appear within the [CATALOG] section of the
configuration is not significant.

Parameter Name Description Default
Value

[CATALOG] Catalog section header. - N/A -

MAX_NAMESPACES Maximum number of XsIPC namespaces that can be supported
within the catalog.

8

MAX_NODES Maximum number of network nodes that can be registered
within the catalog.

31

MAX_INSTANCES Maximum number of instances that can be registered within
the catalog.

31

MAX_APPQUEUES Maximum number of app-queues that can be registered within
the catalog.

128

5.5.2 PROTOCOL-SPECIFIC CATALOG PARAMETERS
The table below lists the protocol-specific catalog configuration parameters for the TCP/IP protocol. Each
parameter is presented with its name, description and a default value, where relevant.

Parameter Name Description Default Value

[CATALOG.TCPIP] Catalog protocol header for TCP/IP. - N/A -

NAMESPACE Defines an XsIPC namespace. There is no default value.

 XsIPC Version 3.4.0: MomSys User Guide

Date: 1/20/2004 - Revision: 14

5-8

5.6 Platform Utility Commands

XsIPC provides two utility commands for starting and stopping the XsIPC environment on a platform. These are the
xipcinit and xipcterm utilities, respectively. These utilities refer to the platform’s environment configuration
file for determining the details of the platform environment being started.

5.6.1 PLATFORM STARTUP - XIPCINIT
xipcinit is a utility program that must be run on a platform before any other XsIPC work is performed on that
platform. The method for invoking xipcinit may be platform-specific. Refer to the XsIPC Platform Notes for the
respective platforms, for details.

Example:

Initialize XsIPC platform environment

xipcinit

5.6.2 PLATFORM SHUTDOWN - XIPCTERM
xipcterm is a utility program that should be run on a platform when a platform is being shut down. The utility
shuts down all underlying XsIPC activity occurring on the platform in an orderly manner. The syntax for invoking
xipcterm may be platform-specific. Refer to the XsIPC Platform Notes for the respective platforms, for details.

Example:

Shutdown the XsIPC platform environment

xipcterm

5.7 MomSys Subsystem - Instance Configuration Parameters

As we have seen, XsIPC instances play a key role in the MomSys programming model. They are the entry points for
programs to access an XsIPC namespace. Furthermore, within an instance, the MomSys subsystem provides the
infrastructure for supporting asynchronous store-and-forward application messaging activity.

The instance – and in particular the MomSys subsystem – must therefore be configured properly if the application
messaging needs of a distributed application are to be met.

Note that if multiple MomSys instances are to be started on a single platform, each instance must have its
configuration file in a separate directory because MomSys generates files in that directory that will conflict with
one another.

This section describes the instance configuration parameters that relate to the MomSys subsystem. The parameters
will be presented in the following categories, each addressing a different aspect of MomSys:

General XsIPC parameters

General MomSys parameters

Message Repository parameters

Communication Manager parameters

Protocol specific parameters

Basic MomSys Configuration and Administration

Date: 1/20/2004 - Revision: 14

5-9

5.7.1 GENERAL XsIPC PARAMETERS

The table below lists the general instance configuration parameters, i.e., parameters that go within the [XIPC]
section of the instance configuration file in support of the MomSys programming model. Each parameter is
presented with its name, description and default value. The order that parameters appear within the [XIPC]
section of the configuration is not significant. The default values shown do not represent limits for the values that
any particular user may require.

Parameter Name Description Default
Value

NAMESPACE The name of the XsIPC namespace to affiliate the instance with, or
none, meaning that the instance is not affiliated with any
namespace.

none

5.7.2 GENERAL MOMSYS PARAMETERS
The table below lists the general MomSys configuration parameters. Each parameter is presented with its name,
description and default value. The order that parameters appear within the [MOMSYS] section of the configuration
is not significant. The default values shown do not represent limits for the values that any particular user may
require.

Parameter Name Description Default
Value

MAX_USERS The maximum number of concurrent MomSys users (real users and
pending asynchronous operations) that can be supported by the
subsystem.

32

MAX_DISK_AQ The maximum number of disk-based app-queues. 16

MAX_REMOTE_AQ The maximum number of remote app-queues to be accessed at any
one time.

31

MAX_MSG_LENGT
H

The maximum message size.

Note that when two instances are communicating,
MAX_MSG_LENGTH must be the same for both instances;
otherwise, results will be unpredictable.

1024

 XsIPC Version 3.4.0: MomSys User Guide

Date: 1/20/2004 - Revision: 14

5-10

5.7.3 MESSAGE REPOSITORY PARAMETERS
The table below lists the message repository configuration parameters. They too are part of the [MOMSYS] section
within an instance configuration file. Each parameter is presented with its name, description and default value. The
order that parameters appear within the [MOMSYS] section of the configuration is not significant.

Parameter Name Description Default Value

TIMEOUT_EXPIRE_MRO The time that incomplete outbound messages are
allowed to remain incomplete within the MRO. Time
is specified as a string such as “12h” or “30m”, etc.,
where the format is “nUNITS” where UNITS is: s, m,
h, d or w; or infinite indicating that incomplete
messages are never made eligible for purging.

infinite

TIMEOUT_EXPIRE_MRI The time that inbound messages are allowed to remain
undelivered within the MRI. Time is specified as a
string such as “12h” or “30m”, etc., where the format
is “nUNITS” where UNITS is: s, m, h, d or w; or
infinite indicating that undelivered messages are
never made eligible for purging.

infinite

TIMEOUT_RETIRE_MRO The time that “completed” outbound messages are
kept within the MRO after “completing”. Time is
specified as a string such as “12h” or “30m”, etc.,
where the format is “nUNITS” where UNITS is: s, m,
h, d or w; or immediate indicating that completed
messages are immediately made eligible for purging.

immediate

TIMEOUT_RETIRE_MRI The time that delivered inbound messages are kept
within the MRI after delivery. Time is specified as a
string such as “12h” or “30m”, etc., where the format
is “nUNITS” where UNITS is: s, m, h, d or w; or
immediate indicating that delivered messages are
immediately made eligible for cleaning.

60m

SCHED_MR_CLEAN A schedule-string defining when MomSys cleans MRI
and MRO of expired or retired messages, or the string
“none”. (The syntax of a schedule-string is defined in
“Scheduling Automatic MR Cleaning” later in this
Guide.)

0,30 * * * *

(Clean occurs
every 30
minutes)

MODE_MR_CLEAN Some combination of the following three keywords:

STARTUP – indicating that MR clean is to occur at
instance start.

SCHEDULED – indicating that MR clean is to occur
based on value of SCHED_MR_CLEAN

CONTINUOUS – indicating that a partial, but
incomplete, clean should occur on-the-fly.

STARTUP
SCHEDULED
CONTINUOUS

(all three
expressed as a
single parameter,
separated by
spaces)

SLOT_SIZE_MRI Should be set to the 90%-tile message size (in bytes)
of messages to use MomSys.
If you change the SLOT_SIZE in the .cfg file, and
then attempt to restart an instance xipcstart may
fail. You must start a fresh instance if you plan to
change the SLOT_SIZE.

256

Basic MomSys Configuration and Administration

Date: 1/20/2004 - Revision: 14

5-11

Parameter Name Description Default Value

MAX_FILES_MRI Maximum number of disk files to be used by MRI 512

FILE_SIZE_MRI Initial size of MRI files when created (in KBs). 1024

(= 1 MB)

MAX_MAPPED_MEMORY_M
RI

Maximum bytes of MRI data mapped into system at
any one time (in KBs).

32768

(= 32 MB)

SLOT_SIZE_MRO Should be set to the 90%-tile message size (in bytes)
of messages to use MomSys.
If you change the SLOT_SIZE in the .cfg file, and
then attempt to restart an instance xipcstart may
fail. You must start a fresh instance if you plan to
change the SLOT_SIZE.

256

MAX_FILES_MRO Maximum number of disk files to be used by MRO 512

FILE_SIZE_MRO Initial size of MRO files when created (in KBs). 1024

(= 1 MB)

MAX_MAPPED_MEMORY_M
RO

Maximum bytes of MRO data mapped into system at
any one time (in KBs).

32768

(= 32 MB)

DATABASE_MRI Path of inbound message repository.

Note that it is not possible to have MRI databases
from two instances sharing a single directory; naming
conflicts will occur. In such a case, set the two
instances’ DATABASE_MRI parameters to point to
separate file-system directories.

Path of instance
.cfg file.

DATABASE_MRO Path of outbound message repository.

Note that it is not possible to have MRO databases
from two instances sharing a single directory; naming
conflicts will occur. In such a case, set the two
instances’ DATABASE_MRO parameters to point to
separate file-system directories.

Path of instance
.cfg file.

JOURNAL_EXPIRED_MSGS_
MRI

The fully qualified filename in which expired MRI
messages are to be journaled. (See note below.)

No default

JOURNAL_RETIRED_MSGS_
MRI

The fully qualified filename in which retired MRI
messages are to be journaled. It may be the same as
the above filename. (See note below.)

No default

JOURNAL_EXPIRED_MSGS_
MRO

The fully qualified filename in which expired MRO
messages are to be journaled. (See note below.)

No default

JOURNAL_RETIRED_MSGS_
MRO

The fully qualified filename in which retired MRO
messages are to be journaled. It may be the same as
the above filename. (See note below.)

No default

NOTE: If any journal parameter is not specified, no journaling occurs for that message class. The two MRI
filenames may both refer to the same file, as may the two MRO filenames, but no one file may be specified as the
journal file for both MRI and MRO messages. For example, JOURNAL_EXPIRED_MSGS_MRI and
JOURNAL_EXPIRED_MSGS_MRO must be distinct if they are both specified. There is no default journal file.

 XsIPC Version 3.4.0: MomSys User Guide

Date: 1/20/2004 - Revision: 14

5-12

5.7.4 COMMUNICATION MANAGER PARAMETERS
The table below lists the communication manager configuration parameters. They too are part of the [MOMSYS]
section within an instance configuration file. Each parameter is presented with its name, description and default
value. The order that parameters appear within the [MOMSYS] section of the configuration is not significant. The
current version supports a single communication manager parameter.

Parameter Name Description Default Value

MAX_INSTANCES_LINKS Maximum number of remote instances that can be
linked to this instance at any one time.

31

5.7.5 PROTOCOL SPECIFIC PARAMETERS
The table below lists the protocol-specific MomSys configuration parameters for TCP/IP. Each parameter is
presented with its name, description and default value.

Parameter Name Description Default
Value

[MOMSYS.TCPIP] MomSys protocol header for TCPIP. -N/A-

LINK_RETRY_INTERVAL The time between retries of trying to create a new link. Time
is specified as a string such as “12h” or “30m”, etc., where
the format is “nUNITS” where UNITS is: s, m, h, d or w.

60s

LINK_PING_INTERVAL The time between internal instance-ping messages sent to
check if remote instances are still active. Time is specified as
a string such as “12h” or “30m”, etc., where the format is
“nUNITS” where UNITS is: s, m, h, d or w.

