

Envoy Message Queuing
version 1.3

A Supplement to the
Programmer's Guide

for HP e3000

t For use with Microsoft Message Queue services (MSMQ) sof ware

The software supplied with this document is the property of Envoy Technologies and
is furnished under a licensing agreement. Neither the software nor this document
may be copied or transferred by any means, electronic or mechanical, except as
provided in the licensing agreement. The information in this document is subject to
change without prior notice and does not represent a commitment by Envoy
Technologies or its representatives.

Envoy MQTM, 2001

Envoy MQ Client for HP e3000, 2001

© Copyright 2001 by Envoy Technologies Inc. All rights reserved

Envoy MQ,, Envoy Message Queuing, Envoy MQC, Envoy Message Queuing Connector,
and Envoy MQ Client are trademarks of Envoy Technologies, Inc. Microsoft, Microsoft
Message Queue Server, MSMQ, SNA Server, Windows, Windows NT, and Windows 95 are
trademarks or registered trademarks of Microsoft Corporation. UNIX is a registered
trademark exclusively licensed through X/Open Company, Ltd. Solaris is a registered
trademark of Sun Microsystems, Inc. Hewlett-Packard, HP, and HP-UX are registered
trademarks of Hewlett-Packard, Inc. IBM, AIX, AS/400, CICS, C/400, COBOL/400, ESA,
Integrated Language Environment, MVS, OS/2, OS/390, OS/400, RPG/400, and VTAM are
registered trademarks of International Business Machines Corporation. VMS is a registered
trademark of Compaq Corporation. Any other trademark name appearing in this book is used
for editorial purposes only and to the benefit of the trademark owner with no intention of
infringing upon that trademark.

Internet: http://www.envoytech.com

Envoy MQ Client for HP e3000 Contents

Envoy MQ Client for HP e3000

Contents

1. Installation 1
System and network requirements ..1
Installation procedure ..2
Configuration ...3

Environment variables...3
Configuration utility ..4

Installation test...5

2. Programming Applications in C 7
Header files ...7
Compiling and linking ..8
Source-code examples..8

3. Programming Applications in COBOL 9
Programming steps ...10
FMQCONST copy member ...10

Message properties...11
Queue properties...14
Queue manager properties ...15
Value type identifiers ...16
Miscellaneous named constants ...18

API functions ...18

 i

Contents Envoy MQ Client for HP e3000

Data structures.. 21
Programming method ... 22
Property structure ... 23
Substructures of property structures... 25

String handling .. 29
Null-terminated strings.. 30
UNICODE conversion... 30

Sample program.. 30
Source code.. 31

Online samples ... 41
Copy members ... 41
Sample programs.. 42

Index 45

ii

Envoy MQ Client for HP e3000 1. Installation

Chapter 1

Installation

The Envoy MQ Client for HP e3000 is the component of Envoy MQ running
on Hewlett-Packard HP e3000 platforms. The Envoy MQ Client
communicates with the Envoy Message Queuing Connector (MQC),
connecting your HP e3000 applications to the MSMQ network.

The Envoy MQ Client for HP e3000 is an extended version of Envoy MQ
Client, which is described in the Envoy MQ Programmer's Guide. Envoy MQ
Client for HP e3000 is specially adapted for programming in COBOL and C.

System and network requirements

You can install the Envoy MQ Client for HP e3000 on an HP e3000 system
having the following minimum requirements:

 MPE/iX version 5.0 or higher.

 A TCP/IP communication link to at least one Windows NT system on
which Envoy Message Queuing Connector (MQC) (version 1.3) is
installed.

To install the software from the Envoy MQ CD-ROM, you need:

 A Windows system with a CD-ROM drive and an FTP connection to the
HP e3000 system

 5 Mb of free disk space for the Envoy MQ Client software

 1

1. Installation Envoy MQ Client for HP e3000

If you plan to use the COBOL programming interface described in
Chapter 3, you need:

 HP COBOL II/XL compiler, version 3.15 or higher

Installation procedure

The following instructions are to install Envoy MQ Client on HP e3000
systems. You must also install Envoy Message Queuing Connector (MQC)
on at least one Windows system in your network (for instructions, see the
Envoy Message Queuing Connector (MQC) Administrator's Guide).

Where to
install

You should install the Envoy MQ Client on each HP e3000 system that you
want to connect to MSMQ.

Installation
file

The Envoy MQ Client for HP e3000 software is distributed in a tar file called
HP3KTAR, which is located in the \clients\hp3000 directory on the
Envoy MQ installation CD-ROM.

Procedure Please follow the instructions below to install the Envoy MQ Client on HP
e3000.

1. From a Windows system with a CD-ROM drive, transmit the HP3KTAR
file to the HP e3000 by binary FTP or any equivalent method.

2. From an MPE prompt, run the following command to extract the
contents of the tar file:

RUN TAR.HPBIN.SYS;INFO=”-xvf HP3KTAR”

The contents of the tar file are extracted into a directory called FMQCLIENT.
The following table contains a partial list of files and subdirectories in the
FMQCLIENT directory.

File and directories Description

FMQDCCFG Envoy MQ configuration utility

FMQVER Utility to display the Envoy MQ version information

MSGTBL Message table containing error messages

GWPING
GWPONG

Executable Envoy MQ test programs

2

Envoy MQ Client for HP e3000 1. Installation

File and directories Description

FMQDCXL Envoy MQ link library, in XL form for linking with
COBOL programs

include/ Include files for C programs

lib/ Link library for C programs

samples/ C sample programs

COBOL/ COBOL sample programs and copybooks

Configuration

You need to configure the Envoy MQ Client parameters such as:

 Environment variables specifying the location of the Envoy MQ Client
directory, log file, etc.

 The connection and logon information for Envoy Message Queuing
Connector (MQC)

 A code page that Envoy MQ uses to translate string-valued message
properties to UNICODE

For details of the configuration options and procedures, see the Installation
chapter of the Envoy MQ Client Programmer's Guide. The following
paragraphs contain a summary of the more important configurations.

Environment variables

You must set the following environment variable:

FMQROOT The location of the Envoy MQ Client directory,
where the main configuration file (FMQENV) is
stored:

Optionally, you can set additional environment variables such as:

FMQOVERRIDE The location of a supplementary configuration file.

 3

1. Installation Envoy MQ Client for HP e3000

FMQCONNECT The name of a default Envoy Message Queuing
Connector (MQC) connection.

FMQLOGPATH The location of the debug log.

FMQDEBUG Enables or disables debug logging.

SETVAR FMQROOT “/SYS/PUB/FMQCLIENT” Examples
SETVAR FMQLOGPATH "CONSOLE"
SETVAR FMQDEBUG "ON"

For more information on the environment variables, see the Envoy MQ Client
Programmer's Guide.

Configuration utility

From an MPE prompt, run the FMQDCCFG utility program to set the
connection and code page parameters of Envoy MQ Client. For detailed
instructions on using the utility, see the Envoy MQ Client Programmer's
Guide.

Examples The following examples illustrate the FMQDCCFG command-line syntax on
the HP e3000.

 Define a connection to a Envoy Message Queuing Connector (MQC)

located at the IP address 192.1.1.1, port 1100. In your programs, you can
access the connection by the name newserver.

run /SYS/PUB/FMQCLIENT/FMQDCCFG;info=”-SRV newserver -
NODE192.1.1.1 -PORT1100”

 Set newserver as the default connection:

run /SYS/PUB/FMQCLIENT/FMQDCCFG;info=”-DEFnewserver”

 Set the Windows logon parameters for the newserver connection. (Omit

this step is you connect to Envoy Message Queuing Connector (MQC) by
the default logon method. See the Programmer's Guide for an explanation.)

run /SYS/PUB/FMQCLIENT/FMQDCCFG;info=”-SRV newserver –
DMNEarth –USERJDoe –PWDTopSecret”

4

Envoy MQ Client for HP e3000 1. Installation

 Define a second Envoy Message Queuing Connector (MQC) connection
called server2, whose parameters are identical to those of newserver
except for the IP address.

run /SYS/PUB/FMQCLIENT/FMQDCCFG;info=”-SRV server2 -
USESnewserver -node192.1.1.2”

 Download a translation table for code page 850 and store the table in a

specified file:

run /SYS/PUB/FMQCLIENT/FMQDCCFG;info=”-CP 850
/SYS/PUB/FMQCLIENT/CP850TBL”

 Set the default code page of newserver to 850.

run /SYS/PUB/FMQCLIENT/FMQDCCFG;info=”-SRV newserver -
SCP850”

Installation test

To test the operation of Envoy MQ Client, run the GWPING and GWPONG
programs supplied with the Envoy MQ software. These programs conduct a
ping-pong test of the messaging system.

