

Envoy Message Queuing
version 1.3

Programmer's Guide

tFor use with Microsoft Message Queue services (MSMQ) sof ware

Envoy Message Queuing version 1.3

Programmer's Gu de i
January, 2002

Envoy Technologies Inc. has made every effort to ensure that the information in this
document is accurate; however, there are no representations or warranties regarding this

information, including warranties of merchantability or fitness for a particular purpose. Envoy
Technologies Inc. assumes no responsibility for errors or omissions that may occur in this
document. The information in this document is subject to change without prior notice and

does not represent a commitment by Envoy Technologies Inc., or its representatives.

The software supplied with this document is the property of Envoy
Technologies Inc. and is furnished under a licensing agreement. Neither the

software nor this document may be copied or transferred by any means,
electronic or mechanical, except as provided in the licensing agreement.

© 2001-2002 Envoy Technologies Inc.
All rights reserved.

Printed in the United States of America.

Envoy Message Queuing (Envoy MQ) is a trademark of Envoy Technologies Inc.

All other product and company names mentioned herein are for
identification purposes only and are the property of, and may be

trademarks of, their respective owners.

Envoy Technologies Inc.
Corporate Headquarters

120 Wood Avenue South
Iselin, NJ, 08830, USA
Phone: 732-549-6500

Fax: 732-549-3165
Web: http://www.envoytech.com

Tech Support: support@envoytech.com

http://www.envoytech.com/

Envoy MQ Programmer's Guide Contents

Envoy MQ Programmer's Guide

Contents

Contents i

1. Overview 1
Envoy MQ Client and Server ...1
How you can use Envoy MQ ...2
How to use this book ...3

Other Envoy MQ documentation ...3
MSMQ documentation...3
Online help ..4

2. How Envoy MQ Works with MSMQ 5
Introduction to MSMQ..5

Principles of MSMQ operation...6
Purpose of Envoy MQ ...8

Envoy MQ components ...9
Application programming interface ..9
How Envoy MQ interacts with MSMQ ...10

Differences between Envoy MQ and MSMQ...10
Connectionless messaging..10
Envoy MQ Server addressing..11
Queue locations and names..11
Conflicts between local queue names ...11
Scope of handles and cursors ...12
Asynchronous receive ...12
Envoy MQ Server security...12
Message security ..12
Queue security ..13
Queue manager properties..13
Transaction support...13
Return codes ..13
Programming ..14

 i

Contents Envoy MQ Programmer's Guide

3. Installation 15
System and network requirements.. 15
Installation procedure.. 16
Configuration... 16

Configuration files FMQROOT FMQOVERRIDE ... 16
Command line utility to set configuration parameters ... 17
Full-screen configuration editor ... 20
Editing the configuration file manually... 21
Environment variables... 21

Security of Envoy MQ Client applications ... 21
Logon methods ... 22

Installation test .. 22

4. Programming Messaging Applications 25
Header files wintypes.h mq.h fmqpubd.h .. 26
Data structures MQVAL ... 26

Notation of property value fields MQPROPVARIANT MQVAL 27
Code page translation ... 28
Error handling.. 29

Function return values MQ_OK MQ_ERROR_... MQ_INFORMATION_... ... 29
Property status values aStatus[]... 30
Envoy MQ errors ... 30
Error logging ... 30
Debug logging ... 30

Link libraries .. 31
MSMQ API functions... 32

Creating a queue MQCreateQueue() .. 33
Searching for queues MQLocateBegin() .. 33
Receiving a message MQReceiveMessage().. 33
Queue access privileges MQSetQueueSecurity() 33
MQGetQueueSecurity().. 33
Retrieving security context MQRegisterCertificate()
 MQGetSecurityContext() MQFreeSecurityContext().... 33

API functions for connecting to Envoy MQ Server .. 34
Connecting to Envoy MQ Server FMQConnect() ... 34
Disconnecting from Envoy MQ Server FMQDisconnect() 35

API functions supporting MSMQ transactions... 36
Committing a transaction FMQCommit()... 36
Aborting a transaction FMQAbort()... 36