120s

LINK_PING_TIMEOUT The wait time for hearing a response to an instance-ping. If
no response is received, the link to the remote instance is
assumed down.

60s

MSG_RESPONSE_TIMEOUT The wait time for receiving an internal “ack” on an
application message forwarded to a remote instance.

60s

QUEUE_PROBE_TIMEOUT The wait time for a response to an internal queue-probe
message. If no response is received the queue probe fails.

10s

QUEUE_PROBE_RETRY_IN
TERVAL

The time between queue-probe attempts. 120s

5.8 Instance Utility Commands

As detailed in the XsIPC User Guide and Reference Manual, two utilities are provided by XsIPC for starting and
stopping an XsIPC instance. They are the xipcstart and xipcstop utilities respectively. XsIPC instances may
also be started and stopped under program control via the XipcStart() and XipcStop() function calls. These too are
described in the XsIPC User Guide and Reference Manual documentation.

The xipcstart and xipcstop utilities reference an XsIPC instance configuration file for determining the
configuration details for the instance being started or stopped. The general format for instance configuration files is
described in the XsIPC User Guide and Reference Manual. The following sections discuss xipcstart and
xipcstop from the perspective of the MomSys subsystem.

Basic MomSys Configuration and Administration

Date: 1/20/2004 - Revision: 14

5-13

5.8.1 INSTANCE STARTUP - XIPCSTART
Recall that in the MomSys programming model the role of the XsIPC instance is to act as an entry point for local
processes to access an XsIPC namespace. Accordingly, the name assigned to the instance at create time may be
flagged as being “local”, since it will, typically, only be logged into by local processes.

Example:

Start XIPC instance using config file /usr/harvey/applic.cfg
Instance is assigned (local) name “abc”

xipcstart -l abc /usr/harvey/applic

Once the above instance has started, user programs can begin accessing it via calls to the XipcLogin() function,
such as the following:

/*
 * Log in to instance “abc”
 */

XipcLogin (“@abc”, “SomeUser”);

5.8.1.1 Instance Recovery
xipcstart is instrumental in performing the recovery of an instance (i.e., its disk-based MomSys message data)
following a “disorderly” system termination such as a hardware failure. When xipcstart executes, it recovers
the state of the non-volatile MomSys subsystem to the state that it was in the last time the instance was active.

The effect of this is that if the instance being started was not stopped in an orderly manner during its last episode,
xipcstart performs the necessary data recovery steps before bringing the instance up. This step can take a few
moments, depending on the volume of MomSys message data resident within the instance.

5.8.1.2 Starting a Clean Instance
Occasionally, it is useful to start an instance without recovering any of the instance’s prior data. In such a case, the
“initialize” flag is specified as part of the xipcstart operation. When xipcstart executes, it ignores and
deletes any state information about the instance’s prior activity. The started instance is given a clean slate as if it
never had been started and used in the past.

Refer to the description of the xipcstart utility and the XipcStart() API found in the XsIPC User Guide and
Reference Manual for additional details.

5.8.2 INSTANCE SHUTDOWN - XIPCSTOP
xipcstop is employed for stopping an instance. The syntax for invoking xipcstop is platform-specific and is
described in the XsIPC User Guide and Reference Manual.

 XsIPC Version 3.4.0: MomSys User Guide

Date: 1/20/2004 - Revision: 14

5-14

5.9 Interactive Command Interpreter - “xipc>”

The XsIPC interactive program is an additional tool that may be used to develop, test and later support MomSys-
based applications. All MomSys verbs are accessible interactively using this utility. The syntax for executing XsIPC
interactive commands is defined individually per API definition in the MomSys Reference Manual.

It is thus possible to perform numerous tasks without having to write ‘C’ programs. Examples include:

Creating, Deleting an app-queue

Sending messages to an app-queue

Receiving messages from an app-queue

Defining MomSys events

Getting statistics on: users, app-queues, instance communication links, etc.

5.9.1 SAMPLE USAGE OF MOMSYS INTERACTIVE COMMANDS
This section presents a selection of sample sessions with the XsIPC Command Interpreter for performing MomSys
operations. The examples demonstrate the types of situations where using the interactive tool can provide important
time-saving development assistance. [Note: the xipclogin and xipclogout verbs are described in the XsIPC
User Guide and Reference Manual.

Sample 1: Access AQid handle to app-queue “xyz” and then send a message to app-queue.

xipc> xipclogin @SomeLocalInstance SomeUser
 Uid = 4
 . . .
xipc> momaccess @xyz
 AQid = 1.3
 . . .
xipc> momsend 1.3 “hello world” normal shipped a wait
 RetCode = 0
 . . .
xipc> xipclogout
 RetCode = 0

Sample 2: Create app-queue “xyz” then receive the first message from it.

xipc> xipclogin @SomeLocalInstance SomeUser
 Uid = 3
 . . .
xipc> momcreate xyz
 AQid = 1.0
 . . .
xipc> momreceive 1.0 first a wait
 Text = "hello world", Length = 11
 . . .
xipc> xipclogout
 RetCode = 0

Refer to the XsIPC User Guide and Reference Manual for a detailed description of the interactive command
processor, in general, and to the MomSys Reference Manual for MomSys-specific syntax definitions.

Basic MomSys Configuration and Administration

Date: 1/20/2004 - Revision: 14

5-15

5.10 Monitoring MomSys Activity

As with the other XsIPC subsystems, MomSys supports a monitoring tool for program debugging, application
monitoring and system administration.

5.10.1 MOMVIEW MONITOR AND DEBUGGER

XsIPC includes full-screen interactive monitors that provide continuous real-time views of the activities occurring
within an instance’s MomSys subsystem.

The momview utility supports the monitoring of MomSys activity within an instance. The following types
of information are provided:

• Application queue data - number of messages sent / received, activity counters

• Users - activity counters, blockage information details

• Messages - contents browsing, contents searching

• Communication manager - instance-link status and activity counters

The monitoring facility does not require that applications be specially prepared for monitoring (e.g. "debug" mode).
The facility can be invoked for any active XsIPC instance, including those of production systems out in the field,
without any extra provisions, and without incurring performance overhead in the application when monitoring is
not in use.

5.10.2 STARTING MOMVIEW

momview takes the following (optional) arguments, in any sequence :

• The initial "interval" snapshot setting: This argument defines, in milliseconds, the initial update
frequency of the monitor. The default value is 1000 milliseconds.

• The instance name to be monitored: The default value is the string value of the "XIPC" environment.

Example:
momview 2000 @SomeInstance

The above command starts the momview monitor for the "@SomeInstance" instance. The initial update interval is
set to 2000 milliseconds.

5.10.3 MOMVIEW LAYOUT
momview‘s main display is matrix-like in appearance. Users logged into the subsystem and existing MomSys app-
queues form the axes of the matrix. Interaction between users and app-queues is displayed in the body of the
“interaction matrix.”

MomSys operations that block asynchronously are treated as pseudo-users of MomSys. These Asynchronous Users
are displayed in the same manner as ordinary users, thus providing a consistent visual display of all pending
MomSys asynchronous operations.

 XsIPC Version 3.4.0: MomSys User Guide

Date: 1/20/2004 - Revision: 14

5-16

The following schematic diagram describes the various regions of momview’s main display window:

Status
Interval

App-Queues...

Users
...
...
...

User - Queue
Interaction
Matrix

Command Statistics Capacity

Monitor status and interval setting is shown at the top left portion of the screen. MomSys statistics and capacity
data is displayed at the lower portion of the screen. The command entry window is at the lower left of the screen.

The following is a snapshot of a typical momview display:

Notice that the registered name of the instance being monitored is “TestApp”. Note, as well, that this instance is
based on the “c:\danny\producer\testp.cfg” Instance Configuration File. There are two app-queues
within the instance; they are “QueryQue” and “TransQue”. There are also four user currently logged into the
instance. User and app-queue display elements will be described below.

5.10.3.1 User Entries
Users logged into the instance are listed on the left side of the interaction matrix, one line per user.

Each user entry includes:

• The user's MomSys user ID.

• The user's login name.

• The user's blocking status (if any).

• The blocking timeout value (if any).

Basic MomSys Configuration and Administration

Date: 1/20/2004 - Revision: 14

5-17

In the above example, notice that User 5, logged in as "Server2," is blocked on a MomReceive() operation and
has a timeout pending. 29 seconds remain until the operation times out.

5.10.3.2 App-Queue Entries
The instance's app-queues are identified across the top of the interaction matrix.

Each app-queue entry includes:

• The AQid of the queue. [Note that an AQid is presented as a two-integer value, e.g., 1.0 . The second
integer (the 0) is an index into a table of app-queues. The first integer (the 1) is the episode that this
index has been used. Thus, after deleting AQid 1.0, and creating another app-queue that is given
index 0, the AQid of that newly created app-queue will be 2.0 .]

• The user-assigned name of the queue.

• The app-queue's message count.

• The app-queue's byte count.

5.10.3.3 Interaction Matrix Cells
Each cell on the momview interaction matrix describes the current relationship between an instance user and an
app-queue. In the above example, notice that the intersection cell between “Server2” and “TransQue”, has
“nat-first” displayed, indicating that the user is waiting to receive the first message from the app-queue’s
natural sequencing of messages.

5.10.4 MOMVIEW ZOOM WINDOWS
momview provide the user with a variety of zoom windows for acquiring extended information about some aspect
of the MomSys subsystem..

5.10.4.1 Zooming in on a User
The momview user zoom window creates a detailed display of the status of a particular MomSys user. The
command string for user zooming is "zuN" where N is the Uid to be zoomed on.

Example:

The command for opening a zoom window on the user having Uid of 5 is:
Command> zu5

The following display is produced:

 XsIPC Version 3.4.0: MomSys User Guide

Date: 1/20/2004 - Revision: 14

5-18

A zoom-window is opened on User "Server2". In it, on the left side of the window, we see that the user is:
currently “Not Blocked”; has sent two messages and received none since logging in; and has no outstanding
asynchronous operations pending. On the right side we see more static information about the user.

Notice as well the “/s” (i.e., “per-second”) values provided for sent and received messages. These values track the
rate that messages are sent and received by the zoomed user.

5.10.4.2 Zooming in on a Queue
The queue zoom window provides a complete report of a queue's current status. The command string for zooming
on a queue is "zqN" where N is the Qid to be zoomed on.

Example:

The command for opening a zoom window on message app-queue 1.2 is:
Command> zq1.2

5.10.4.3 Zooming in on the Message Repository
A zoom window is provided for providing a complete report of an instance’s message repository status. The
command string for the message repository zoom-window is:

Command> zmr

5.10.4.4 Zooming in on Instance Links
The link zoom window provides a complete report of a particular instance-link. The command string for zooming
on an instance-link is "zlN" where N is the Link-Id to be zoomed on.

Basic MomSys Configuration and Administration

Date: 1/20/2004 - Revision: 14

5-19

Example:

The command for opening a spool zoom window on message queue 6 is:
Command> zl6

Refer to the “Instance Links” window section below for a description of the full-screen instance-links
window.