 The GWPING program sends ping messages via Envoy MQ Client and
Envoy Message Queuing Connector (MQC) to a message queue.

 The GWPONG program sends pong replies to a second message queue,
where it is read by GWPING.

 Before you run the tests, you must define a default connection to Envoy Message
Queuing Connector (MQC) and register the user name of the connection in
Windows (for instructions, see Configuration on page 3).

Default test In the default test, the GWPING program sends a sequence of ten test
messages, each containing the text "PING", to a queue called .\PongQ. The
GWPONG program waits to receive the messages, and then sends them back
to a queue called .\PingQ. The GWPING program reads the replies from
.\PingQ and signals you when they are received.

Follow these steps to run the test.

 5

1. Installation Envoy MQ Client for HP e3000

1. Start the GWPONG program by entering the following command at an
MPE prompt:

run /SYS/PUB/FMQCLIENT/GWPONG

2. Start the GWPING program with the following command:

run /SYS/PUB/FMQCLIENT/GWPING;info=”-n 10”

For each of the ten test messages, GWPING should output Ping sent and
Received reply together with the elapsed time.

In the event of an error, you should review the installation and configuration
of the Envoy MQ Client and Envoy Message Queuing Connector (MQC).

Additional
tests

You can set many test options for GWPING and GWPONG. For an explanation
of the options, see the Installation chapter of the Envoy MQ Programmer's
Guide.

6

Envoy MQ Client for HP e3000 2. Programming Applications in C

Chapter 2

Programming Applications in
C

The native language of the Envoy MQ API is C. The API is identical to the C-
language API of other Envoy MQ Clients, and nearly identical to the API of
MSMQ. Thus you can port MSMQ or Envoy MQ Client applications very
easily from other platforms to HP e3000.

The following references provide further information on the API:

 For programming information, please see the Programming Messaging
Applications chapter in the Envoy MQ Programmer's Guide.

 For details of the API syntax, you should have a copy of the Microsoft
MSMQ documentation and SDK online help.

Header files

Include the Envoy MQ wintypes.h and mq.h headers in your program.
The header files are located in the Envoy MQ include directory.

 7

2. Programming Applications in C Envoy MQ Client for HP e3000

Compiling and linking

Link your program with the Envoy MQ libfmqdc.a library.

Source-code examples

For C source-code examples of Envoy MQ Client messaging applications,
see the Sample Application chapter in the Envoy MQ Programmer's Guide. The
source code of the GWPING and GWPONG programs is provided in the Envoy
MQ samples directory.

8

Envoy MQ Client for HP e3000 3. Programming Applications in COBOL

Chapter 3

Programming Applications in
COBOL

The Envoy MQ Client for HP e3000 provides a COBOL interface, which lets
you call the Envoy MQ Client API functions directly from your COBOL
programs. The interface provides all the needed COBOL definitions, so you
can access the complete API without any C programming at all.

Operating
system

The COBOL interface described in this chapter runs on MPE/iX version 5.0
or higher.

Overview of
the interface

The interface is implemented as a set of external API procedures and copy
members. This chapter explains:

 The steps for creating a Envoy MQ Client application in COBOL

 The structure and contents of FMQCONST, which is the most important of
the copy members

 Techniques for calling the Envoy MQ Client API procedures

The interface provides two additional copy members, called FMQPROPV and
FMQLOC, which support dynamic programming techniques for building
message and queue property structures. The chapter includes:

 Sample COBOL data structures representing MSMQ message and queue
properties, constructed using the dynamic techniques

 Sample COBOL messaging applications

API functions This chapter describes an interface that you can use to call the Envoy MQ
Client API functions in COBOL programs. It does not document the API
functions themselves. For information on that subject, see the Envoy MQ
Programmer's Guide and the Microsoft MSMQ documentation.

 9

3. Programming Applications in COBOL Envoy MQ Client for HP e3000

Programming steps

To program a Envoy MQ Client messaging application, follow these steps:

1. Copy the FMQCONST member, which is located in the Envoy MQ COBOL
directory, into the working storage section of your COBOL program (see
FMQCONST copy member below).

2. Optionally, copy the FMQPROPV and/or FMQLOC members (also in the
COBOL directory) into the working storage section of your program.
These members can help you set up the data structures you need for
Envoy MQ Client API calls (see Data structures on page 21).

3. Create COBOL definitions for the required message and queue properties
(see Data structures on page 21)..

4. Code the Envoy MQ Client API calls (see Sample program on page 30).

5. Compile the program using the HP COBOL II/XL compiler, version 3.15
or higher.

6. Using the MPE/iX Linkage Editor, link-edit the program with the Envoy
MQ FMQDCXL library.

FMQCONST copy member

The FMQCONST copy member provides the definitions that you need to
access the Envoy MQ Client API. You must copy FMQCONST into the
working storage section of your COBOL program. FMQCONST is found in the
Envoy MQ COBOL directory.

The FMQCONST definitions include:

 Constants representing message properties
 Constants representing queue properties
 Constants representing queue manager properties
 Constants representing the value types of properties
 Miscellaneous named constants

10

Envoy MQ Client for HP e3000 3. Programming Applications in COBOL

In general, the definitions are very similar to the C-language definitions in
the C header files, mq.h, wintypes.h, and fmqpubd.h, which are also
supplied with Envoy MQ Client. The main difference is that the COBOL
identifiers contain hyphens (-) rather than underscores (_). For example, the
C constant PROPID_M_DEST_QUEUE_LEN (representing the message
property destination queue name length) is represented as PROPID-M-DEST-
QUEUE-LEN in COBOL.

Message properties

The following table lists the message properties supported by MSMQ and
Envoy MQ.

Information
in the table

The table lists the following information about each property:

Property identifier A constant (defined in FMQCONST) that identifies
the property. When you use the property, you
need to move this constant to the aPropID array
of a property structure.

The identifiers are identical to the ones used in C, except that underscores
(_) are replaced with hyphens (-).

Value type A constant (defined in FMQCONST) that identifies
the data type of the property value. When you use
the property, you need to move this constant to the
value type field of the propvariant array, in a
property structure.

For a few properties, two value types are listed: the actual value type of the
property, followed by the VT-NULL value type in parentheses. The VT-NULL
type permitted only when receiving a message.

Data type of the value The COBOL data type of the property value. When
you use the property, you need to insert a value
with the specified data type in the value field of
the propvariant array, in a property structure.

For some properties, the value contains two fields. In those cases, the data
types of both fields are listed.

For further
explanation

For an explanation and examples of property structures, see Property
structure on page 23. For an explanation of the aPropID and propvariant
arrays, see Substructures of property structures on page 25).

 11

3. Programming Applications in COBOL Envoy MQ Client for HP e3000

For a list of the C data types corresponding to COBOL value types, see Value
type identifiers on page 16).

A complete explanation of the meaning and use of each property is beyond
the scope of this book. For that information, please see the Microsoft MSMQ
documentation.