API functions for information and debugging .. 37
Setting the location of the debug log
FMQSetLogPath() FMQGetLogPath() ...37
Enabling debug logging FMQDebug() .. 38
Retrieving the Envoy MQ version FMQVersion().. 38

ii

Envoy MQ Programmer's Guide Contents

5. Sample Application 39
Ping-pong messaging programs gwping gwpong ..39

Source code gwping ..40

Glossary 51

Index 54

 iii

Envoy MQ Programmer's Guide 1. Overview

Chapter 1

Overview

Envoy MQ is an external gateway for the Microsoft Message Queue Server
(MSMQ) environment. Envoy MQ extends MSMQ's capabilities from the Microsoft
Windows operating system to other operating systems, and enables you to connect
systems such as UNIX, IBM AS/400, IBM CICS, and Unisys ClearPath to an
MSMQ enterprise network.

Envoy MQ provides a fast and reliable messaging interface between the Windows
operating systems and other systems. Envoy MQ enables all your applications to
use MSMQ store-and-forward messaging. This allows applications to
communicate across a network even if the applications are not running at the same
time.

Developed by Envoy Technologies in collaboration with Microsoft Corporation,
Envoy MQ works together with MSMQ in the simplest and most efficient possible
way.

Envoy MQ Client and Connector

Envoy MQ is a client/server system running in a distributed network
environment. The Envoy MQ Connector (the server) component runs on Microsoft
Windows platforms. To use Envoy MQ Connector, you must also install the
appropriate Envoy MQ Client components, which interface your applications with
Envoy MQ Connector and MSMQ.

 1

1. Overview Envoy MQ Programmer's Guide

Envoy MQ Clients are available for many operating systems and with APIs in
several programming languages, for example:

Operating systems API languages

UNIX flavors:
Sun Solaris
Tru64 UNIX
HP UNIX
IBM AIX
Linux
HP e3000
SCO UNIX

DEC OpenVMS

C

IBM OS/400 C, RPG, COBOL

For technical and licensing information regarding the Envoy MQ Client
components, please contact Envoy Technologies or see our web site,
http://www.envoytech.com.

There is also a Envoy MQ Client for Unisys ClearPath systems. Please direct
inquiries about this product and its support to your Unisys representative.

How you can use Envoy MQ

You can use Envoy MQ to create applications that run on non-Windows operating
systems and that communicate with each other or with Windows systems by the
MSMQ message queuing method.

If you are a C or C++ programmer, you can use MSMQ and Envoy MQ to create
portable messaging applications that run on Windows, UNIX, and other systems
in a network.

If you are an AS/400 or CICS programmer, you can use Envoy MQ to interface
COBOL and RPG programs with MSMQ. The underlying functionality of Envoy
MQ and MSMQ is independent of the platform or programming language.
Applications can communicate in the same efficient way on all systems in your
network.

MSMQ and Envoy MQ let you concentrate on application development without
worrying about networking details. The simple—yet extraordinarily flexible—
interface of MSMQ and Envoy MQ lets you design programs that communicate
efficiently, with a minimum of effort.

2

Envoy MQ Programmer's Guide 1. Overview

How to use this book

This book is a learning and reference manual for Envoy MQ application
programming. The chapters of this book explain:

 The basic concepts of MSMQ and Envoy MQ operation
 How to install and configure Envoy MQ Client
 How to program messaging applications using the Envoy MQ API

 The API examples in this book are written in the C programming language. For
information on API programming in other languages such as RPG and COBOL
programming, please see the documentation for the Envoy MQ Clients running on specific
operating systems.

Other Envoy MQ documentation

The following Envoy MQ documentation is available:

Document Description

Envoy MQ Connector Administrator's Guide Explains how to set up and monitor the
server component of the Envoy MQ system

Envoy MQ Programmer's Guide (this book) Programming messaging applications using
Envoy MQ

Envoy MQ Client Installation Guide Installation Notes for each of the supported
platforms

Envoy MQ Client for OS/400 Additional Platform notes for OS/400.
Explains RPG and Cobol interface for EMQ
on 0S/400 platform

Envoy MQ Client for HP e3000 Additional platform notes for HP e3000.
Explains C and Cobol interface on HP e3000

MSMQ documentation

In addition to this book, you should consult the Microsoft MSMQ documentation
and SDK online help.

 3

1. Overview Envoy MQ Programmer's Guide

Online help

On Windows systems, you can display online help about many aspects of Envoy
MQ operation.