5.10.4.5 Zooming in on MomSys Subsystem Status
A zoom window is provided for providing a complete report of an instance’s general status. The command string
for the subsystem zoom-window is:

Command> zs

5.10.5 GENERAL MOMVIEW COMMANDS
The following are the general commands that are supported from the main momview window:

in Set time interval to n milliseconds. Example: i100.

zun Zoom in on user n. Example: zu5.

zqn Zoom in on app-queue n. Example: zq1.2.

zln Zoom in on instance-link n. Example: zl.3

zs Zoom in on general subsystem status information. Example: zs

zmr Zoom in on Message Repository (MR) status information. Example: zmr

zmri Zoom in on detailed Message Repository input (MRI) information. Example: zmri

zmro Zoom in on detailed Message Repository output (MRO) information. Examp le: zmro

u Un-zoom, close the zoom window.

lq View local app-queues (This is the startup mode.)

rq View remote app-queues

pun Pan view to user n. Example: pu3

pqn Pan view to queue n. Example: pq1.4

po Pan view to “origin”, (i.e., first app-queue, first user)

l Open the “Links” window to view the status of instance-links. Refer to the Links Window
Commands below for the list of commands that can be performed from within the Links window.

bn Open the “Browse” window to browse the contents messages on queue n, following the natural
sequence. (Example: b2.4 opens the browse window on app-queue 2.4). Refer to the Browse
Window Commands below for the list of commands that can be performed from within the Browse
window.

q Quit. Exit the monitor

 XsIPC Version 3.4.0: MomSys User Guide

Date: 1/20/2004 - Revision: 14

5-20

5.10.6 BROWSING MESSAGES WITH MOMVIEW
Queue and message browsing is an important feature of XsIPC MomSys. Using this capability, a programmer can
verify a message's format or search for specific Hex or ASCII message patterns. The browse facility uses a full
screen window for displaying message data. Browsing is initiated using the command string "bN", where N is the
AQid to be browsed.

Example:

The command to initiate browsing of AQid 2.0 within an instance is:
Command> b2.0

The following is a sample display from the browse window:

The top line identifies the app-queue being browsed, in the above example “updateQ”. The next line identifies
the message within the app-queue currently being viewed. In the above example, the second message on the natural
(FIFO #2) sequence is being shown. The message is 127 bytes in length, has a priority of 32768 (this is NORMAL
XsIPC priority), and was sent Dec. 9 at 10:44:57. Note that momview can browse messages up to 10k bytes.

The body of the screen presents the message text in hex and ASCII formats. Offsets into the message are posted
along the left margin.

5.10.6.1 Browse Facility Commands
Navigating in and about app-queues and individual messages is accomplished using the browse facility commands.

Basic MomSys Configuration and Administration

Date: 1/20/2004 - Revision: 14

5-21

5.10.6.1.1 MOVING AROUND ON AN APP-QUEUE

Moving from message to message on a given app-queue can be done in a variety of ways:

Command Effect

⇒ (right arrow) Move to the next message on the current sequence.

⇐ (left arrow) Move to the previous message on the current sequence.

n Move to the nth message on the current sequence

+n Move forward n messages.

-n Move backward n messages.

f Move to the first message on the current sequence.

l Move to the last message on the current sequence.

Move commands work only where they make sense. Otherwise the command is ignored.

5.10.6.1.2 MOVING AROUND WITHIN A MESSAGE

Moving about within a message is accomplished using the following commands:

Command Effect

⇑ (up arrow) Scroll the current message up one line.

⇓ (down arrow) Scrolls the current message down one line.

PAGE-UP Scroll the current message one page up.

PAGE-DOWN Scroll the current message one page down.

HOME Scroll the current message to its top.

END Scroll the current message to its bottom.

Scrolling only works where it makes sense. Otherwise the command is ignored. Searching for a pattern within a
message will cause the message to scroll to the offset where the pattern is found.

5.10.6.1.3 STRING PATTERN SEARCHING
Forward ASCII pattern searching is executed by specifying a pattern between two '/' characters and hitting return.
Backward searches are specified using two '\' characters. Pattern searches can be kept confined within a single
message (local), or they can cover all the messages in the current queue (global). Global search commands use a 'g'
prefix. Local searches require no prefix.

The second bracket character is not always necessary, as will be demonstrated in the following examples.
Repeat patterns are remembered. The following examples demonstrate these points:

Command Effect

/ABC/ Search forward in the current message for the string "ABC".

// Repeat the search.

/ Same.

\ABC\ Search backwards in the current message for the string "ABC".

\\ Repeat the search.

\ Same.

g/ABC/ Search forward for "ABC" through all messages to the end of the queue.

 XsIPC Version 3.4.0: MomSys User Guide

Date: 1/20/2004 - Revision: 14

5-22

g// Repeat the search.

g/ Same.

g\ABC\ Search backwards for "ABC" through all messages to the start of the queue.

g\\ Repeat the search.

g\ Same.

5.10.6.1.4 HEXADECIMAL PATTERN SEARCHING
Searching for Hexadecimal patterns is very similar to ASCII pattern searching. The only differences are that the
pattern specified is a Hex string, and that an 'x' is appended to the end of the search command.

Command Effect

/4f37/x Search forward for the hex pattern "4f37" within the current message.

g/4f37/x Same search, but forward through all messages on the queue.

g//x Same.

\4f37\x Searches backwards for the hex pattern "4f37" within the current message.

g\4f37\x Same search, but backwards through all messages on the queue.

g\\x Same.

5.10.6.1.5 SWITCHING TO ANOTHER APP-QUEUE
Switching to browse another app-queue is accomplished using the "bN" command as described above.

5.10.6.2 Exiting the Browse Facility
The browse facility is exited using the "q" command. Once browsing is terminated, the QueSys instance is
unfrozen.

Example:
Command: q

5.10.7 MONITORING INSTANCE LINKS - THE “LINKS” WINDOW
momview also provides a window for monitoring the details of instance-links activity occurring within MomSys.
This window is the Instance-Links (“links”) Window. The links window provides a detailed picture of all the links
that exist within MomSys, including a summary of those that are active, inactive, etc.

A links window is opened using the command string "l". The links window uses the top 3/4 of the monitor
screen. The system statistics and command windows remain visible at the bottom of the screen.

Basic MomSys Configuration and Administration

Date: 1/20/2004 - Revision: 14

5-23

The following is a sample display from an “instance-links” window:

Each row in the table reports another instance-link existing within the monitored instance. Various data items are
provided per instance-link.

5.10.7.1 Links Window Commands
momview commands can be used from within the links window in the same manner that they are used from
the main monitor window. Examples:

Command Effect

in Set the interval to n milliseconds flow mode
bn Browse the contents of app-queue n
q Exit the links window

Additional commands are available that are specific to the links window. They provide a means for scrolling
within the links data. These commands are:

Command Effect

pn Pan view to instance-link n. Example: p5
po Pan view to ‘origin’, (i.e., first instance-link)

Scrolling only works where it makes sense. Otherwise, the command is ignored.

5.10.8 LOCAL AND REMOTE APP-QUEUE DISPLAY MODES
The momview monitor’s main window, when first brought up, presents app-queue data regarding local app-
queues, within the monitored instance.

It is possible to change the monitor mode so that it display data regarding the remote app-queues known to the
instance, as follows:

Example:
Command> rq

 XsIPC Version 3.4.0: MomSys User Guide

Date: 1/20/2004 - Revision: 14

5-24

The above command causes the monitor’s main window to display remote app-queue data. Returning to the local
app-queue display mode is accomplished as follows:

Example:
Command> lq

5.10.9 PANNING WITHIN MOMVIEW’S MAIN WINDOW
Panning within momview’s main window lets the developer observe different sections of the interaction matrix.
This is useful when a zoom window is open and parts of the matrix are not visible.

All "panning" commands start with 'p'.

Vertical panning (up and down) to observe other users is done by specifying a 'u' (for user) and a Uid to pan to.

Example:

Command> pu8

The above command scrolls the interaction matrix so that Uid 8 is at the top of the display.

Horizontal panning (right and left) to monitor other queues is accomplished specifying a 'q' (for app-queue) and a
AQid to pan to.

Example:

Command> pq1.4

The above command scrolls the interaction matrix so that AQid 1.4 is the first displayed (left-most).

Example:

Command> po

The command "po" returns the display to the origin of the activity matrix.

5.10.10 STOPPING MOMVIEW
momview monitoring is terminated via the 'q' command.

Example:

Command> q

Bringing down momview has no effect on the underlying MomSys activities. It continues to function unaffected.
Any overhead incurred by monitoring is eliminated.

Advanced MomSys Programming Functionality

Date: 1/20/2004 - Revision: 14

6-1

6. ADVANCED MOMSYS PROGRAMMING FUNCTIONALITY

6.1 Message Prioritization

The MomSend()function call defines a means for assigning prioritization to the message being dispatched relative
to other messages in the system. The Priority argument to MomSend() is a relative value. It provides a means for
indicating what urgency should be assigned a given message as the message progresses through the system,
relative to other messages also moving within the system. The term “as the message progresses through the
system” is a general statement that actually can be seen as having two discrete phases: The trip to the targeted app-
queue; and the trip through the targeted app-queue.

6.1.1 TWO STEPS IN A MESSAGE’S TRIP
From a prioritization perspective, MomSys messages complete their assigned trip in two steps. They are:

The trip to the targeted app-queue

The trip through the targeted app-queue.

This can be visualized as in the following diagram where a message is sent from process A to process B.

6.1.1.1 The Trip To the Targeted App-Queue
The first phase of a MomSys message’s movement to its targeted app-queue is referred to as “the trip to the app-
queue.” As depicted in the above diagram, this phase starts from the point that the message is handed off to XsIPC
MomSys (via a call to MomSend()) and continues until the message has been safely placed on the targeted app-
queue. During this phase a message is continuously pushed forward towards its target.

6.1.1.2 The Trip Through the Targeted App-Queue
The second phase of a MomSys message’s movement is referred to as “the trip through the app-queue.” As shown
in the above diagram, this phase starts from the point that the message has been safely placed on the targeted app-
queue and continues until the message is received from the app-queue.

During this phase, messages are competing with other messages on the app-queue. Thus, messages with higher
priorities are pushed to the front of the app-queue’s priority sequencing.

As we will see shortly, XsIPC provides the semantics for specifying a message’s priority as a single value that is
applied to both legs of its trip, or as two discrete values for fine-tuning each leg separately.

A B

The Trip of a Message

To the app-queue Through the app-

 XsIPC Version 3.4.0: MomSys User Guide

Date: 1/20/2004 - Revision: 14

6-2

6.1.2 SPECIFYING MESSAGE PRIORITY VALUES
XsIPC MomSys employs a continuous scale of integers for expressing valid priority values. The lowest possible
priority value is 1. The highest possible value is 65,535. The mid-way value, 32,767, is considered a “normal”
priority. XsIPC provides predefined definitions for these values. They are:

MOM_PRIORITY_LOWEST 1

MOM_PRIORITY_NORMAL 32767

MOM_PRIORITY_HIGHEST 65535

In fact, a priority value may be expressed as any integer between 1 and 65535. XsIPC views them relative to one
another: the higher the value, the greater the urgency.