Property identifier Value type identifier Data type of the value

PROPID-M-ACKNOWLEDGE VT-UI1 (or VT-NULL) PIC X

PROPID-M-ADMIN-QUEUE VT-LPWSTR PIC S9(9) BINARY

PROPID-M-ADMIN-QUEUE-LEN VT-UI4 PIC 9(9) BINARY

PROPID-M-APPSPECIFIC VT-UI4 (or VT-NULL) PIC 9(9) BINARY

PROPID-M-ARRIVEDTIME VT-UI4 (or VT-NULL) PIC 9(9) BINARY

PROPID-M-AUTH-LEVEL VT-UI4 PIC 9(9) BINARY

PROPID-M-AUTHENTICATED VT-UI1 (or VT-NULL) PIC X

PROPID-M-BODY VT-VECTOR-UI1 Two fields:

PIC S9(9) BINARY
PIC S9(9) BINARY

PROPID-M-BODY-SIZE VT-UI4 (or VT-NULL) PIC 9(9) BINARY

PROPID-M-BODY-TYPE VT-UI4 (or VT-NULL) PIC 9(9) BINARY

PROPID-M-CLASS VT-UI2 (or VT-NULL) PIC 9(4) BINARY

PROPID-M-CONNECTOR-TYPE VT-CLSID PIC S9(9) BINARY

PROPID-M-CORRELATIONID VT-VECTOR-UI1 Two fields:

PIC S9(9) BINARY
PIC S9(9) BINARY

PROPID-M-DELIVERY VT-UI1 (or VT-NULL) PIC X

PROPID-M-DEST-QUEUE VT-LPWSTR PIC S9(9) BINARY

PROPID-M-DEST-QUEUE-LEN VT-UI4 (or VT-NULL) PIC 9(9) BINARY

PROPID-M-DEST-SYMM-KEY VT-VECTOR-UI1 Two fields:

PIC S9(9) BINARY
PIC S9(9) BINARY

12

Envoy MQ Client for HP e3000 3. Programming Applications in COBOL

Property identifier Value type identifier Data type of the value

PROPID-M-DEST-SYMM-KEY-
LEN

VT-UI4 PIC 9(9) BINARY

PROPID-M-ENCRYPTION-ALG VT-UI4 PIC 9(9) BINARY

PROPID-M-EXTENSION VT-VECTOR-UI1 Two fields:

PIC S9(9) BINARY
PIC S9(9) BINARY

PROPID-M-EXTENSION-LEN VT-UI4 PIC 9(9) BINARY

PROPID-M-HASH-ALG VT-UI4 PIC 9(9) BINARY

PROPID-M-JOURNAL VT-UI1 PIC X

PROPID-M-LABEL VT-LPWSTR PIC S9(9) BINARY

PROPID-M-LABEL-LEN VT-UI4 PIC 9(9) BINARY

PROPID-M-MSGID VT-VECTOR-UI1 Two fields:

PIC S9(9) BINARY
PIC S9(9) BINARY

PROPID-M-PRIORITY VT-UI1 (or VT-NULL) PIC X

PROPID-M-PRIV-LEVEL VT-UI4 (or VT-NULL) PIC 9(9) BINARY

PROPID-M-PROV-NAME VT-LPWSTR PIC S9(9) BINARY

PROPID-M-PROV-NAME-LEN VT-UI4 (or VT-NULL) PIC 9(9) BINARY

PROPID-M-PROV-TYPE VT-UI4 PIC 9(9) BINARY

PROPID-M-RESP-QUEUE VT-LPWSTR PIC S9(9) BINARY

PROPID-M-RESP-QUEUE-LEN VT-UI4 PIC 9(9) BINARY

PROPID-M-SECURITY-CONTEXT VT-UI4 PIC 9(9) BINARY

PROPID-M-SENDER-CERT VT-VECTOR-UI1 Two fields:

PIC S9(9) BINARY
PIC S9(9) BINARY

PROPID-M-SENDER-CERT-LEN VT-UI4 PIC 9(9) BINARY

PROPID-M-SENDERID VT-VECTOR-UI1 Two fields:

PIC S9(9) BINARY
PIC S9(9) BINARY

 13

3. Programming Applications in COBOL Envoy MQ Client for HP e3000

Property identifier Value type identifier Data type of the value

PROPID-M-SENDERID-LEN VT-UI4 PIC 9(9) BINARY

PROPID-M-SENDERID-TYPE VT-UI4 (or VT-NULL) PIC 9(9) BINARY

PROPID-M-SENTTIME VT-UI4 (or VT-NULL) PIC 9(9) BINARY

PROPID-M-SIGNATURE VT-VECTOR-UI1 Two fields:

PIC S9(9) BINARY
PIC S9(9) BINARY

PROPID-M-SIGNATURE-LEN VT-UI4 PIC 9(9) BINARY

PROPID-M-SRC-MACHINE-ID VT-CLSID PIC S9(9) BINARY

PROPID-M-TIME-TO-BE-
RECEIVED

VT-UI4 (or VT-NULL) PIC 9(9) BINARY

PROPID-M-TIME-TO-REACH-
QUEUE

VT-UI4 PIC 9(9) BINARY

PROPID-M-TRACE VT-UI1 (or VT-NULL) PIC X

PROPID-M-VERSION VT-UI4 PIC 9(9) BINARY

PROPID-M-XACT-STATUS-
QUEUE

VT-LPWSTR PIC S9(9) BINARY

PROPID-M-XACT-STATUS-
QUEUE-LEN

VT-UI4 PIC 9(9) BINARY

Queue properties

The following table lists the queue properties supported by MSMQ and
Envoy MQ.

For an explanation of the data listed in the table, see the table of Message
properties above.

Property identifier Value type identifier Data type of the value

PROPID-Q-AUTHENTICATE VT-UI1 PIC X

PROPID-Q-BASEPRIORITY VT-I2 PIC S9(4) BINARY

14

Envoy MQ Client for HP e3000 3. Programming Applications in COBOL

Property identifier Value type identifier Data type of the value

PROPID-Q-CREATE-TIME VT-I4 PIC S9(9) BINARY

PROPID-Q-INSTANCE VT-CLSID PIC S9(9) BINARY

PROPID-Q-JOURNAL VT-UI1 PIC X

PROPID-Q-JOURNAL-QUOTA VT-UI4 PIC 9(9) BINARY

PROPID-Q-LABEL VT-LPWSTR PIC S9(9) BINARY

PROPID-Q-MODIFY-TIME VT-I4 PIC S9(9) BINARY

PROPID-Q-PATHNAME VT-LPWSTR PIC S9(9) BINARY

PROPID-Q-PRIV-LEVEL VT-UI4 PIC 9(9) BINARY

PROPID-Q-QUOTA VT-UI4 PIC 9(9) BINARY

PROPID-Q-TRANSACTION VT-UI1 PIC X

PROPID-Q-TYPE VT-CLSID PIC S9(9) BINARY

Queue manager properties

The following table lists queue manager properties supported by MSMQ
and Envoy MQ.

For an explanation of the data listed in the table, see the table of Message
properties above.

Property identifier Value type identifier Data type of the value

PROPID-QM-CONNECTION VT-VECTOR-LPWSTR Two fields:

PIC S9(9) BINARY
PIC S9(9) BINARY

PROPID-QM-ENCRYPTION-PK VT-VECTOR-UI1 Two fields:

PIC S9(9) BINARY
PIC S9(9) BINARY

PROPID-QM-MACHINE-ID VT-CLSID PIC S9(9) BINARY

PROPID-QM-PATHNAME VT-LPWSTR PIC S9(9) BINARY

 15

3. Programming Applications in COBOL Envoy MQ Client for HP e3000

Property identifier Value type identifier Data type of the value

PROPID-QM-SITE-ID VT-CLSID PIC S9(9) BINARY

Value type identifiers

The following table lists the value type identifiers defined in FMQCONST and
the corresponding identifiers defined in the C header files. Only the
identifiers that are currently used in MSMQ are listed.

The value types are used in propvariant structures, which store the values of
properties. For a full explanation, see Substructures of property structures on
page 25. For reference, the table also indicates:

 The data types of the value fields in a propvariant structure
 The suggested data names for the property values
 The interpretation of the value fields
 The names of the corresponding value fields in C

COBOL Equivalent in C

Value
type
identifier

Data type
of the value

Suggested
data
namesc

Interpretation of
property value

Value type
identifier

Data type
of the value

Union field
name

VT-
CLSID

PIC
S9(9)
BINARY

MQ-
PUUID

Base pointer
(points to a GUID
code)

VT_CLSID CLSID
_RPC_FA
R

*puuid

VT-I2 PIC
S9(4)
BINARY

MQ-IVAL Property value VT_I2 short iVal

VT-I4 PIC
S9(9)
BINARY

MQ-LVAL Property value VT_I4 long lVal

VT-
LPWSTR

PIC
S9(9)
BINARY

MQ-
LPWSTR

Base pointer
(points to a null-
terminated string)

VT_LPWSTR LPWSTR pwszVal

16

Envoy MQ Client for HP e3000 3. Programming Applications in COBOL

COBOL Equivalent in C

Value
type
identifier

Data type
of the value

Suggested
data
namesc

Interpretation of
property value

Value type
identifier

Data type
of the value

Union field
name

VT-
NULL

 No value
(permitted only
when receiving a
message)