You can access the help information from the Envoy MQ folder on the Start menu,
or within the Envoy MQ MMC.

4

Envoy MQ Programmer's Guide 2. How Envoy MQ Works with MSMQ

Chapter 2

How Envoy MQ Works with MSMQ

MSMQ is Microsoft’s message queuing system running under Microsoft Windows
in a network environment.

Envoy MQ extends MSMQ functionality to other operating systems. In order to
use Envoy MQ effectively it is important that you understand:

 The basic concepts of MSMQ
 The main features that MSMQ offers to application programmers
 The components of Envoy MQ
 The way in which Envoy MQ interfaces to MSMQ and the network

Introduction to MSMQ

MSMQ offers extraordinary capabilities for fast, reliable communication between
Windows-based applications. The following paragraphs summarize some of the
main MSMQ features.

Connection-
less, asyn-
chronous
messaging

Applications can communicate using MSMQ without logging on to a remote
system or establishing a session with each other. The computers on which the
applications run do not even need to be connected at the instant when messages
are written or read. Applications can continue running without waiting for
transmission to be completed.

Guaranteed
delivery and
deliver once

MSMQ provides mechanisms by which an application can guarantee and confirm
that messages are delivered and prevent duplicate delivery.

Message
prioritization

MSMQ applications can specify how network resources should be allocated to
messages of different types.

User-defined
message
structure

An MSMQ message may contain a single byte (or no message contents at all), a
text string, or a long and complex data structure. The message may be encoded or
encrypted in any syntax that the communicating applications understand.

 5

2. How Envoy MQ Works with MSMQ Envoy MQ Programmer's Guide

Optional
message
properties

An application can send or receive properties such as the message size, label,
sender id, priority, delivery options, etc. along with the message body. The
properties are stored in a compact, efficient data structure.

Independence,
privacy, and
security

MSMQ can provide private, access-controlled queues for each application, or
public queues accessed by many applications. Any number of queues can be active
simultaneously.

Dynamic
queue routing

Administrators can change queue locations, protocols, and other queue properties
without affecting messaging applications.

Transaction
support

A program can package send-message or receive-message operations in a
transaction. The entire transaction is canceled and rolled back if any of the
operations fail.

API MSMQ operates on the Application Layer of the ISO Reference Model for Open
System Interconnection. MSMQ provides a simple interface between each
application program and the network and frees the application programmer from
concern about network or communication details.

Principles of MSMQ operation

For complete information on MSMQ principles, see the Microsoft MSMQ
documentation. The following discussion briefly introduces the concepts that are
needed to program Envoy MQ applications.

Message
queues

The basic concepts of the MSMQ API are message and message queue.

Message A set of data that needs to be transmitted from an
application to another application on the same or a
different computer in a network.

Message queue A location where messages are stored, which can be
written and read by applications.

MSMQ
MSMQ

Application program
Application program

Message
queue

Writes
message Reads

message

Message
properties

A message may comprise one or more message properties.

Message property A field of a message that is recognized by MSMQ.

Typical message properties are message body, size of message body, label, priority,
sender id, etc. MSMQ represents each message in an efficient data structure that
uses only enough memory for the included properties.

6

Envoy MQ Programmer's Guide 2. How Envoy MQ Works with MSMQ

To create a message, an application specifies the message properties and supplies
the property values. The application then issues an MSMQ API call to send the
message.

To receive a message, an application issues an API call that reads the message
from the queue. The application specifies which properties to read; any other
properties in the message are ignored.

Of course, the message body may contain its own internal structure, which is
recognized only by the sending and receiving applications and not by MSMQ.
MSMQ does not restrict the content of the message body.

Application program

MSMQ

MSMQ

Application program

Message
queue contains
all message
properties

Writes message
containing several
selected properties

Can read all the
message properties or
specified properties only

Queue
locations and
names

Applications interact with MSMQ via the MSMQ API. An application can create or
open a message queue on any computer where MSMQ is running. The application
can send (write) or receive (read) messages on queues it has opened.

An application creates a queue by its path name, for example .\queue1.mq (a local
queue residing on the same computer as the application) or
machine2\queue1.mq (a remote queue residing on a different computer). MSMQ
assigns additional queue identifiers, such as a format name and a GUID (Global
Unique Identifier) code, which are used to identify queues uniquely throughout
the network.