Consider the following example:

/*
 * Send a message having a NORMAL priority for its entire trip.
 * The NORMAL priority value will apply to both legs of the trip.
 */

MomSend (. . ., MOM_PRIORITY_NORMAL, . . .);

One could have similarly called MomSend() as follows to send a message having a slightly higher priority:

/*
 * Send a message having a slightly higher than NORMAL priority for its entire
 * trip. The priority value will apply to both legs of the trip.
 */

MomSend (. . ., MOM_PRIORITY_NORMAL + 1, . . .);

In the next example, we will send a message that will have a high priority for getting through the system to the
target app-queue, but it will be assigned a normal priority relative to other messages once on the app-queue.

/*
 * Send a message having HIGH priority for the trip to the app-queue.
 * Message priority through the app-queue should be NORMAL.
 */

MomSend (. . ., MOM_PRIORITY(MOM_PRIORITY_HIGHEST, /* Trip to app-queue */
 MOM_PRIORITY_NORMAL /* Once on app-queue */
),
);

The ability to express two separate priority values for each leg of a message’s movement is provided by the
MOM_PRIORITY() macro. This macro is specified as the priority argument to MomSend(). The macro takes two
valid priority values as its two arguments. The first value is the “trip to the app-queue priority” while the second
value is the “trip through the app-queue priority.”

Refer to Appendix B “Message Priority Specification” for additional information about this topic.

Advanced MomSys Programming Functionality

Date: 1/20/2004 - Revision: 14

6-3

6.2 Application Message Load Management

6.2.1 LOAD SHARING
The MomSys programming model makes it natural for multiple server programs to serve requests arriving on a
common application-queue.

By building the server programs so that they receive the next request off the common app-queue, it is quite easy to
build application server architectures that can scale to handle a wide-range of traffic loads without having to make
any special coding provisions in either the server or client programs.

6.3 MomSys Events

MomSys provides a means of monitoring the subsystem and notifying the application when certain user- defined
events occur. This allows the application to take the appropriate action to handle the event.

6.3.1 THE MomEvent() FUNCTION
The MomEvent() function takes two arguments:

• EventDescr Description of MomSys event to be monitored

• Notification Notification option for announcing the occurrence of the event

These are now described.

6.3.2 SUPPORTED MOMSYS EVENTS

The following table defines the events that can be tracked. (The current version supports one MomSys event.)

MOM_EV_MSG_STATUS(MsgId, Status) This event occurs when a previously sent message,
identified by MsgId, attains a message status of Status.
Refer to the MomSys User Guide, Appendix A,
Message Status and Tracking Levels, for details on the
various stages of a message’s movement from sender
to receiver process.

MOM_EV_APPQUE_MSGS_HI(Aqid, NumMsgs) This event occurs when the number of messages on a
local appqueue is greater than NumMsgs.

MOM_EV_APPQUE_MSGS_LOW(AQid, NumMsgs) This event occurs when the number of messages on a
local appqueue is less than NumMsgs.

 XsIPC Version 3.4.0: MomSys User Guide

Date: 1/20/2004 - Revision: 14

6-4

6.3.3 MomEvent() “NOTIFICATION” OPTION
The following table briefly lists the possible notification options that may be specified when calling MomEvent().
More detailed descriptions may be found in the MomEvent() manual page in the MomSys Reference Manual.

MOM_WAIT The calling process blocks synchronously until the event occurs.

MOM_TIMEOUT(t) The calling process blocks synchronously for up to t seconds until the
event occurs.

MOM_NOWAIT The calling process synchronously checks the status of the event and
returns immediately. This Notification argument can be used for polling
an event, where such an approach is appropriate.

MOM_CALLBACK(Func, &Acb) MomEvent() returns immediately after registering the event. The
specified callback function is invoked when the specified event occurs.

MOM_POST(Sid, &Acb) MomEvent() returns immediately after registering the event. The XsIPC
semaphore identified by Sid is set when the event occurs.

MOM_IGNORE(&Acb) MomEvent() returns immediately after registering the event. The Acb’s
completion flag is set when the event occurs.

MOM_SPAWN(Command, &Acb) MomEvent() returns immediately after registering the event. The program
specified by the Command string is started when the event occurs, and
the Acb’s completion flag is set as well. (Note that the Acb pointer can
be NULL.)
Command must be the path of an executable program. The Command
string should not include any command arguments. It is not possible to
pass parameters to the started command.

Consider the following example:

/*
 * Set event to automatically start program “HeGotIt” when a sent message achieves
 * the status of MOM_STATUS_DELIVERED.
 */

MOM_MSGID RetMsgId;
ASYNCRESULT Acb;

RetCode = MomSend(SomeAQid,
 “hello world”,
 12L,
 MOM_PRIORITY_NORMAL,
 MOM_TRACK_DELIVERED,
 MOM_REPLY_NONE,
 &RetMsgId,
 MOM_WAIT);

RetCode = MomEvent(
 MOM_EV_MSG_STATUS(RetMsgId,
 MOM_TRACK_DELIVERED), /* Set msg event */
 MOM_SPAWN(“HeGotIt”,&Acb)); /* Program to spawn */

An optional MOM_RETURN flag may be specified as part of the MomEvent() call. This is done by ORing it to the
operation’s Notification argument, as in the following example:

 MomEvent(. . ., MOM_RETURN | MOM_CALLBACK(UserCallBack, &UserAcb,));

Advanced MomSys Programming Functionality

Date: 1/20/2004 - Revision: 14

6-5

The MOM_RETURN flag (which is only valid when accompanying one of the three asynchronous blocking options,
MOM_CALLBACK, MOM_POST or MOM_IGNORE) directs XsIPC to complete the operation synchronously if there is
no need to block, and to “go asynchronous” only if the operation cannot be completed immediately. This flag
allows a user to issue a MomEvent() call for creating an asynchronous event handler only if the event state has not
occurred. Otherwise the function call returns synchronously with a return code of 0 indicating that the event state
has occurred.

Events created by MomEvent() are by default attached to the creating XsIPC user. This means that, when the user
logs out, the event is deleted from the system. The user may override this by logically ORing the
MOM_EV_DETACHED flag to the left of the Notification option, in which case the event is not associated with the
creating user.

In such a case, the user may create the event and then log out and even terminate, and still, when the event occurs,
the requested action will take place.

Example:

/*
 * Set event to automatically start program “HeGotIt” when a sent message achieves
 * the status of MOM_STATUS_DELIVERED.
 *
 * MOM_EV_DETACHED flag allows user to log out and exit after sending the message
 * and creating the event.
 */

ASYNCRESULT Acb
MOM_MSGID RetMsgId;

RetCode = MomSend(SomeAQid,
 “hello world”,
 12L,
 MOM_PRIORITY_NORMAL,
 MOM_TRACK_DELIVERED,
 MOM_REPLY_NONE,
 &RetMsgId,
 MOM_WAIT);

RetCode = MomEvent(
 MOM_EV_MSG_STATUS(RetMsgId,
 MOM_TRACK_DELIVERED), /* Set msg event */
 MOM_EV_DETACHED | MOM_SPAWN(“HeGotIt”,&Acb)); /* Detach from caller */
 /* Specify pgm to spawn */

RetCode = XipcLogout();

exit();

By specifying the MOM_EV_DETACHED option, the user is able to log out and exit after creating the event, without
the event being deleted. This option is only applicable when it is ORed to the left of a Notification option that does
not require the caller’s continued presence. Accordingly, the MOM_EV_DETACHED flag is only valid with the
MOM_SPAWN Notification option since it deals with an executable program which may exist independently of its
creator process.

By contrast, it would be an error to specify MOM_EV_DETACHED with any other Notification option. This is
because it doesn’t make sense, for example, to specify a user callback function as the Notification option and
expect it to be invoked after the process has terminated.

When MOM_EV_DETACHED is specified with MOM_SPAWN, the user's Acb will not be updated with completion
information, even if the event occurs while the user is still logged in. Upon successful return from MomEvent(),
the Acb will show an AsyncStatus of XIPC_ASYNC_DETACHED and the AUid of the associated event; the status

 XsIPC Version 3.4.0: MomSys User Guide

Date: 1/20/2004 - Revision: 14

6-6

will never show up as "completed." The only notification that the event occurred will be the execution of the
program specified to MOM_SPAWN.

6.3.4 MomEvent() EVENT SEMANTICS
A MomSys event is defined to have occurred whenever the monitored entity is in the awaited state. Depending on
the Notification argument specified, MomEvent() can be used to poll the current state of a MomSys entity, or to
wait (synchronously or asynchronously) for the entity to enter a future state.

When MomEvent() is called to create a new event, and the specified target is already in the awaited state,
MomEvent() considers the event to have just occurred and the prescribed notification happens, with the
qualification that the MOM_RETURN option can cause asynchronous notifications to return synchronously, as
described above.

6.3.5 MOMSYS EVENT MONITORING
Pending MomSys events are treated as ordinary asynchronous MomSys operations in that they are assigned an
Asynchronous User ID (AUid) while they are pending. The major advantage of this is that all pending
asynchronous MomEvent() operations may be monitored via MomInfoUser() function calls or on the momview
monitor. Similarly, a MomSys event may be removed from the subsystem via a call to the MomAbortAsync()
function. Descriptions on employing MomSys information verbs follows in the next section.

6.4 Information Verbs

MomSys provides a number of verbs that allow a user to extract information regarding MomSys activity
within an instance. The major information verbs are:

• MomInfoSys() - Provides general, message repository and communication manager information

• MomInfoAppQueue() - Provides application queue information

• MomInfoUser() - Provides user information; also used for providing information about pending
asynchronous operations and MomSys events

• MomInfoMessage() - Provides the latest information regarding a message

• MomInfoLink() - Provides information about links to other XsIPC instances

Other secondary information verbs are provided as well for reporting less significant information occurring within
the MomSys subsystem.

Using these verbs it is possible to build customized monitor processes within an application that oversee the
internal operations of the application. It is additionally possible to build customized GUI-based application
monitors that display data retrieved from these functions in a customized display format.

6.4.1 UNDERSTANDING MOMSYS INFORMATION VERBS
Within the MomInfo family of verbs there are two groups that can be employed to obtain information about a series
of MomSys data items. The first group -- the MomInfoXxx() verbs -- consists of the verbs MomInfoAppQueue(),
MomInfoUser(), MomInfoLink(), and MomInfoMessage().

The programming method for looping through the series of items in this group is:

Initially, call MomInfoXxx(MOM_INFO_FIRST, &...) .

Subsequently call MomInfoXxx(MOM_INFO_NEXT(...), &...) .

Stop when the return code is MOM_ER_NOMORE .

The second group -- the MomInfoXxxXList() verbs -- consists of MomInfoAppQueueWList() and
MomInfoUserAlist().