VT_NULL

VT-UI1 PIC X MQ-BVAL Property value VT_UI1 UCHAR bVal

VT-UI2 PIC
9(4)
BINARY

MQ-
UIVAL

Property value VT_UI2 USHORT uiVal

VT-UI4 PIC
9(9)
BINARY

MQ-
ULVAL

Property value VT_UI4 ULONG ulVal

VT-
VECTOR
-
LPWSTR

Two fields:

PIC
S9(9)
BINARY

PIC
S9(9)
BINARY

MQ-
CALPWST
R-
CELEMS

MQ-
CALPWST
R-
PELEMS

Length of buffer

Base pointer
(points to buffer)a

VT_VECTOR
|
VT_LPWSTR

CALPWST
R

calpwst
r

VT-
VECTOR
-UI1

Two fields:

PIC
S9(9)
BINARY

PIC
S9(9)
BINARY

MQ-
CAUB-
CELEMS

MQ-
CAUB-
PELEMS

Length of buffer

Base pointer
(points to buffer)b

VT_VECTOR
| VT_UI1

CAUI1 caub

Notes a. For the value type VT-VECTOR-LPWSTR, the buffer contains a null-

terminated string.

b. For the value type VT-VECTOR-UI1, the buffer may contain various types
of binary or text data:

 17

3. Programming Applications in COBOL Envoy MQ Client for HP e3000

 The message body property (PROPID-M-BODY) has this value type and
may contain any data whatsoever.

 Other properties having this value type are restricted to certain types or
structures of data. For information about specific properties, see the
Microsoft MSMQ documentation and SDK online help.

c. The data names are defined in the FMQPROPV copy member. You can
replace the MQ- prefix with another prefix when you copy FMQPROPV into
your program.

Miscellaneous named constants

FMQCONST defines a large number of constants representing special values
of API function arguments, error codes, etc. The following are a few
examples:

Constant in COBOL Equivalent in C

MQ-ACCESS-ALL PSD_SPECIALACCESS_ALL

MQ-ERROR-ACCESS-DENIED MQ_ERROR_ACCESS_DENIED

MQ-ERROR-BUFFER-
OVERFLOW

MQ_ERROR_BUFFER_OVERFLO
W

MQ-LE PRLE

 The constants are too numerous to list here. For a complete listing, please refer to the
FMQCONST source code.

API functions

The COBOL interface provides a complete set of definitions for the Envoy
MQ Client API functions. The functions are called as external procedures in
COBOL.

18

Envoy MQ Client for HP e3000 3. Programming Applications in COBOL

Calling
syntax

In the procedure section of your program, you can call the MQSendMessage
procedure using syntax such as the following. The procedure is equivalent
to the MQSendMessage() function in the MSMQ or Envoy MQ Client API.

 CALL 'MQSendMessage' USING
 \Queue-Handle\
 BY REFERENCE Props
 \pTransaction\
 RETURNING MQ-Result-Long.
 EVALUATE MQ-Result
 WHEN MQ-OK GO TO Send-Message-Exit
 WHEN OTHER DISPLAY ERR-MSG
 PERFORM Envoy MQ-Disconnect
 END-EVALUATE.

The procedure accepts three parameters:

Queue-Handle Specifies the destination queue.

Props A message property structure, containing the
content of the message.

pTransaction A transaction handle of type A(16), specifying a
transaction to which the message belongs
(optionally NULL).

The procedure returns a numerical result code MQ-Result-Long.

Comparison
with C

For comparison, the following is the corresponding API function declaration
in C:

HRESULT APIENTRY MQSendMessage(
 QUEUEHANDLE hDestinationQueue,
 MQMSGPROPS * pMessageProps,
 ITransaction * pTransaction
);

Samples of
other API
calls

For other examples of COBOL API calls, see the Sample program on page 30.

For more examples, see the Online samples listed on page 41. In the online
samples, you can find examples of many Envoy MQ Client API procedures
including:

 Setting up the input parameters of each procedure

 The syntax for the procedure call

 Interpreting the output parameters and return values

 19

3. Programming Applications in COBOL Envoy MQ Client for HP e3000

List of Envoy
MQ Client
procedures

The following is a list of Envoy MQ Client API procedures. The table
includes:

 The COBOL procedure names, which are identical to the C function
names

 The Envoy MQ Client sample programs where the API calls are
illustrated (see Online samples on page 41)

 References for additional information, including a complete explanation
of each procedure and its parameters.

The key for the additional references is as follows:

A. The chapter on Programming Messaging Applications in the Envoy MQ
Programmer's Guide.

B. The Microsoft MSMQ documentation and SDK online help

Procedure Sample programs where
illustrated

Additional
references

FMQAbort FMQBSAMP A

FMQCommit FMQBDYN A

FMQConnect FMQBSAMP A

FMQDebug FMQBSAMP A

FMQDisconnect FMQBSAMP A

FMQGetLogPath FMQBSAMP A

FMQSetLogPath FMQBSAMP A

FMQVersion FMQBSAMP A

FMQV1Connect FMQBSAMP A

MQBeginTransaction FMQBDYN A

MQCloseCursor FMQBSAMP B

MQCloseQueue FMQBDYN, FMQBSTC B

MQCreateCursor FMQBSAMP B

MQCreateQueue FMQBDYN, FMQBSTC A, B

MQDeleteQueue FMQBDYN, FMQBSTC B

MQFreeMemory FMQBLOC B

20

Envoy MQ Client for HP e3000 3. Programming Applications in COBOL

Procedure Sample programs where
illustrated

Additional
references

MQFreeSecurityContext FMQBDYN A, B

MQGetMachineProperties FMQBSAMP B

MQGetQueueProperties FMQBSAMP B

MQGetSecurityContext FMQBDYN A, B

MQHandleToFormatName FMQBSAMP B

MQInstanceToFormatName FMQBSAMP B

MQLocateBegin FMQBLOC A, B

MQLocateEnd FMQBLOC B

MQLocateNext FMQBLOC B

MQOpenQueue FMQBDYN, FMQBSTC B

MQPathNameToFormatName FMQBDYN, FMQBSTC B

MQReceiveMessage FMQBDYN, FMQBSTC A, B

MQRegisterCertificate FMQBSAMP A, B

MQSendMessage FMQBDYN, FMQBSTC B

MQSetQueueProperties FMQBSAMP B

Data structures

Many of the MSMQ and Envoy MQ Client API functions require parameters
that are pointers to data structures. These include:

Property structures Structures containing sets of message, queue, or
queue manager properties. The content of a
message, for example, is specified in a message
property structure.

Substructures of
property structures

Structures and arrays that are elements of property
structures. An example is the propvariant structure,
which contains the values of properties.

 21

3. Programming Applications in COBOL Envoy MQ Client for HP e3000

Query structures Structures required as parameters of the
MQLocateBegin function, which searches for
queues having specified property values.

This section explains how you can create the property structures and
substructures in your COBOL programs. If you wish, you can copy the
examples (with minor modifications) into your COBOL programs. You can
find additional examples in the Sample program on page 30.

For additional information on the interpretation and use of the structures,
please refer to the Microsoft MSMQ documentation and SDK online help.

For information on the query structures, please see the Online samples
described on page 41.

Programming method

Suppose that your application creates a queue and sends and receives
messages containing various sets of message properties. Before you call the
MQCreateQueue API function, you need to create a queue property
structure including several queue properties. Before you call
MQSendMessage and MQReceiveMessage, you need to create a message
property structure containing the message properties.

In a COBOL program, you can implement the property structure using
arrays or multiple-occurrence data structures. In the definition
specifications, you need to define the maximum size of the arrays or the
maximum number of occurrences. You also need to define pointers to the
first element or occurrence.

In the procedure division, the program sets the number of active array
elements or occurrences, that is, the number of properties included in the
structure. The program then moves the desired queue or message properties
into the arrays or structures.

In this way, the program can change the set of properties dynamically,
before each Envoy MQ Client API call.

 As an alternative to the above dynamic method, you can create static data structures
in the definitions specifications. For an example using static structures, see the
FMQBSTC sample program in the COBOL directory (see Online samples on page
41).

22

Envoy MQ Client for HP e3000 3. Programming Applications in COBOL

Property structure

A property structure contains a collection of properties and their values. There
are three types of property structures, which have different C data types.

Structure Contains a collection of C data type

Message property structure Message properties MQMSGPROPS

Queue property structure Queue properties MQQUEUEPROPS

Queue manager property structure Queue manager properties MQQMPROPS

Each property structure contains the following four fields:

COBOL
data type

C data type Field name
in C

Description

PIC
9(9)
BINARY

DWORD cProp A count of the properties included in the structure. The value of
this field is the size of the arrays in the other fields of the
structure.