Destination
and response
queues

The sending application writes to a destination queue, which is typically remote to
the sender and local to the receiving application. The receiving application reads
the message from the destination queue. If a reply is required, the message may
contain a response queue name, which is typically local to the sending application.
The receiving application writes its reply to the response queue, which is then read
by the sending application.

MSMQ MSMQ

Application program Application program

Remote
destination
queue

Local response
queue

Writes
message

Reads reply Reads
message Writes reply

 7

2. How Envoy MQ Works with MSMQ Envoy MQ Programmer's Guide

Connection-
less
messaging

This type of communication is called connectionless messaging because the sending
and receiving applications do not need to establish a connection in order to
transmit messages. The sending application can write a message to a queue even if
the receiving application is not running. Later, the receiving application can read
the queue and send a reply even if the sending application is not running.

MSMQ maintains temporary storage for messages that cannot be sent
immediately. Thus an application can write a message to a queue on a computer
that is not currently connected to the network. When a network connection is later
established, MSMQ automatically forwards the message to the remote destination
queue, without any further intervention by the user or an application program.
This process is called store and forward messaging.

Example To understand how MSMQ works, consider the following example.

The European sales manager of an American corporation needs to communicate
with a database located at the corporate headquarters in Los Angeles.

During the day, the sales manager enters data and queries on a laptop computer
offline. Her laptop application calls MSMQ API functions, which send messages to
a remote destination queue in Los Angeles. The application is unaware that the
laptop is not currently connected to Los Angeles. MSMQ simply stores the
messages temporarily on her laptop disk until a connection is established.

In the afternoon, she dials into the London branch office. The London computer is
not currently connected to Los Angeles. MSMQ automatically forwards the
messages to a second temporary location on the London computer.

In the evening, the London computer connects to Los Angeles and MSMQ
forwards the messages to the destination queue. The database application in Los
Angeles calls MSMQ API functions to read messages from the queue, completing
the transmission.

If a message requires a reply, the process is reversed. MSMQ in Los Angeles
transmits to London, which stores the reply temporarily until the sales manager
next dials in. The reply is then transmitted to a local queue on her laptop, where
the application program can read it.

Purpose of Envoy MQ

MSMQ is supported under the Microsoft Windows operating system. In a network
containing both Windows and other operating systems, MSMQ provides
messaging services only between the Windows systems on the network.

The Envoy MQ system is a supplemental product that extends MSMQ
functionality to non-Windows platforms such as UNIX, AS/400, Open VMS and
Java.

 Envoy MQ enables applications on non-Windows systems to use the MSMQ
API and access MSMQ queues.

8

Envoy MQ Programmer's Guide 2. How Envoy MQ Works with MSMQ

 Envoy MQ provides an interface between non-Windows systems and MSMQ.

 Communications between Windows systems on the network are provided by
MSMQ.

Envoy MQ enables all your network applications to exploit the full power of
MSMQ.

MSMQ
MSMQ

Envoy MQ Server

Windows Windows
Rest of network

Application program

Envoy MQ Client

Application program

UNIX,
AS/400,
etc.

UNIX,
AS/400,
etc.

Envoy MQ Client

Envoy MQ components

A Envoy MQ installation comprises Connector and Client components.

Envoy MQ
Clients

Envoy MQ Clients interface directly with your messaging applications. Envoy MQ
Clients are installed on non-Windows systems and communicate with the Envoy
MQ Connector (MQC).

Envoy MQ
Connector

You must install Envoy MQ Connector (MQC) on at least one Windows system in
the network. MQC provides the interface with MSMQ.

Optionally, you can install MQC on more than one Windows system in the
network. Installation of several MQC is recommended for:

 Continuity of service
 Load balancing
 Scalability from a small site to a large multi-site enterprise

Application programming interface

Using the Envoy MQ Client API, you can write application programs for non-
Windows platforms that access the MSMQ messaging capabilities.

The API is designed as similar as possible to the MSMQ API running in its native
Windows environment. For a discussion of the main differences, see Differences
between Envoy MQ and MSMQ below.

 9

2. How Envoy MQ Works with MSMQ Envoy MQ Programmer's Guide

The native language of the API is C. Envoy MQ Clients with programming
interfaces in RPG and COBOL are available for certain platforms such as AS/400
and HP e3000.