The programming method looping through the series of items in this group is:

Advanced MomSys Programming Functionality

Date: 1/20/2004 - Revision: 14

6-7

Initially, call the corresponding MomInfoXxx() verb, and use its output parameter both to initialize a cursor
variable (e.g., MyCursor) to the position of the first element of the XList, and also to obtain information about
that element

Subsequently, call MomInfoXxxXList(..., &MyCursor, &...). This advances MyCursor to the
position of the next element of the XList, and then obtains information about that element.

Stop when the return code is MOM_ER_NOMORE .

6.4.2 CODING EXAMPLES OF MOMSYS INFORMATION VERBS
The following two code templates illustrate the two styles of information-gathering loops (including error
checking).

Example 1:

 /*
 * Sample of MomInfoXxx()verb usage - e.g. for MomInfoAppQueue().
 * Loop through all the app-queues in the current instance,
 * retrieving and processing the status data of each app-queue.
 */

 MOMINFOAPPQUEUE MyInfoAppQueue;
 XINT RC, MyAQid;

 for (RC = MomInfoAppQueue(MOM_INFO_FIRST, &MyInfoAppQueue);
 RC != MOM_ER_NOMORE;
 RC = MomInfoAppQueue(MOM_INFO_NEXT(MyAQid), &MyInfoAppQueue))
 {
 if (RC < 0)
 {
 /* Take appropriate error action for MyInfoAppQueue */
 . . .
 break;
 }

 MyAQid = MyInfoAppQueue.AQid;

 /* Process MyInfoAppQueue data for MyAQid */
 . . .

 } /* for */

 XsIPC Version 3.4.0: MomSys User Guide

Date: 1/20/2004 - Revision: 14

6-8

Example 2:

 /*
 * Sample of MomInfoXxxXList() verb usage - e.g. for MomInfoAppQueueWList().
 * Loop through the entire wait-list for the specific app-queue
 * identified by MyAQid, retrieving and processing the status
 * data of each wait-list element.
 */

 XINT RC, MyAQid, MyCursor;
 MOMINFOAPPQUEUE MyInfoAppQueue;
 MOM_APPQUEUEWLISTITEM MyWListItem;

 MyAQid = ...; /* AQid of app-queue whose wait-list is to be traversed */

 if ((RC = MomInfoAppQueue(MyAqid, &MyInfoAppQueue)) < 0) /
 {
 if (RC != MOM_ER_NOMORE)
 {
 /* Take appropriate error action for MomInfoAppQueue() */
 . . .
 }
 }
 else /* we have at least one element in the wait-list */
 {
 for (MyCursor = MyInfoAppQueue.WListInitialCursor,
 MyWListItem = MyInfoAppQueue.WListFirstItem;
 RC != MOM_ER_NOMORE;
 RC = MomInfoAppQueueWList(MyAQid, &MyCursor, &MyWListItem))

 {
 if (RC != MOM_ER_NOMORE)
 {
 /* Take appropriate error action for MomInfoAppQueueWList */
 . . .
 break;
 }

 /* Process MyWListItem data */
 . . .

 } /* for */

 } /* else */

If one wanted to loop through all the app-queues' wait-lists, then the second code segment above would be nested
in the first segment, so that the processing of each app-queue would entail traversing its wait-list.

Refer to the respective Reference Manual pages for additional details on the usage of these verbs.

Advanced MomSys Configuration Concepts

Date: 1/20/2004 - Revision: 14

7-1

7. ADVANCED MOMSYS CONFIGURATION CONCEPTS

7.1 Accessing Multiple Namespaces

As pointed out earlier, XsIPC supports the possibility of multiple namespaces being active in an environment for
building applications that require such a form of partitioning. Consider the following diagram:

Two XsIPC namespaces are active: namespace A and namespace B. Of all the processes accessing the two
namespaces, only p1 is accessing both: It access namespace A via its login to Inst-1 and it accesses namespace B
via its login to Inst-4. Herein lies the approach for accessing multiple namespaces.

A process wishing to access multiple namespaces does so by logging into multiple instances, one per namespace.
As generally is the case with XsIPC , a process may log into multiple instances, but at any point in time only one
login is considered its current login. The toggling between logins is accomplished via the XipcConnect() and
XipcDisconnect() function calls. Refer to the XsIPC User Guide and Reference Manual for discussions on how and
when to use XipcConnect() and XipcDisconnect() for toggling between multiple logins.

Here too, a process such as p1 can have only one current login, either its login to Inst-1 or its login to Inst-4. In the
above diagram, the solid line indicates a current login, while the broken line indicates a login which is not currently
connected. Process p1’s current login is its login to Inst-4.

Because p1’s current login is to Inst-4 , p1’s current namespace is namespace B. If and when p1 will wish to access
namespace A it will need to make its login to Inst-1 current. This is accomplished via calls to XipcConnect() and
XipcDisconnect().

 “qrs”

 “xyz”

p1

p4

p2

 “abc”

Inst-1

Inst-2

Inst-3

 “efg”

Inst-4

 “hij”

Inst-5

p5

Namespace B

Namespace A

p3

 XsIPC Version 3.4.0: MomSys User Guide

Date: 1/20/2004 - Revision: 14

7-2

7.2 Configuring XsIPC ‘s Platform Environment for Multiple Namespaces

It is possible for a platform to support instances that are affiliated with different namespaces.. Consider the prior
example:

Process p1 is accessing the two namespaces via instances Inst-1 and Inst-4, all of which reside on a single platform,
as depicted by the dashed box. The XsIPC platform environment for that platform will require that both namespaces
A and B are identified within the xipc.env file’s NAMESPACE statements as namespaces to which instances will
become affiliated when started. .

Assuming that the two namespaces are anchored within the catalog server on n1, the xipc.env file for n1 would
contain the following statements:

[CATALOG.TCPIP]
NAMESPACE A:n1
NAMESPACE B:n1

Similarly, the instance configuration files for Inst-1 and Inst-4 would have the following NAMESPACE statements:

Statement within configuration file for instance “Inst-1”

[XIPC]
NAMESPACE A

Statement within configuration file for instance “Inst-4”

[XIPC]
NAMESPACE B

 “qrs”

 “xyz”

p1

p4

p2

 “abc”

Inst-1

Inst-2

Inst-3

 “efg”

Inst-4

 “hij”

Inst-5

p5

Namespace B

Namespace A

p3

Node: n1

Advanced MomSys Administration Concepts

Date: 1/20/2004 - Revision: 14

8-1

8. ADVANCED MOMSYS ADMINISTRATION CONCEPTS

8.1 Message Repository

The MomSys message repository (MR) is one of the more complex components of the MomSys subsystem. It
supports all aspects of MomSys message manipulation that are non-volatile and recoverable. Basic utilization of
MomSys does not require detailed knowledge of how the message repository is built and operates. Such
knowledge, however, can become useful to users who are interested in achieving optimizations and performing
advanced operations within the message repository. This section introduces some of these advanced concepts.

8.1.1 COMPONENTS
We saw above that there is one message repository per XsIPC instance. While conceptually correct, this is not
technically accurate. An instance’s message repository is in fact divided into two parts: an MRO (Message
Repository Outbound) subcomponent, and an MRI (Message Repository Inbound) subcomponent. These are now
described.

Consider the following diagram:

An instance’s message repository is comprised of an MRI and an MRO subcomponent. These subcomponents are
each comprised a process and a database for supporting inbound and outbound messages, respectively. Sent
messages, in the course of being moved out of the local instance to a disk-based app-queue within a remote
instance, are moved through the MRO. Inbound messages, received from remote instances, are received through
the MRI.

The MRI and the MRO operate asynchronously with respect to one another. This leads to enhanced performance in
general (compared to a single component architecture), as well as to the potential for certain configuration
optimizations.

MRO
Process

MRO
Database

Outbound messages

MRO Subcomponent

MRI
Process

MRI
Database

Inbound messages

MRI Subcomponent

 XsIPC Version 3.4.0: MomSys User Guide

Date: 1/20/2004 - Revision: 14

8-2

8.1.2 OPTIMIZATION
One potential benefit of the message repository’s split architecture is that it provides the potential to physically
locate the two subcomponent databases on separate disks, where that is supported by the underlying hardware and
operating system. Doing so enhances overall MR performance because of the inherent parallelism that is leveraged
in such a configuration.

The location of the MR database files is defined within the [MOMSYS] section of an instance’s configuration file
via the DATABASE_MRI and DATABASE_MRO parameters.

While it is possible to have two instances coexisting in a single operating system directory, it is not possible to
have MR databases from two instances sharing a single directory. Naming conflicts will occur. In such a case the
DATABASE_MRI and DATABASE_MRO parameters of the two instances should be set to point to separate file-
system directories.

8.1.3 MESSAGE EXPIRATION
Messages that are sent to an app-queue, and that do not reach their destination within a certain period of time have
the potential to become expired. Expired messages are eventually removed from the MomSys message repository.
When removed from the MR, an expired message may be entirely deleted (no remaining record kept), or it may be
logged to a journal of expired messages. All aspects of this process are configurable by the user.

Messages by default are never expired. This means that, by default, all MomSys messages are assigned an
“infinite” expiration timeout period. This can be overridden via a instance configuration MR expiration
timeout parameters. Refer to the discussion on MomSys configuration for a review of these MR parameters.

8.1.4 MESSAGE RETIREMENT
Messages that successfully reach their objectives may, as well, become subject to eventual removal by XsIPC ‘s MR
clean-up processing. The governing factor here is referred to as the message’s retirement time-out period. The
event that causes a message to become classified as retired is different per MRI and MRO.

An outbound message, within an MRO, starts a timed count-down to retirement as soon as it has becomes
“complete”. The message is “complete” when the message has achieved the tracking-level that was specified at the
time that the message was sent. (Refer to MomSend() and Appendix A for details about tracking levels.)

An inbound message, within an MRI, starts a timed count-down to retirement when the message is successfully
delivered to a process.

The message retirement time-out period within an MRO is by default “immediate.” This means that, by default,
all outbound MomSys messages that are “completed” are immediately retired and become candidates for cleaning.
This default MRO retirement time-out period can be overridden via instance configuration parameters.

The message retirement time-out period within an MRI is by default set to 60 minutes (60m). This means that, by
default, all inbound MomSys messages that are successfully delivered are kept for one hour before they are retired.
This 60 minute-deep cache of received messages is retained by the MRI in order to detect duplicate messages that
might be sent in the event of, for instance, a line crashing before the MRI can send a receipt acknowledgement
back to the MRO. In such a circumstance, the MRO might resend a message that had in fact been received; this
MRI cache of recently received messages ensures that a duplicate message is not delivered to the instance. (As
with other instance configuration parameters, the TIMEOUT_RETIRE_MRI parameter can be overridden. See
section 0.)

Retired messages are eventually removed from MRs within MomSys. When removed from its MR, a retired
message may be entirely deleted (no remaining record kept), or it may be logged to a journal of retired messages.
As with expired messages, aspects of this process are configurable by the user in the instance configuration file.

8.1.5 MR CLEANING
MR cleaning is an important administrative function in XsIPC MomSys. It is by means of this facility that the size of
an MR database can be kept under control over long periods of ongoing operation.