PIC
S9(9)
BINARY

Array of
PROPID

aPropID A pointer to an array of PROPID-... constants, identifying
the properties that are included in the structure (input to the API
functions).

PIC
S9(9)
BINARY

Array of
PROPVARIAN
T

aPropVa
r

A pointer to an array of propvariant structures, which contain the
values of the properties (input or output).

PIC
S9(9)
BINARY

Array of
HRESULT

aStatus A pointer to an array of status codes (output from the API
functions).

 In the following discussion, we refer to the fields by their generic names cProp,
aPropID, etc. In COBOL, you must use field names that are unique throughout
the entire program.

The three types of property structures all contain the same four fields. This
means that you can represent them in COBOL by defining a single top-level
property structure. To create a message property structure, you can store
pointers to arrays of message properties in the fields. To create a queue or

 23

3. Programming Applications in COBOL Envoy MQ Client for HP e3000

queue-manager property structure, you can store pointers to arrays of queue
properties or queue-manager properties in the fields.

The following is a sample definition of the property structure:

* Top level property structure
 01 Props.
 02 cProp PIC 9(9) BINARY.
 02 aPropID PIC S9(9) BINARY.
 02 aPropVar PIC S9(9) BINARY.
 02 aStatus PIC S9(9) BINARY.

24

Envoy MQ Client for HP e3000 3. Programming Applications in COBOL

Substructures of property structures

The property structure contains pointers to three arrays:

aPropID Pointer to an array of property identifies
(PROPID-... constants) identifying message,
queue, or queue manger properties.

aPropVar Pointer to an array of propvariant structures,
which contain the values of the properties.

aStatus Pointer to an array of status codes, used for output
from the API functions.

Message Property Structure

cProp = 3
aPropID
aPropVar
aStatus

Number of properties
Base pointers to
the substructures

VT-VECTOR-UI1
100
MSG-BODY-STRING

VT-UI1
MQMSG-DELIVERY-
 RECOVERABLE

VT-UI1
3

PROPID-M-
 BODY

PROPID-M-
 DELIVERY

PROPID-M-
 PRIORITY

Array of property
identifiers (input)

Array of property
values (input/output)

Buffer for message body

Array of property status
indicators (output)

0

0

0

'Hello, world'

The number of elements in each array is given by the cProp field of the
property structure. The order of properties must be identical in each array.

 25

3. Programming Applications in COBOL Envoy MQ Client for HP e3000

For example, if the aPropID array contains PROPID-... constants for the
message body, delivery, and priority properties, then the other arrays must
also contain elements for exactly the same properties, in the same order.

The following example illustrates how you can construct the arrays in a
COBOL program. For convenience, the arrays are represented as multiple-
occurrence data structures (in essence, substructures of a property structure)
instead of true COBOL arrays.

The example is for a message property structure containing a maximum of
10 properties. We will use the property structure to construct a message
containing three properties:

 Message body
 Message delivery
 Message priority

The other seven properties in the property structure are not used in this
example.

Setting the
number of
active
properties

The number of properties in the property structure is stored in the cProp
field of the property structure. In the sample message, there are three
properties. You can specify this in the procedure division by writing:

 MOVE 3 TO cProp.

This instructs Envoy MQ Client to use the first three properties of the
property structure. If any additional properties exist in the structure, they
are ignored.

If you later need a property structure containing a different number of
properties, you can reset cProp to the new value, up to the array size of the
property structure.

Array of
property
identifiers

The array of property identifiers corresponds to the aProp field of a
property structure in C. In COBOL, you can define the array as follows:

* aPropID array of up to 10 property identifiers
 01 MQ-PropID-Array.
 02 MQ-PropID PIC 9(9) BINARY OCCURS 10.

Here, we have defined the array size for a maximum of 10 properties. Only
three of the properties are used in the message example.

In the procedure division, we need to:

26

Envoy MQ Client for HP e3000 3. Programming Applications in COBOL

 Set the aPropID pointer of the property structure to point to the array

 Move the property identifiers to the array

For our sample message, we would write:

* Set the aPropID pointer of the property structure
 CALL INTRINSIC ".LOC." USING MQ-PropID-Array GIVING
aPropID.
*
* Move the property identifiers to the array
 MOVE PROPID-M-BODY TO MQ-PropID(1).
 MOVE PROPID-M-DELIVERY TO MQ-PropID(2).
 MOVE PROPID-M-PRIORITY TO MQ-PropID(3).

Array of
propvariant
structures

MSMQ and Envoy MQ Client use propvariant structures to store the values
of message, queue, and queue manager properties. In HP e3000, a
propvariant is a 16-byte structure containing the following fields:

Value type identifier A VT-... constant indicating the data type of the
property value.

Reserved Reserved for future use.

Value1 The value of the property. For certain properties,
Value1 is the size of the value in bytes (equivalent
to the cElems field in C).

Value2 If Value1 contains the value, Value2 is an empty
placeholder field. If Value1 contains the size of the
value, then Value2 is a pointer to the value
(equivalent to the pElems field in C).

In COBOL, you can define the array of propvariant structures as a multiple-
occurrence data structure. The elements of the structure are copies of the
FMQPROPV member, which is supplied in the Envoy MQ COBOL directory.
FMQPROPV contains a complete COBOL definition of the propvariant data
structure.

 27

3. Programming Applications in COBOL Envoy MQ Client for HP e3000

* aPropVar array of up to 10 property values
 01 MQ-PropVar-Array.
 02 MQ-PropVar OCCURS 10.
 COPY FMQPROPV REPLACING ==:MQ:== BY ==MQ==.

 You can define more than one aPropVar array using the FMQPROPV copy
member. In each array, copy FMQPROPV replacing :MQ: with a different string,
such as MQ1, MQ2, etc.

In the procedure division, we need to:

 Set the aPropVar pointer of the property structure to point to the array

 Move the appropriate value type identifier, Value1, and Value2 for each
message property, to the first three elements of the array

The Value1 and Value2 fields in FMQPROPV have different names and data
types depending on the property that you want to store. The names are
illustrated in the sample code below. For a complete listing of the Value
names, see the table of Value type identifiers on page 16.

* Set the aPropVar pointer of the property structure
 SET aPropVar TO ADDRESS OF MQ-PropVar-Array.
*
* Set the message body to a 'Hello, World' test string
 MOVE VT-VECTOR-UI1 TO MQ-VARTYPE(1).
* Value1 of the message body property is the length of
the body
 MOVE 12 TO MQ-CAUB-CELEMS(1).
* Value2 is a pointer to a buffer containing the message
body
 SET MQ-CAUB-PELEMS(1) TO ADDRESS OF MSG-BODY-
STRING.
*
* Set the delivery property to recoverable
 MOVE VT-UI1 TO MQ-VARTYPE(2).
* Value1 of the delivery property (there is no Value2)
 MOVE MQMSG-DELIVERY-RECOVERABLE TO MQ-BVAL(2).
*
* Set the priority property to a value of 3
 MOVE VT-UI1 TO MQ-VARTYPE(3).
* Value1 of the priority property (there is no Value2)
 MOVE 3 TO MQ-BVAL(3).

28

Envoy MQ Client for HP e3000 3. Programming Applications in COBOL

Elsewhere in the program, you need to define a buffer and store the message
in body in it, for example:

* Buffer containing a test message body
 77 MSG-BODY-STRING PIC X(50) VALUE 'Hello, world'.

Array of
status codes

The array of status codes corresponds to the aStatus field in C. A sample
definition follows:

 01 MQ-Prop-Result-Array.
 02 MQ-Prop-Result PIC 9(9) BINARY OCCURS 10.

The status codes are output from various API functions. In the procedure
division, you need to set the aStatus pointer in the property structure to
the address of the array:

 CALL INTRINSIC ".LOC." USING MQ-Prop-Result-Array
GIVING aStatus.

String handling

Several of the message, queue, and queue manager properties have values
that are character strings. For example, the message label is a string of up to
250 characters. In addition, certain Envoy MQ Client API functions (for
example FMQConnect), require parameters that are strings.

This section describes the differences between C and COBOL strings and the
steps to ensure compatibility of your programs with the MSMQ standard.

 For details of the maximum string length, etc., see the Microsoft MSMQ
documentation and SDK online help.