How Envoy MQ interacts with MSMQ

Envoy MQ interacts with MSMQ to form a fully integrated messaging network.
MSMQ and Envoy MQ applications share the same message queues and exchange
messages with each other freely. Thus:

 Envoy MQ and MSMQ applications can access the same queues, anywhere on
the network.

 Envoy MQ applications can write, read, and delete queues created by MSMQ
applications, and vice versa.

 Routing through Envoy MQ and MSMQ is completely automatic. An
application does not specify whether a message is routed through Envoy MQ,
MSMQ, or both to its final destination.

Differences between Envoy MQ and MSMQ

Envoy MQ implements the MSMQ API on external, non-Windows systems. In
addition, Envoy MQ acts as an agent accessing MSMQ on behalf of the external
systems. There are only a few minor differences between the Envoy MQ
implementation and the native MSMQ implementation running under Windows
(see Principles of MSMQ operation above).

Connectionless messaging

MSMQ communicates asynchronously. An application that calls the MSMQ API can
continue processing without waiting for an acknowledgment or completion of
transmission.

The Envoy MQ Connector (MQC) and Client communicate synchronously. The
Envoy MQ Client initiates a remote procedure call to MQC, which must be
completed before control is returned to the calling application. The Envoy MQ API
functions return an error message if a live Connector-Client connection does not
exist.

The limitation is unlikely to be important, provided that the Envoy MQ Client is
connected to MQC by a fast, reliable communication link. Beyond the MQC,
communication is managed by MSMQ and is completely asynchronous. MSMQ
stores the messages temporarily on the Windows system if the destination system
is not currently available.

10

Envoy MQ Programmer's Guide 2. How Envoy MQ Works with MSMQ

Envoy MQ Server addressing

A Envoy MQ application can send and receive messages via any MQC on your
network. You should configure a default MQC connection for each Envoy MQ
Client. An application can connect to a non-default MQC by calling an API
function.

In multithreaded applications, each thread must establish a connection to the MQC
before calling any other Envoy MQ API function. The connection can be closed
afterwards and reopened to a different MQC.

If a thread loses its connection with the MQC, it can no longer issue Envoy MQ
API calls. To continue accessing Envoy MQ, the thread must reopen an MQC
connection.

Queue locations and names

MQC maintains all the queues on behalf of Envoy MQ Clients. The queues are
physically located on the Windows network.

Local and remote queues are defined relative to the MQC location, not to the Envoy
MQ Client. For example, the name .\queue1.mq refers to a local queue residing
on the same computer as MQC. The name machine2\queue1.mq refers to a
remote queue residing on a different Windows computer from MQC.

MSMQ MSMQ

Envoy MQ Server

Envoy MQ Client Envoy MQ Client
Synchronous
(connection required)

Synchronous
(connection required)

Asynchronous
(connection not required)

Asynchronous

Local
queue (relative
to Envoy MQ Server) Remote

queue

Conflicts between local queue names

In MSMQ, the scope of a local queue path name is a single computer. Two MSMQ
applications running on different computers can use the same local name (e.g.,
.\queue1.mq) without any possibility of conflict.

 11

2. How Envoy MQ Works with MSMQ Envoy MQ Programmer's Guide

The scope of a local name in Envoy MQ is the computer on which the MQC is
installed. If several Envoy MQ applications (running on the same or different
computers) create queues local to the same MQC, each application should check
that the requested name is not already in use.

Scope of handles and cursors

In MSMQ, different threads of the same process can share a single MSMQ queue
handle.

Each thread opens a separate channel from the Envoy MQ Client to the MQC.
Although different threads can access the same queue, each must do so with its
own independent queue handle.

Similar considerations apply to MSMQ locate handles and cursors and to
transaction handles. The scope of handles and cursors in Envoy MQ is a single
thread.

Asynchronous receive

Envoy MQ does not implement the asynchronous receive (callback) feature of
MSMQ, in which MSMQ automatically activates a specified function in an
application when a message is received on a queue.

A Envoy MQ application can simulate the callback by periodically checking the
queue for a message and activating the desired function when the message is
received.