Advanced MomSys Administration Concepts

Date: 1/20/2004 - Revision: 14

8-3

The purpose of MR cleaning is to remove from the MR those messages that have either expired or retired since the
last time MR cleaning was performed. Message expiration and retirement are terms that have precise meanings that
were reviewed in the prior sections.

MR cleaning may be caused to occur either automatically or manually. Note that there is a default setting of every
30 minutes (represented as 0,30 * * * * ; see the explanation below).

8.1.5.1 Scheduling Automatic MR Cleaning
The MR-clean processing of an XsIPC instance can be scheduled to occur at a designated set of times. As long as the
instance is active at those time, the MR cleaning will occur automatically, and without the need to stop any
supported applications. Configuring the schedule of when MR clean is to occur is done via the
SCHED_MR_CLEAN instance configuration parameter.

The SCHED_MR_CLEAN configuration parameter is a string value indicating when MR cleaning will take place.
The default value of this parameter is “none” meaning that no automatic cleaning is desired.

Where scheduled cleaning is desired a schedule-string having five discrete fields is specified as the parameter
value. The five fields provide five levels of granularity over the definition of a schedule. These fields, and their
basic definitions are now listed. More advanced possibilities are described below.

Minutes - Defines at what five-minute intervals within each hour to perform the MR clean.
 Valid values are 0, 5, 10, . . ., 55; or *, where * indicates all the
 values.

Hours - Defines at what hour intervals to run the MR clean.
 Valid values are 0,1, 2, . . ., 23; or *, where * indicates all values.

Month-day - Defines what day within each month to run MR clean.
 Valid values are 1, 2, 3, . . ., 31; or *, where * indicates all values.

Month - Defines what months to run MR clean
 Valid values are 1, 2, 3, . . ., 12; or *, where * indicates all values.

Week-day - Defines what days of the week to run MR clean
 Valid values are 0, 1, 2, . . ., 6; or *, where 0 is Sunday and *
 indicates all values.

Understanding this syntax is best accomplished by examples:

Example:
 SCHED_MR_CLEAN 0 0 * * * # defines a schedule that occurs once each day,
 # at midnight

Example:
 SCHED_MR_CLEAN 0 0 * * 1 # defines a schedule that occurs every Monday,
 # at midnight

A field value is defined as a comma-delimited list of one or more elements. An element is either a valid number, or
two valid numbers separated by a hyphen indicating an inclusive range. Note that the specification of days may be
made in two fields (month-days and week-days). If both are specified as a list of elements, both are adhered to.

Example:

 SCHED_MR_CLEAN 0 0 1,15 * 1 # defines a schedule that occurs on the first
 # and fifteenth of each month, as well as on
 # every Monday, at midnight

To specify only one of the day fields, the other day field should be set to *.

Example:

 XsIPC Version 3.4.0: MomSys User Guide

Date: 1/20/2004 - Revision: 14

8-4

 SCHED_MR_CLEAN 0 0 1,15 * * # defines a schedule that occurs on the first
 # and fifteenth of each month, at midnight

8.1.5.2 The “mrclean” Utility Program
A utility program called “mrclean” is provided, as well, for manually executing the MomSys clean operation on
an instance’s message repository.

The mrclean utility takes one optional argument when executed:

InstName: The instance file name of the instance, or the registered name of the instance - prepended with an ‘@’ -
to be MR cleaned. The default value is the value of the XIPC environment variable.

Example:

Run mrclean utility on local instance having registered name “foo”.

mrclean @foo

8.2 Communication Manager

An instance’s communication manager (CM) supports all message communication between the instance and other
instances. Basic utilization of MomSys does not require detailed knowledge of how the communication manager is
built and operates. Such knowledge, however, can be useful to users who are interested in achieving optimizations.
This section introduces some of these advanced concepts.

8.2.1 COMMUNICATION SERVERS
Actual protocol-level communication activity in an instance is handled by one or more Communication Servers
(CS). Each communication server is comprised of a CSI (inbound) and a CSO (outbound) pair of subcomponents.

Consider the following diagram:

These CSI and CSO processes support inbound and outbound messages, respectively. In the course of being moved
out of the current instance to a remote instance, messages are moved through the CSO. Inbound messages, received
from other instances, are moved through the CSI.

CSI and CSO operate asynchronously with respect to one another. This leads to enhanced performance in general
(compared to a single component architecture).

Communication
Manager

CSI
Process

Inbound sessions

To remote
Instances

From remote
instances

CSO
Process Outbound sessions

Communication Server (CS)

Outbound
msgs

Inbound
msgs

Advanced MomSys Administration Concepts

Date: 1/20/2004 - Revision: 14

8-5

8.2.2 INSTANCE LINKS
An instance-link is defined as a two-way communication connection between two instances. In the following
diagram, instance IA has three links with IB, IC and ID respectively.

Instance-links may be up or down at any point in time, depending on the current state of the underlying protocol
connectivity. The links IA-IB and IA-IC are up in the above diagram. Link IA-ID is currently down

The current state of instance-links in an instance can be found via the momview monitor’s "instance-links”
window, or via the MomInfoLink() function call. The second approach is most useful when invoked using the XsIPC
interactive command monitor. Refer to that function’s definition in the MomSys Reference Manual for details.

Example:

 xipc> mominfolink first
 LinkId: [1]
 Remote Node: ‘helios’ Remote Instance: ‘test’
 Network Protocol: TCPIP Link Status: DOWN
 CountMsgSent: 29880 CountMsgReceived: 102 NumBacklogMsg: 24
 StartupTime: Wed Sep 30 19:05:10 2003

xipc> mominfolink all

 Id Instance Protocol Status Messages
 --
 1 helios:test TCP/IP DOWN 24
 2 titan:test1 TCP/IP UP 14
 3 juno:product TCP/IP UP 0
 4 moon:test2 TCP/IP DOWN 1040

XsIPC’s management of links (timeout intervals, retry times, etc.) are all configurable in the instance configuration
file. As was described earlier in this guide, configuration of TCP/IP parameters are set within the [MOMSYS] and
[MOMSYS.TCPIP] sections of the instance configuration file

IA

IB

IC

ID

 XsIPC Version 3.4.0: MomSys User Guide

Date: 1/20/2004 - Revision: 14

8-6

For example, it is possible to define the maximum number of remote instances accessible by an instance. This is
defined via the MAX_INSTANCE_LINKS MomSys configuration parameter. Its default value is 31, meaning that
an instance, by default, may communicate with up to 31 other instances. This may be overridden to a higher value.

Other link-related configuration, particularly those dealing with protocol-specific parameterization, are possible as
well. These parameters were listed earlier in this document. Refer to the MomSys Reference Manual for additional
details.

Appendices

Date: 1/20/2004 - Revision: 14

9-1

9. APPENDICES

9.1 Appendix A: Message Status and Tracking Levels

An understanding of message movement in the XsIPC MomSys programming model is central to proper utilization
of the subsystem. Consider the following diagram:

9.1.1 MESSAGE STATUS VALUES

An XsIPC MomSys message goes through three well-defined, trackable stages as it moves from sender to receiver
program. These stages are identified numerically in the above diagram. The message status values that correspond
to these stages are:

MOM_STATUS_HELD Message is currently held in the sender’s local message repository,
but has not yet been shipped to the receiver node.

MOM_STATUS_SHIPPED Message has shipped to receiver’s message repository and has
been logically inserted in the targeted app-queue, but has not been
received and removed by a receiving program.

MOM_STATUS_DELIVERED Message has been received and removed by a receiving program.

Two additional pseudo-status values that are occasionally employed in MomSys are:

MOM_STATUS_COMPLETE Message status has achieved the tracking level that was specified
for it when the message was sent via MomSend().

MOM_STATUS_INCOMPLETE Message status has not yet achieved the tracking level that was
specified for it when the message was sent via MomSend().

MomEvent() is an example of a function that employs the MOM_STATUS_COMPLETE pseudo-status value for
creating an event that occurs when a given message reaches the tracking level that it was sent with.

Refer to the description under MomEvent() for details.

Sender Receiver

1 2 3

 XsIPC Version 3.4.0: MomSys User Guide

Date: 1/20/2004 - Revision: 14

9-2

9.1.2 MESSAGE STATE-DIAGRAM

Messa
ge not

INCOMP

EXPI

COMP

RETI

SHIP

EXPI

DELIV

RETI

Messa
ge

Deleted Deleted Deleted Deleted
Journaled

within
sender
instance

Journaled

within
sender
instance

Journaled

within
receiver
instance

Journaled

within
receiver
instance

Sender calls
MomSend()

Expira
tion

Retire
ment
Time-

Track-
Level

Expira
tion
Time-

Retirem
ent
Time-

MomRec
eive
(without

Receiver calls
MomReceive()

Sender Instance
MR Cleanup runs

Receiver Instance
MR Cleanup runs

App-

Sender Program Receiver Program

Sender
Instance
Message
Repository

Sender’s
XsIPC Instance

Receiver’s
XsIPC Instance

Receiver
Instance
Message
Repository

Appendices

Date: 1/20/2004 - Revision: 14

9-3

9.1.3 MESSAGE TRACKING LEVELS

Just how far a message is actually tracked by XsIPC is a function of the tracking-level that is specified in the
MomSend() verb when the message is sent. The two message tracking levels that may be specified are:

MOM_TRACK_SHIPPED Track message being sent until it has attained status of
MOM_STATUS_SHIPPED .

MOM_TRACK_DELIVERED Track message being sent until it has attained status of
MOM_STATUS_DELIVERED.

Note that a message status is updated in the sender’s message repository up to the level requested by the tracking
level argument of the MomSend() function, but no further. Thus, a message sent with a tracking level of
MOM_TRACK_SHIPPED is tracked up to the point that the message attains a status of MOM_STATUS_SHIPPED,
from which point no further tracking is performed.

Appendices

Date: 1/20/2004 - Revision: 14

9-5

9.2 Appendix B: Message Priority Specification

9.2.1 INTRODUCTION
The MomSend() function call defines a means for assigning prioritization to the message being dispatched relative
to other messages in the system. This is defined in the Reference Manual pages as the Priority argument to the two
functions.

The Priority argument is a relative value. It provides a means for indicating what urgency should be assigned a
given message, as the message progresses through the system, relative to other messages, also moving within the
system. The term “as the message progresses through the system” is a general statement that actually can be seen
as having two discrete phases: The trip to the targeted app-queue and the trip through the targeted app-queue.

This Appendix describes these two phases as they relate to message prioritization. In it we will review the
following topics:

The two phases in a message’s journey.

Why prioritization matters.

Specifying message priority values.

9.2.2 TWO STEPS IN A MESSAGE’S JOURNEY
From a prioritization perspective, MomSys messages complete their assigned trip in two steps. They are:

The trip to the targeted app-queue

The trip through the targeted app-queue

This can be visualized as in the following diagram where a message is sent from process A to process B.