 29

3. Programming Applications in COBOL Envoy MQ Client for HP e3000

Null-terminated strings

MSMQ and Envoy MQ Client require that every string value be terminated
by a null character. In COBOL, strings are predefined in length and are
padded with trailing blanks. You can convert strings between the two
formats using the COBOL built-in function STRING.

UNICODE conversion

Envoy MQ Client uses a code-page translation table to translate string
properties and parameters from UNICODE or vice versa.

All message and queue properties are converted, with the following
exceptions:

 The message body (PROPID-M-BODY) is converted only if the message
body type (PROPID-M-BODY-TYPE) is VT-LPWSTR or VT-BSTR. Envoy
MQ does not translate a message body of any other type because it
doesn't know whether the body contains text or binary data. Instead, you
should program whatever conversions are needed.

 The message extension (PROPID-M-EXTENSION).

Sample program

This section presents the complete source code of the FMQBDYN sample
program, which is supplied online in the Envoy MQ COBOL directory. The
program illustrates some basic messaging operations, including:

 Creating and deleting a queue
 Converting a queue path name to a format name
 Opening and closing a queue
 Sending and receiving messages
 Working with the MSMQ message authentication service
 Working with transactions

30

Envoy MQ Client for HP e3000 3. Programming Applications in COBOL

The program uses the dynamic method to create the required MSMQ and
Envoy MQ Client data structures. For a detailed discussion of the structures,
see Data structures on page 21.

 For additional sample programs, see Online samples on page 41.

Source code

 IDENTIFICATION DIVISION.
 PROGRAM-ID. 'FMQBDYN'.
**
* *
* Description: Sample COBOL program demonstrating the *
* use of dynamic property structures and the *
* FMQCONST and FMQPROPV copy members *
* *
* Ver: 1.2 *
* *
* Envoy MQ Client for HP e3000 *
* (C) Copyright 2001 by Envoy Technologies, Inc. *
* All rights reserved *
* *
**
*
 DATA DIVISION.
 WORKING-STORAGE SECTION.
*
* Include Envoy MQ definitions in the program
*
 COPY FMQCONST.
*
* aPropID array of up to 10 property identifiers
 01 MQ-PropID-Array.
 02 MQ-PropID PIC 9(9) BINARY OCCURS 10.
*
* aPropVar array of up to 10 property values
* Note : This sample uses the same property structure for both
* queue and message properties. You may define additional
* property structures using the COPY REPLACING feature.
*
 01 MQ-PropVar-Array.
 02 MQ-PropVar OCCURS 10.

 31

3. Programming Applications in COBOL Envoy MQ Client for HP e3000

 COPY FMQPROPV REPLACING ==:MQ:== BY ==MQ==.
*
* aStatus array of up to 10 property status codes
 01 MQ-Prop-Result-Array.
 02 MQ-Prop-Result PIC 9(9) BINARY OCCURS 10.
*
* Top level property structure
 01 Props.
 02 cProp PIC 9(9) BINARY.
 02 aPropID PIC S9(9) BINARY.
 02 aPropVar PIC S9(9) BINARY.
 02 aStatus PIC S9(9) BINARY.
*
 01 MQ-Result PIC S9(9) BINARY.
 01 FILLER REDEFINES MQ-Result.
 05 MQ-Result-Flags PIC S9(4) BINARY.
 05 MQ-Result-Seq PIC 9(4) BINARY.
*
 77 FormatName-Length PIC 9(9) BINARY.
 77 Queue-Handle PIC 9(9) BINARY.
 77 Connection-Handle PIC 9(9) BINARY VALUE 0.
 77 SecContext-Handle PIC 9(9) BINARY.
 77 pTransaction PIC 9(9) BINARY.
 77 FormatName PIC X(125).
 77 Q-PATH-STRING PIC X(125).
 77 Q-LABEL-STRING PIC X(125).
 77 MSG-COUNTER PIC 9(3).
 77 MSG-BODY-STRING PIC X(50).
 77 MSG-BODY-PREFIX PIC X(18) VALUE 'Message Number is '.
 77 MSG-LABEL-STRING PIC X(22).
 77 MSG-LABEL-PREFIX PIC X(18) VALUE 'Message Label is '.
 77 ERR-MSG PIC X(23) VALUE 'Envoy MQ call failed!'.
 77 AUTH-Msg PIC X(30) VALUE 'Authenticated message received'.
 77 NOT-AUTH-Msg PIC X(30) VALUE 'Unauthenticated message! '.
 77 WS-END PIC X.
*---
 PROCEDURE DIVISION.
*
 Main SECTION.
*
 Main-P.
*
* Set the pointers of the property structure. The same structure is
* used for both queue and message properties.
 CALL INTRINSIC ".LOC." USING MQ-PropID-Array
 GIVING aPropID.
 CALL INTRINSIC ".LOC." USING MQ-PropVar-Array

32

Envoy MQ Client for HP e3000 3. Programming Applications in COBOL

 GIVING aPropVar.
 CALL INTRINSIC ".LOC." USING MQ-Prop-Result-Array
 GIVING aStatus.
*
* Initialize error flags for error checking
 COMPUTE MQ-ERROR = -16370.
*
* Begin
*
* Create a queue if it doesn't already exist
 PERFORM Create-Queue.
* Open the queue for sending
 PERFORM Open-Queue-Send.
* Send 6 transacted, authenticated messages to the queue
 PERFORM Get-Security-Context.
 PERFORM Begin-Transaction.
 PERFORM Send-Message
 VARYING MSG-COUNTER FROM 1 BY 1 UNTIL MSG-COUNTER = 6.
 PERFORM Commit-Transaction.
 PERFORM Free-Security-Context.
* Close the queue
 PERFORM Close-Queue.
*
* Reopen the queue for receiving
 PERFORM Open-Queue-Receive.
* Receive the first message from the queue
 PERFORM Receive-Message.
* Close and delete the queue
 PERFORM Close-Queue.
 PERFORM Delete-Queue.
 MOVE ZERO TO RETURN-CODE.
 STOP RUN.
*---
 Create-Queue SECTION.
*
 Create-Queue-P.
*
* Set the parameters for an MQCreateQueue call
* 1. Create a property structure including five queue properties
* 1.1 Set the queue property names in the MQ-PropID array
 MOVE PROPID-Q-PATHNAME TO MQ-PropID(1).
 MOVE PROPID-Q-LABEL TO MQ-PropID(2).
 MOVE PROPID-Q-TRANSACTION TO MQ-PropID(3).
 MOVE PROPID-Q-TYPE TO MQ-PropID(4).
 MOVE PROPID-Q-BASEPRIORITY TO MQ-PropID(5).
*
* 1.2 Set the property values in the MQ-PropVar array

 33

3. Programming Applications in COBOL Envoy MQ Client for HP e3000

 MOVE VT-LPWSTR TO MQ-VARTYPE(1).
 CALL INTRINSIC ".LOC." USING Q-PATH-STRING
 GIVING MQ-LPWSTR(1).
*
 MOVE VT-LPWSTR TO MQ-VARTYPE(2).
 CALL INTRINSIC ".LOC." USING Q-LABEL-STRING
 GIVING MQ-LPWSTR(2).
*
 MOVE VT-UI1 TO MQ-VARTYPE(3).
 MOVE MQ-TRANSACTIONAL TO MQ-BVAL(3).
*
 MOVE VT-CLSID TO MQ-VARTYPE(4).
 CALL INTRINSIC ".LOC." USING MQ-QTYPE-TEST
 GIVING MQ-PUUID(4).
*
 MOVE VT-I2 TO MQ-VARTYPE(5).
 MOVE -2 TO MQ-IVAL(5).
*
* 1.3 Set the total number of active properties in the property
structure
 MOVE 5 TO cProp.
*
* 2. Set the queue path name and label
 STRING '.\HP3000-transact' LOW-VALUE
 DELIMITED BY SIZE INTO Q-PATH-STRING.
 STRING 'HP3000 Test Queue' LOW-VALUE
 DELIMITED BY SIZE INTO Q-LABEL-STRING.
*
* 3. Assign a buffer for the queue format name (output)
 CALL INTRINSIC ".LEN." USING FormatName
 GIVING FormatName-Length.
*
* Call the MQCreateQueue API function to create the queue
 CALL 'MQCreateQueue' USING
 0
 BY REFERENCE Props
 FormatName
 FormatName-Length
 GIVING MQ-Result.
 IF MQ-Result = MQ-OK
 GO TO Create-Queue-Exit
 ELSE
 IF MQ-Result-Flags = MQ-Error
 AND MQ-Result-Seq = MQ-ERROR-QUEUE-EXISTS
 PERFORM Path-To-FormatName
 ELSE
 DISPLAY 'MQCreateQueue ' ERR-MSG MQ-Result-Seq