Envoy MQ Connector security

Access to MQC is controlled by user name and password protection. The system
administrator must register the authorized non-Windows users in the Windows
system. For details, see the Envoy MQ Connector Administrator's Guide.

Message security

A Envoy MQ application can call the MSMQ authentication and encryption
services to secure a message during transmission. There are two options for
authentication:

 The user can previously register a certificate in MSMQ, on the Windows
computer where MQC is installed (see the Envoy MQ Connector Administrator's
Guide.

12

Envoy MQ Programmer's Guide 2. How Envoy MQ Works with MSMQ

 A program running on a non-Windows system can register a certificate by
calling the Envoy MQ MQRegisterCertificate API function.

The authentication and encryption apply only during the transmission between
Windows systems. Authentication and encryption are not supported for the
portion of the transmission route between the MQC and Clients. If you require
authentication or encryption between non-Windows systems, then your
application should access its own RSA (or similar) service.

Queue security

Envoy MQ does not extend the MSMQ API for queue access control to non-
Windows platforms. You can control the access to individual queues manually
using the MSMQ Explorer.

Queue manager properties

The MSMQ property PROPID_QM_CONNECTION is not supported.

Transaction support

Envoy MQ Clients provide API functions to begin, commit, or abort an MSMQ
transaction. If the transaction is aborted, the Envoy MQ operations are rolled back
as are MSMQ operations in the Windows system.

The Envoy MQ transaction functions are similar to those provided by native
MSMQ, with certain differences in implementation. In multithreaded applications,
the scope of a transaction handle is a single thread. A transaction handle cannot be
shared by more than one thread.

Return codes

In general, the Envoy MQ Client API functions return the same error codes as the
corresponding MSMQ functions.

 13

2. How Envoy MQ Works with MSMQ Envoy MQ Programmer's Guide

Programming

The data structures, API functions, and other aspects of the Envoy MQ API are
described in Chapter 4, Programming Messaging Applications. A few slight
differences in the implementation on different operating systems are described in
the documentation for the specific Envoy MQ Clients.

14

Envoy MQ Programmer's Guide 3. Installation

Chapter 3

Installation

This chapter explains how to install, configure, and test Envoy MQ Client under
most operating systems.

 For possible minor differences regarding particular systems, please see the documentation
for the specific Envoy MQ Client.

System and network requirements

Operating
systems

There are currently Envoy MQ Clients for the following operating systems:

 Sun Solaris 2.5 or higher
UNIX
operating
systems

 IBM AIX 4.X or higher

 HP-UX 11.x

 SCO-Unix

 Compaq Tru64 Unix 5.X

 Linux

Non-UNIX
systems

 IBM OS/400 V3R2 or higher

 Java

 HP e3000 MPE/iX 5.5 or higher

 DEC Alpha OpenVMS 6.2

 DEC VAX OpenVMS 6.2

 Please contact Envoy Technologies or see our Web site (http://www.envoytech.com)
for information about other operating systems and versions, not listed above.

 15

3. Installation Envoy MQ Programmer's Guide

Unisys
ClearPath
systems

There is a version of Envoy MQ Client for Unisys ClearPath systems. Please direct
any inquiries about this version or its support to your Unisys representative.

 Unisys HMP NX, NX42XX through NX48XX, using operating system MCP
Level 44.1 and higher

 Unisys HMP IX, IX44XX through IX48XX, using operating system OS2200 Level
SBR6 or higher

Additional
requirements

 TCP/IP communication link to at least one Windows system on which Envoy
MQ Server (version 1.2) is installed (for CICS, SNA communication is also
supported)

 Free disk space for the Envoy MQ Client software

Where to
install

You should install Envoy MQ Client on each non-Windows computer that you
want to connect to the MSMQ messaging network.

Installation procedure

Insert the Envoy MQ Client CD-ROM in a Windows system on your network. On
the CD-ROM, locate the folder for the non-Windows platform (for example Sun
Solaris or AS/400) where you want to install Envoy MQ Client.

Copy all the files in the CD-ROM folder, via FTP or a network drive, to an empty
directory on the hard disk of the non-Windows computer. The suggested directory
name is EMQDC, but you may choose any other name if preferred. Place the
directory on the path of users whose programs will make Envoy MQ API calls.