A B

The Trip of a Message

To the app-queue Through the app-

 XsIPC Version 3.4.0: MomSys User Guide

Date: 1/20/2004 - Revision: 14

9-6

9.2.3 WHY PRIORITIZATION MATTERS

9.2.3.1 The Trip To the Targeted App-Queue
The first phase of a MomSys message’s movement to its targeted app-queue is referred to as “the trip to the app-
queue.” As is depicted in the above diagram, this phase starts from the point that the message is handed off to XsIPC
MomSys (via a call to MomSend()), and continues until the message has been safely placed on the targeted app-
queue. During this phase a message is continuously pushed forward toward its target.

During this phase as well, a message competes with other messages in the system for attention in affecting its
forward movement. The more messages flowing within the system the mo re the competition. It is for this reason
that message prioritization is important during this phase. Suppose an application is to be written in which there
will be numerous processes co-resident with the above process ‘A’ in the above diagram, all of which are sending
messages out to the world at a busy clip. Assume further that the messages being sent are not of equal urgency. It
would be useful to be allowed to assign relative levels of urgency for the messages as they push towards their
targeted app-queues. We will see shortly that XsIPC provides such a mechanism.

9.2.3.2 The Trip Through the Targeted App-Queue
The second phase of a MomSys message’s movement is referred to as “the trip through the app-queue.” As shown
in the above diagram, this phase starts from the point that the message has been safely placed on the targeted app-
queue and continues until the message is received from the app-queue.

During this phase, messages are competing with other messages on the app-queue. Thus, messages with higher
priorities are pushed to the front of the app-queue’s priority sequencing.

This form of prioritization is useful if an application is being written in which multiple process are to send
messages to a common app-queue, where it is important that certain messages be served ahead of others in the app-
queue, regardless of the arrival time. It would be useful, in such a case, to be allowed to assign relative levels of
urgency to the messages as they are placed on the app-queue. We will see shortly that XsIPC provides such a
mechanism, as well.

9.2.3.3 Two Priority Values or One?
In many situations the urgency for the two phases of a message’s trip is the same. As an example, a message may
be a high-priority message. Period. In such a case the sender is interested in having the message move to the
targeted app-queue and through the targeted app-queue as fast as possible. For such situations, XsIPC allows the user
to specify a single priority value that is then applied to both phases of its movement.

As we will see shortly, XsIPC provides the semantics for specifying a message’s priority as a single value that is
applied to both legs of its trip, or as two discrete values for fine-tuning each leg separately.

9.2.4 SPECIFYING MESSAGE PRIORITY VALUES

9.2.4.1 Range of Priority Values

XsIPC MomSys employs a continuous scale of integers for expressing valid priority values. The lowest possible
priority value is 1. The highest possible value is 65,535. The mid-way value 32,767 is considered a “normal”
priority.

XsIPC provides predefined definitions for these values. They are:

MOM_PRIORITY_LOWEST 1

MOM_PRIORITY_NORMAL 32767

MOM_PRIORITY_HIGHEST 65535

In fact, a priority value may be expressed as any integer between 1 and 65,535. XsIPC views them relative to one
another: the higher the value, the greater the urgency.

Appendices

Date: 1/20/2004 - Revision: 14

9-7

9.2.4.2 Semantics for Expressing Priorities
As described earlier, XsIPC MomSys supports two forms of message prioritization: a single priority that is assigned
to both phases of a message’s trip, or a pair of priority values, one for governing the trip to the app-queue and one
for the trip through the app-queue. We will now examine examples of both.

Consider the following example:

/*
 * Send a message having a NORMAL priority for its entire trip.
 * The NORMAL priority value will apply to both legs of the trip.
 */

MomSend (. . ., MOM_PRIORITY_NORMAL, . . .);

Notice that there is nothing very unusual about the above call to MomSend(). The priority argument to the function
has been expressed as MOM_PRIORITY_NORMAL. By default, XsIPC MomSys will assign the specified priority to
both legs of the message’s trip.

The same would be true for any valid priority value. Just to make the point clear, consider the following example:
/*
 * Send a message having a slightly higher than normal priority for
 * its entire trip. This priority value will apply to both legs of the trip.
 */

MomSend (. . ., MOM_PRIORITY_NORMAL + 1, . . .);

Here, too, the prescribed priority value MOM_PRIORITY_NORMAL + 1 (i.e., 32,769) will be assigned to both
legs of the trip. Priorities need not be expressed as offsets from the three pre-defined values (although it is often
useful to do so). It is just as valid to express the above MomSend() call as follows:

/*
 * Send a message having a slightly higher than normal priority for
 * its entire trip. This priority value will apply to both legs of the trip.
 * (Same as previous example, except that integer value is used directly.)
 */

MomSend (. . ., 32769, . . .);

In the next example, we will send a message that will have a high priority for getting through the system to the
target app-queue, but will be assigned a normal priority relative to other messages once on the app-queue.

/*
 * Send a message having HIGH priority for the trip to the app-queue.
 * Message priority on the app-queue should be NORMAL.
 */

MomSend (. . ., MOM_PRIORITY(MOM_PRIORITY_HIGHEST, /* Trip to app-queue */
 MOM_PRIORITY_NORMAL /* Once on app-queue */
),
);

The ability to express two separate priority values for each leg of a message’s movement is provided by the
MOM_PRIORITY() macro. This macro is specified as the priority argument to MomSend(). The macro takes two
valid priority values as its two arguments. The first value is the “trip to the app-queue priority” while the second
value is the “trip through the app-queue priority”.

Note, that the above example could have equally been coded as:

 XsIPC Version 3.4.0: MomSys User Guide

Date: 1/20/2004 - Revision: 14

9-8

/*
 * Send a message having HIGH priority for the trip to the app-queue.
 * Message priority on the app-queue should be NORMAL.
 */

MomSend (. . ., MOM_PRIORITY(65536, 32768), . . .);

9.2.4.3 An Important Caveat
The above discussions regarding prioritization of messages on an app-queue all assume that the targeted app-queue
was created having the attribute MOM_ATTR_SET_PRIORITY set when the app-queue was created. This attribute
creates app-queues which have message prioritization as the app-queues’ natural message sequence. If, however,
the app-queue is created with the MOM_ATTR_SET_TIME attribute set (this is the default value), then such an app-
queue has a FIFO natural sequencing of its messages and does not support any prioritization sequencing of its
messages. Accordingly, any “on-queue” priority value expressed for a sent message does not advance the message
ahead of previously inserted messages.

This caveat only affects the second phase (i.e., on app-queue) priority value. The first phase value (i.e., that which
defines a message’s urgency relative to other message moving through the system to the app-queue) continues to
have its effect regardless of the natural sequencing of messages on the targeted app-queue.

9.2.5 CONCLUSION

XsIPC MomSys provides a great deal of user control over message prioritization. Priorities may be assigned on a per-
message basis and may range from 1 to 65,536. Furthermore, XsIPC optionally allows the user to assign discrete
priority values for the different phases of message’s trip to its destination application. With these mechanisms it is
possible to build distributed applications that are flexible and adaptive to the realities of traffic-flow contention so
often found in real-world application messaging-based systems.

Appendices

Date: 1/20/2004 - Revision: 14

9-9

9.3 Appendix C: Message Specification in MomReceive()

9.3.1 WHAT IS AN APP-QUEUE?
Before addressing the topic of message specification from an app-queue, it is instructive to first understand what is
an app-queue. An app-queue is a set of messages that are maintained according to certain logical sequences. This
sequences is known as the app-queue’s “natural” sequence.

9.3.1.1 “Natural” Sequence
Every app-queue that is created has, as one of its defining attributes, a natural sequencing of its messages. This is
referred to the app-queue’s natural message sequence. There are two possible natural sequences:

Time sequence

Priority sequence

By default, an app-queue’s natural sequence is the time sequence in which the messages arrive and are placed on
the queue, i.e., the FIFO sequence. MomAttrSet() can be used to override thus default to create an app-queue
whose messages are sequenced in priority sequence, i.e., highest priority at front of app-queue.

An app-queue’s “natural” sequence defines the order by which messages are presented to users performing
MomReceive() operations on that app-queue.

9.3.2 TERMINOLOGY
Correct message specification is dependent on a clear set of terms for defining the different messages on an app-
queue.

The time sequence is the order that the app-queue’s messages entered the app-queue, from oldest to newest.

The front (or first) message of the time sequence is referred to as the oldest message in the sequence. The back (or
last) message in the sequence is the newest message. Each message arriving on an app-queue has a time stamp of
when the message was enqueued. No two messages have the same time stamp.

The priority sequence orders messages from highest priority to lowest priority value.

The front (or first) message of the priority sequence is referred to as the highest-priority message in the sequence.
The back (or last) message in the sequence is the lowest-priority message. Each message arriving on an app-queue
has a priority assigned to it from the time it was sent. This priority governs the urgency of the message relative to
other messages on the app-queue. Messages having the same priority are sequenced in FIFO order within that
priority value.

Oldest Newest

 Time Sequence:

First Last

Highest Lowest

 Priority Sequence:

First Last

 XsIPC Version 3.4.0: MomSys User Guide

Date: 1/20/2004 - Revision: 14

9-10

9.3.3 POSSIBLE MsgSpecifier VALUES
The MsgSpecifier argument defined as part of the MomReceive() function plays an important role in the operation
of that function. It tells MomReceive() which message is to be returned from the specified app-queue. The
MomReceive() function description offers an extensive lis t of pre-defined values that may be used as the
MsgSpecifier arguments to MomReceive(). These predefined values cover most typical message selection
requirements. They are:

MOM_MESSAGE_FIRST Retrieve the first message from natural sequence. If Time, the
oldest message is returned. If Priority, the highest priority
message is returned.

MOM_MESSAGE_LAST Retrieve the last message from natural sequence. If Time, the
newest message is returned. If Priority, the lowest priority
message is returned.

MOM_MESSAGE_NEXT(MsgId) Retrieve the next message from within natural sequence following
the message identified by MsgId.*. If Time, the next oldest
message is returned. If Priority, the next highest priority message
is returned

MOM_MESSAGE_PREV(MsgId) Retrieve the previous message from within natural sequence
following the message identified by MsgId.* . If Time, the previous
oldest message is returned. If Priority, the previous highest
priority message is returned.

MOM_MESSAGE_REPLYTO(MsgId) Retrieve the response message to the request message that was
previously sent by MomSend() and identified as MsgId. *

MOM_MESSAGE_DIRECT(MsgId) Retrieve the message identified by MsgId. *

MOM_MESSAGE_DIRECT_RMT
 (RmtNode,
 RmtInstance,
 RmtMsgId)

Retrieve a message based on its Remote identification:

RmtNode is name of sender node

RmtInstance is name of sender instance

RmtMsgId is the MsgId assigned to the message when it was sent
via the sender instance

(* Note: The message represented by MsgId must still be on the app-queue at the time of the MomReceive() call.
This is typically accomplished by having performed an earlier call to MomReceive() in which the
MOM_NOREMOVE flag was set. The MsgId returned from that call can serve as the “cursor” for subsequent
MomReceive() calls.)

In fact, these predefined values hide a flexible message selection mechanism that can be used as a programming
device by application programmers.