34

Envoy MQ Client for HP e3000 3. Programming Applications in COBOL

 STOP RUN
 END-IF
 END-IF.
*
 Create-Queue-Exit.
 EXIT.
*---
 Path-To-FormatName SECTION.
*
 Path-To-FormatName-P.
*
* If a queue with the given path name already exists, call
* MQPathNameToFormatName to retrieve its format name
 CALL 'MQPathNameToFormatName' USING
 BY REFERENCE Q-PATH-STRING
 FormatName
 FormatName-Length
 GIVING MQ-Result.
 EVALUATE MQ-Result-Seq = MQ-OK
 WHEN TRUE GO TO Path-To-FormatName-Exit
 WHEN OTHER DISPLAY 'MQPathNameToFormatName ' ERR-MSG
 MQ-Result-Seq
 STOP RUN
 END-EVALUATE.
*
 Path-To-FormatName-Exit.
 EXIT.
*---
 Open-Queue-Send SECTION.
*
 Open-Queue-Send-P.
*
* Call MQOpenQueue to open the queue for sending
 CALL 'MQOpenQueue' USING
 BY REFERENCE FormatName
 2
 0
 BY REFERENCE Queue-Handle
 GIVING MQ-Result.
 EVALUATE MQ-Result-Seq = MQ-OK
 WHEN TRUE GO TO Open-Queue-Send-Exit
 WHEN OTHER DISPLAY 'MQOpenQueue (SEND)' ERR-MSG
 MQ-Result-Seq
 STOP RUN
 END-EVALUATE.
*
 Open-Queue-Send-Exit.

 35

3. Programming Applications in COBOL Envoy MQ Client for HP e3000

 EXIT.
*---
 Open-Queue-Receive SECTION.
*
 Open-Queue-Receive-P.
*
* Call MQOpenQueue to open the queue for receiving
 CALL 'MQOpenQueue' USING
 BY REFERENCE FormatName
 1
 1
 BY REFERENCE Queue-Handle
 GIVING MQ-Result.
 EVALUATE MQ-Result-Seq = MQ-OK
 WHEN TRUE GO TO Open-Queue-Receive-Exit
 WHEN OTHER DISPLAY 'MQOpenQueue (RECV) ' ERR-MSG
 MQ-Result-Seq
 STOP RUN
 END-EVALUATE.
*
 Open-Queue-Receive-Exit.
 EXIT.
*---
 Get-Security-Context SECTION.
*
* Retrieve security information needed to authenticate messages
* using an internal (MSMQ) certificate. The certificate must
* be registered for the current user on the Envoy Message Queuing
Connector (MQC) machine.
*
 Get-Security-Context-P.
*
 CALL 'MQGetSecurityContext' USING
 0
 0
 BY REFERENCE SecContext-Handle
 GIVING MQ-Result.
 EVALUATE MQ-Result-Seq = MQ-OK
 WHEN TRUE GO TO Get-Security-Context-Exit
 WHEN OTHER DISPLAY 'MQGetSecurityContext ' ERR-MSG
 MQ-Result-Seq
 STOP RUN
 END-EVALUATE.
*
 Get-Security-Context-Exit.
 EXIT.
*---

36

Envoy MQ Client for HP e3000 3. Programming Applications in COBOL

 Free-Security-Context SECTION.
*
 Free-Security-Context-P.
*
 CALL 'MQFreeSecurityContext'
 USING SecContext-Handle.
*
 Free-Security-Context-Exit.
 EXIT.
*---
 Begin-Transaction SECTION.
*
 Begin-Transaction-P.
*
* Begin a transaction
 CALL 'MQBeginTransaction' USING
 BY REFERENCE pTransaction
 GIVING MQ-Result.
 EVALUATE MQ-Result-Seq = MQ-OK
 WHEN TRUE GO TO Begin-Transaction-Exit
 WHEN OTHER DISPLAY 'MQBeginTransaction ' ERR-MSG
 MQ-Result-Seq
 STOP RUN
 END-EVALUATE.
*
 Begin-Transaction-Exit.
 EXIT.
*---
 Send-Message SECTION.
*
 Send-Message-P.
*
* Send a message and ask MSMQ to authenticate it.
*
* 1. Create a property structure including four message properties
* 1.1 Set the strings for the message body and label properties
* (The message body is 'Message number <i>'. The message label
* is 'Message label <i>'.)
*
 STRING MSG-BODY-PREFIX MSG-COUNTER
 DELIMITED BY SIZE INTO MSG-BODY-STRING.
 STRING MSG-LABEL-PREFIX MSG-COUNTER LOW-VALUE
 DELIMITED BY SIZE INTO MSG-LABEL-STRING.
*
* 1.2 Set the total number of active properties in the property
structure
 MOVE 4 TO cProp.

 37

3. Programming Applications in COBOL Envoy MQ Client for HP e3000

*
* 1.3 Set the aPropID array containing the message property
identifiers
 MOVE PROPID-M-BODY TO MQ-PropID(1).
 MOVE PROPID-M-LABEL TO MQ-PropID(2).
 MOVE PROPID-M-AUTH-LEVEL TO MQ-PropID(3).
 MOVE PROPID-M-SECURITY-CONTEXT TO MQ-PropID(4).
*
* 1.4 Set the aPropVar array containing the property values
 MOVE VT-VECTOR-UI1 TO MQ-VARTYPE(1).
 MOVE 50 TO MQ-CAUB-CELEMS(1).
 CALL INTRINSIC ".LOC." USING MSG-BODY-STRING
 GIVING MQ-CAUB-PELEMS(1).
*
 MOVE VT-LPWSTR TO MQ-VARTYPE(2).
 CALL INTRINSIC ".LOC." USING MSG-LABEL-STRING
 GIVING MQ-LPWSTR(2).
*
 MOVE VT-UI4 TO MQ-VARTYPE(3).
 MOVE MQMSG-AUTH-LEVEL-ALWAYS TO MQ-ULVAL(3).
*
 MOVE VT-UI4 TO MQ-VARTYPE(4).
 MOVE SecContext-Handle TO MQ-ULVAL(4).
*
* Call MQSendMessage to send the message
 CALL 'MQSendMessage' USING
 \Queue-Handle\
 BY REFERENCE Props
 \pTransaction\
 GIVING MQ-Result.
 EVALUATE MQ-Result-Seq = MQ-OK
 WHEN TRUE GO TO Send-Message-Exit
 WHEN OTHER DISPLAY 'MQSendMessage ' ERR-MSG
 MQ-Result-Seq
 STOP RUN
 END-EVALUATE.
*
 Send-Message-Exit.
 EXIT.
*---
 Receive-Message SECTION.
*
 Receive-Message-P.
*
* Receive a message (not as part of a transaction) and check for
* authentication.
*

38

Envoy MQ Client for HP e3000 3. Programming Applications in COBOL

* Notes on the property settings:
* 1. The BODY and LABEL message properties are left unchanged
* from the previous send operation.
* A successful receive will place the message body into
* MSG-BODY-STRING and the Message Label into MSG-LABEL-STRING.
*
* 2. The AUTH-LEVEL property used in the send operation is replaced
* with the AUTHENTICATED property to enable authentication
checking.
*
* 3. The SECURITY CONTEXT property used in the send operation is
* replaced with the LABEL-LEN property, which specifies the size
* of the LABEL buffer
*
* Set the total number of active properties in the property structure
 MOVE 4 TO cProp.
 MOVE PROPID-M-AUTHENTICATED TO MQ-PropID(3).
 MOVE VT-NULL TO MQ-VARTYPE(3).
*
* Set the buffer length for the LABEL output
 MOVE PROPID-M-LABEL-LEN TO MQ-PropID(4).
 MOVE VT-UI4 TO MQ-VARTYPE(4).
 CALL INTRINSIC ".LEN." USING Q-LABEL-STRING
 GIVING MQ-ulVal(4).
*
* Receive the message
 CALL 'MQReceiveMessage' USING
 \Queue-Handle\
 \MQ-INFINITE\
 \MQ-ACTION-RECEIVE\
 BY REFERENCE Props
 \MQ-NULL\
 \MQ-NULL\
 0
 \MQ-NO-TRANSACTION\
 GIVING MQ-Result.
 EVALUATE MQ-Result-Seq = MQ-OK
 WHEN TRUE GO TO Authentication-Check
 WHEN OTHER DISPLAY 'MQReceiveMessage ' ERR-MSG
 MQ-Result-Seq
 STOP RUN
 END-EVALUATE.
*
* Check for authentication of the message
 Authentication-Check.
 IF MQ-BVAL(3) = MQ-AUTHENTICATE
 DISPLAY AUTH-Msg

 39

3. Programming Applications in COBOL Envoy MQ Client for HP e3000

 ELSE DISPLAY NOT-AUTH-Msg
 GO TO Receive-Call-Exit.
*
 Receive-Call-Exit.
 EXIT.
*---
 Close-Queue SECTION.
*
 Close-Queue-P.
*
* Close the queue
 CALL 'MQCloseQueue' USING \Queue-Handle\
 GIVING MQ-Result.
 EVALUATE MQ-Result-Seq = MQ-OK
 WHEN TRUE GO TO Close-Queue-Exit
 WHEN OTHER DISPLAY 'MQCloseQueue ' ERR-MSG
 MQ-Result-Seq
 STOP RUN
 END-EVALUATE.
*
 Close-Queue-Exit.
 EXIT.
*---
 Delete-Queue SECTION.
*
 Delete-Queue-P.
*
* Delete the queue
 CALL 'MQDeleteQueue' USING
 BY REFERENCE FormatName
 GIVING MQ-Result.
*
 EVALUATE MQ-Result-Seq = MQ-OK
 WHEN TRUE GO TO Delete-Queue-Exit
 WHEN OTHER DISPLAY 'MQDeleteQueue ' ERR-MSG
 MQ-Result-Seq
 STOP RUN
 END-EVALUATE.
*
 Delete-Queue-Exit.
 EXIT.
*
*---
 Commit-Transaction SECTION.
*
 Commit-Transaction-P.
*

40

Envoy MQ Client for HP e3000 3. Programming Applications in COBOL

* Commit the transaction
 CALL 'FMQCommit' USING
 BY REFERENCE pTransaction
 0
 0
 0
 GIVING MQ-Result.
 EVALUATE MQ-Result-Seq = MQ-OK
 WHEN TRUE GO TO Commit-Transaction-Exit
 WHEN OTHER DISPLAY 'FMQCommit ' ERR-MSG
 MQ-Result-Seq
 STOP RUN
 END-EVALUATE.
*
 Commit-Transaction-Exit.
 EXIT.

Online samples

The Envoy MQ Client software includes several online programs and source
members that you can use in your COBOL applications.

The following paragraphs describe the online samples in more detail.

Copy members

The following copy members, which are located in the Envoy MQ COBOL
directory, contain code for use in your applications.

FmqConst You should include the FMQCONST copy member in every Envoy MQ Client
COBOL application.

This member contains definitions of MSMQ properties, named constants,
and API functions. For a complete description, see FMQCONST copy member
on page 10.

FmqPropv The FMQPROPV copy member provides a complete COBOL definition of the
MSMQ propvariant data structure. For an explanation of the propvariant
structure, see Substructures of property structures on page 25.

 41

3. Programming Applications in COBOL Envoy MQ Client for HP e3000

The member is recommended for use in programs that create property
structures dynamically. For an example of its use, see the Sample program on
page 30.

FmqLoc The FMQLOC copy member defines the data structures used in queue queries.

The member is recommended for use in programs that create the query
structures dynamically. For an example, see the FMQBLOC sample program.

Sample programs

The following sample programs, which are located in the Envoy MQ COBOL
directory, contain code that illustrates various messaging operations. In
particular, the samples illustrate the correct syntax for each API call. You can
cut and paste code from the samples, with appropriate modifications, into
your programs.

FmqbDyn FMQBDYN is a sample program illustrating the dynamic creation of property
structures. The program uses the FMQPROPV copy member to define the
propvariant data structure.

The program illustrates most of the common messaging operations, such as:

 Creating and deleting a queue
 Converting a queue path name to a format name
 Opening and closing a queue
 Sending and receiving messages
 Working with the MSMQ message authentication service
 Working with transactions

The complete source code of this program is printed in the Sample program
section of this chapter, page 30.

FmqbStc FMQBSTC is a sample program illustrating basic messaging operations.

The program provides examples of:

 Connecting to and disconnecting from Envoy Message Queuing
Connector (MQC)

 Creating and deleting a queue
 Converting a queue path name to a format name
 Opening and closing a queue
 Sending and receiving a message

42

Envoy MQ Client for HP e3000 3. Programming Applications in COBOL

FmqbLoc FMQBLOC is a sample program that creates a queue query dynamically. The
program illustrates the use of the FMQLOC copy member, and finds a queue
having a specified label.

FmqbSamp FMQBSAMP contains sample API calls for a variety of messaging operations:

 Connecting to and disconnecting from a Envoy Message Queuing
Connector (MQC)

 Creating and closing a cursor
 Setting and retrieving queue properties
 Retrieving machine properties

 43

3. Programming Applications in COBOL Envoy MQ Client for HP e3000

 Converting a queue handle or GUID to a format name
 Aborting a transaction
 Registering a certificate
 Retrieving Envoy MQ version information
 Using the Envoy MQ debug log

FMQBSAMP is not a complete, compilable program. Rather, it contains
fragments of code illustrating the above operations.

44

Envoy MQ Client for HP e3000 Index

Envoy MQ Client for HP e3000

Index

Envoy MQ Client, 3 A Copy members
COBOL, 41 API

Envoy MQ Client for HP e3000, 7 D API functions
COBOL, 18 Data structures

ASCII COBOL, 21
conversion to UNICODE, 29 Dynamic data structures

COBOL, 22 C
E COBOL
Environment variables, 3 miscellaneous constants, 17

programming instructions, 10 F COBOL interface
Envoy MQ Client for HP e3000, 9 Envoy MQ Client

COBOL programming configuration, 3
copy members, 41 Envoy MQ Client for HP e3000, 1, 5
data structures, 21 API, 7
dynamic structures, 22 API functions, 18
FMQCONST copy member, 10 COBOL interface, 9
message properties, 11 FMQCONST copy member, 10
property structures, 22 installation, 2
propvariant structures, 26 system requirements, 1, 9
queue manager properties, 15 FMQCONST
queue properties, 14 COBOL copy member, 41
sample programs, 29, 42 COBOL copy member, 10
static structures, 22 FMQLOC
substructures, 24 COBOL copy member, 41
value type identifiers, 16 FMQPROPV

Configuration COBOL copy member, 26, 41

 45

Index Envoy MQ Client for HP e3000

FMQROOT
environment variable, 3

G
GWPING test program, 5

H
HP e3000

Envoy MQ Client for, 1
version support, 1, 9

I
Installation

Envoy MQ Client for HP e3000, 2

M
Message properties

COBOL, 11

O
Operating systems

supported, 1

P
Ping-pong test

Envoy MQ Client for HP e3000, 5
Property structures

COBOL, 22
Propvariant structures

COBOL, 26

Q
Queue manager properties

COBOL, 15
Queue properties

COBOL, 14

S
Sample programs

COBOL, 29, 42
Static data structures

COBOL, 22
Strings

COBOL, 28
conversion to ASCII, 29
null-terminated, 29

System requirements
COBOL interface, 9
Envoy MQ Client for HP e3000, 1

T
TCP/IP communications, 1

U
UNICODE

conversion to ASCII, 29

V
Value type identifiers

COBOL, 16

46

	Contents
	Installation
	System and network requirements
	Installation procedure
	Configuration
	Environment variables
	Configuration utility

	Installation test

	Programming Applications in C
	Header files
	Compiling and linking
	Source-code examples

	Programming Applications in COBOL
	Programming steps
	FMQCONST copy member
	Message properties
	Queue properties
	Queue manager properties
	Value type identifiers
	Miscellaneous named constants

	API functions
	Data structures
	Programming method
	Property structure
	Substructures of property structures

	String handling
	Null-terminated strings
	UNICODE conversion

	Sample program
	Source code

	Online samples
	Copy members
	Sample programs

	Index