9.3.4 THE TWO COMPONENTS OF A “MsgSpecifier”
Selecting a message from an app-queue entails the specification of two pieces of information. They are:

The Sequence - The sequence defines what logical sequence of app-queue messages is to be used as part of the
selection. The possible values are:

Natural - defined as MOM_SEQUENCE_NATURAL

Any - defined as MOM_SEQUENCE_ANY (any sequence will do; see DIRECT example below)

 The Selected Message - This specifies which message, within the given sequence, is to be returned.

1. First Message - defined as MOM_SELECT_FIRST

The first message of the Time sequence is the oldest message.

Appendices

Date: 1/20/2004 - Revision: 14

9-11

The first message of the Priority sequence is the highest priority message.

2. Last Message - defined as MOM_SELECT_LAST

The last message of the Time sequence is the newest message.

The last message of the Priority sequence is the lowest priority message.

3. Next Message - defined as MOM_SELECT_NEXT(MsgId)

The next message after MsgId, moving from first to last, within the Time sequence

The next message after MsgId, moving from first to last, within the Priority sequence

4. Previous Message - defined as MOM_SELECT_PREV(MsgId)

The previous message before MsgId, moving from last to first, within the Time sequence

The previous message before MsgId, moving from last to first, within the Priority sequence

5. Direct Message - defined as MOM_SELECT_DIRECT(MsgId)

Returns the message identified by MsgId regardless as to what natural sequence that app-queue has

6. Direct Remote Message - defined as MOM_SELECT_DIRECT_RMT(RmtNode, RmtInst, RmtMsgId)

Same as MOM_SELECT_DIRECT, but uses remote information about message

7. Response Message - defined as MOM_SELECT_REPLYTO(MsgId)

Returns a “response” message regarding a previously sent “request” message. Recall that the MomSend() and
MomReceive() functions allow client and server programs to communicate with one another in an inquiry-response
fashion, without the server having to know the identity of the client. (Refer to the “Client/Server Interaction”
section of this guide for detailed examples of this.)

A client sends a request message to an app-queue being served by a server program. The server, after receiving the
request message, sends a response message back. The client, in the mean time, issues a MomReceive() call
specifying the MOM_MESSAGE_REPLYTO(MsgId) as the MsgSpecifier argument where MsgId identifies the
originally sent request message.

9.3.5 PULLING IT TOGETHER
The MsgSpecifier argument to MomReceive() is actually the aggregate of two sub-arguments, namely the two
ingredients just described:

Sequence

Message Selector

To understand how they come together, consider some of the MsgSpecifiers predefined by XsIPC.

MOM_MESSAGE_FIRST ::= {MOM_SEQUENCE_NATURAL, MOM_SELECT_FIRST}

MOM_MESSAGE_DIRECT(m):: = {MOM_SEQUENCE_ANY, MOM_SELECT_DIRECT(m)}

The remaining predefined MsgSpecifier values are similar in nature. You may examine them, as they are included
in the “xipc.h” include files.

9.3.6 MSGSPECIFIER SYNTAX
It should be evident by now that the MsgSpecifier argument to MomReceive() is in fact a cover for two sub-
arguments: {Sequence, Message Selector}.

Methods for defining one’s own MsgSpecifier to MomReceive() are to define a new 2-value macro or simply to
call MomReceive() with the two sub-arguments explicitly spelled out in the location of the MsgSpecifier argument.
The syntax for the call to MomReceive() then becomes:

 XsIPC Version 3.4.0: MomSys User Guide

Date: 1/20/2004 - Revision: 14

9-12

XINT
MomReceive(
 XINT *SourceAQid,
 XANY *MsgBuf,
 XINT MsgBufLen,

 /* The next two arguments define MsgSpecifier */

 XINT Sequence, /* One of MOM_SEQUENCE_... */
 XINT Selector, /* One of MOM_SELECT_... */

 ...
 ...
)

Appendices

Date: 1/20/2004 - Revision: 14

9-13

9.4 Appendix D: MomStatus() and MomStatusWait() Function Definitions

The MomStatus() and MomStatusWait() functions are defined on top of other MomSys API functions. This
appendix presents simplified forms of these definitions for demonstration purposes to provide a sense of how you
can further extend the MomSys “verb-set” in a similar manner.

9.4.1 SAMPLE MomStatus() DEFINITION
MomStatus() calls MomInfoMessage() for getting data on a particular message-id. It then returns the status value
within the RetStatus variable. The following is a simplified version of how MomStatus() is implemented:

 XINT
 MomStatus(MOM_MSGID MsgId, XINT *RetStatus)
 {
 MOMINFOMESSAGE m;

 MomInfoMessage (MsgId, &m);
 *RetStatus = m.LatestStatus;
 }

9.4.2 SAMPLE MomStatusWait() DEFINITION
MomStatusWait() calls MomEvent() for tracking a message up to a particular status. The following is a simplified
version of how MomStatusWait() is implemented as a macro:

 #define \
 MomStatusWait(MsgId, Status, BlockOpt) \
 MomEvent(MOM_EV_MSG_STATUS((MsgId), (Status)), (BlockOpt))

Index

Date: 1/20/2004 - Revision: 14

10-1

10. INDEX

Affiliated namespace, 2-6, 5-4

Anchor nodes, 5-1

Application queue. See App-queue

App-queue, 2-1, 2-2, 2-6, 5-17

Attribute blocks, 4-2

Attributes, 4-1

Creation, 4-1

Examples, 4-2

Local, 2-7, 4-6, 4-7

Natural sequence, 4-1, 9-9

Relocation, 4-4

Remote, 2-7, 4-6, 4-7

App-queue ID. See AQid

AQid, 4-5, 5-17

Semantics, 4-7

Virtual handle, 4-6

Bandwidth, 2-4

Browsing, 5-20

Catalog server, 2-3, 5-1

Client/server, 4-4

Request-response exchange, 4-16

Communication manager, 2-4, 8-4

Communication server, 2-4

Configuration parameters

Instance, 5-8

Communication manager, 5-12

General, 5-9

Message repository, 5-10

MomSys, 5-9

Protocol-specific, 5-12

Platform

General catalog, 5-7

Protocol-specific catalog, 5-7

Debugging, 5-15

Definitions, 2-6

Events, 6-3

Fault tolerance, 2-3

Glossary. See Definitions

Information verbs, 6-6

Inquiry-response messaging, 4-19. See Request-
response messaging

Instance, 2-2, 2-6, 5-1

Starting a clean, 5-13

Instance namespace affiliation. See Affiliated
namespace

Instance recovery, 5-13

Instance-link, 5-18, 5-22, 8-5

Interactive command interpreter, 5-14

LAN, 1-1

Load sharing, 6-3

Local instance, 2-2

Current, 2-7

Definition, 2-6

Locality, 2-3

Message expiration, 8-2

Message prioritization, 6-1, 9-5

Priority semantics, 9-7

Priority values, 9-6

Message repository, 2-3, 4-6, 5-18, 8-1

MR cleaning, 8-2

Optimization, 8-2

Message repository parameters, 5-10

Message retirement, 8-2

Message specification, 4-12, 9-9

Message tracking, 2-4, 4-14, 9-1

Status values, 4-15, 9-1

Tracking levels, 4-15, 9-3

Date: 1/20/2004 - Revision: 14

Messaging model. See Programming model

MOM_APPQUEUE_DISK, 4-2

MOM_APPQUEUE_DISK_REGISTER, 4-2

MOM_APPQUEUE_DISK_REGISTER_UPDATE,
4-2

MOM_ATTR_SET_AUTO_REGISTER, 4-1

MOM_ATTR_SET_AUTO_REGISTER_UPDATE,
4-2

MOM_ATTR_SET_DISK, 4-1

MOM_ATTR_SET_PRIORITY, 4-1

MOM_ATTR_SET_TIME, 4-1

MOM_ATTRBLOCK_APPQUEUE, 4-2

MOM_EXPIRE, 4-9

MOM_FASTPATH, 4-10

MOM_MESSAGE_REPLYTO, 4-19

MOM_NOREMOVE, 4-13

MOM_NOVERIFY, 4-6

MOM_PRIVATE, 4-2

MOM_REPLYTO, 4-9

MOM_RETURN, 4-11, 4-14

MOM_SPAWN, 6-4

MOM_STATUS_COMPLETE, 4-15

MomAccess(), 2-7, 4-5, 4-6, 4-7

MomAttrSet(), 4-1, 4-2, 4-12

MomCreate(), 4-2, 4-6, 4-7

MomDeaccess(), 4-7

MomDelete(), 2-7, 4-7

MomDestroy(), 2-7, 4-7

MomEvent(), 4-15, 6-3, 9-1, 9-13

Arguments, 6-3

Event monitoring, 6-6

Event semantics, 6-6

Notification option, 6-4

MomInfoAppQueue(), 2-7, 6-6

MomInfoAppQueueWList(), 6-6

MomInfoLink(), 6-6, 8-5

MomInfoMessage(), 6-6, 9-13

MomInfoSys(), 6-6

MomInfoUser(), 6-6

MomInfoUserAlist()., 6-6

MomInfoXxx(), 6-6

MomInfoXxxXList(), 6-6

MomReceive(), 2-7, 4-1, 4-11, 4-16, 4-19, 5-17

Arguments, 4-12

Blocking options, 4-13

Message specification, 9-9

Optional flags, 4-13

MomSend(), 2-7, 4-8, 4-14, 4-16, 4-19, 6-1, 9-5

Arguments, 4-8

Blocking options, 4-9

Optional arguments, 4-9

Optional flags, 4-10

MomStatus(), 9-13

MomStatusWait(), 9-13

momview, 5-15

Monitoring, 5-15

MR cleaning, 8-2

MsgSpecifier syntax, 9-11

MsgSpecifier values, 4-13, 9-10

Namespace, 2-1, 2-2, 2-3, 2-6, 5-1

Configuration, 5-1

Current, 2-7

Definition, 2-6

Multiple, 7-1

Panning, 5-24

Platform configuration. See Configuration
parameters

Platform environment, 5-1

Priority values, 6-2

Process-pairs. See Communication servers

Programming model, 2-1, 5-8, 6-3

Example, 3-1

Pseudo-users, 5-15

Remote instance, 2-7

Index

Date: 1/20/2004 - Revision: 14

3

Request-response messaging, 4-16, 4-19

Scalability, 5-4, 5-5, 6-3

Store-and-forward delivery, 2-1, 2-4

TCP/IP, 5-2, 5-4, 5-12

Testing, 5-14

Threads, 2-4

Utility commands

Instance, 5-12

Platform, 5-8

WAN, 1-1

xipc.env, 5-1, 5-2, 5-3, 5-5, 5-6

XipcConnect(), 7-1

XipcDisconnect(), 7-1

xipcinit, 5-1, 5-8

xipclogin, 5-14

XipcLogin(), 5-13

xipclogout, 5-14

xipcstart, 5-4, 5-12, 5-13

xipcstop, 5-12, 5-13

xipcterm, 5-1, 5-8

Zooming, 5-17