Configuration

Before you can use Envoy MQ Client, you must configure it with parameters such
as:

 The connection and logon information for MQC

 A code page that Envoy MQ uses to translate string-valued message properties
to UNICODE

Configuration files FMQROOT
 FMQOVERRIDE

To configure Envoy MQ Client, you need to create one or more configuration files
on the Envoy MQ Client computer. The following environment variables define
the location of the files:

16

Envoy MQ Programmer's Guide 3. Installation

FMQROOT (Required) The directory location of the root
configuration file, which is called FMQ.ENV. The value of
FMQROOT should be the Envoy MQ Client directory path,
not including a filename.

FMQOVERRIDE (Optional) The location of an optional, secondary file that
supplements and overrides the settings in FMQROOT. Set
FMQOVERRIDE to the directory path, including a
filename.

For example, on a UNIX system you might define:

setenv FMQROOT /home/FMQDC
setenv FMQOVERRIDE /usr/users/jdoe/myenv.env

The FMQROOT file contains global default settings for all Envoy MQ applications
on the computer. The FMQOVERRIDE file can contain supplementary settings for a
particular user or application. For example, if FMQOVERRIDE contains additional
Envoy MQ Server connections, an application can connect to any of the Servers
defined in either FMQROOT or FMQOVERRIDE. In case of conflict between the
settings in the files, the FMQOVERRIDE settings override FMQROOT.

The FMQOVERRIDE file is not required. If it is missing, the system takes all settings
from FMQROOT. Likewise, if a particular setting is missing from FMQOVERRIDE, the
system takes the setting from FMQROOT. You can create any number of
configuration files and switch between them by changing the value of
FMQOVERRIDE.

Command line utility to set configuration parameters

You can use the fmqdccfg utility, which is supplied with Envoy MQ Client, to
edit the configuration files.

On the command line, enter the fmqdccfg utility with the following command:

fmqdccfg -<switch><value> [-<switch><value>] ...

 The switches are described in the following paragraphs. For the -srv, -srvd, -cp, and
-cpd switches, insert a space character between the switch and the value. All other
switches must be followed immediately by a value with no intervening space.

Configuration
filename
switch

Use the following switch to specify the configuration filename:

-env Name and path of the configuration file to edit (default
FMQROOT).

Server
connection
switches

The following switches define a connection to a Envoy MQ Server. You can call
fmqdccfg repeatedly to define multiple connections. Later, an application can
connect to a Server by specifying the connection name in the FMQConnect API
function (see Chapter 4, Programming Messaging Applications).

-srv The connection name.

-node IP address of the Server.

 17

3. Installation Envoy MQ Programmer's Guide

-port TCP/IP port of the Server.

-to TCP/IP timeout of the Client/Server connection, in
seconds (default 30 seconds).

 This timeout is independent of the MQReceiveMessage() timeout. Envoy MQ honors
an MQReceiveMessage() timeout that is longer than the TCP/IP timeout, or even
infinite.

-dmn, -user, -pwd Windows logon information for the MQC: domain name,
user name, and password. The password is stored in an
encrypted form.

 You should enter the Windows logon information only if you connect to the MQC using
the explicit logon method. See Logon methods below for an explanation.

-def Set the default connection for the Envoy MQ Client
(specify the connection name, which you should
previously define using the -srv switch).

-srvd Delete a MQC connection definition from the
configuration file.

-uses Where a parameter has not been explicitly defined for a
connection, use the parameters of another connection as
defaults (specify the second connection name).

Code page
switches

Envoy MQ automatically translates string-valued message properties (for example
queue names) to UNICODE. For this to work, you need a UNICODE translation
table for the code page that your application uses. Use the following switches to
download code-page tables from MQC and to manage the tables.

Before you download code-page tables, you should define a default MQC
connection using the -def switch (see above) or using the FMQCONNECT
environment variable (see Environment variables below). The desired code-page
tables must be installed on the Envoy MQ Server (see the Installation chapter of the
Envoy MQ Connector Administrator's Guide for instructions).

You can call fmqdccfg repeatedly, using the -cp switch, to download and store
multiple code-page tables. When an application runs, Envoy MQ Client uses the
table for the code page that is currently in effect.

-cp Download a code-page table from the default Envoy MQ
Server (specify the code page number and a path on the
local machine to store the table).

-cpd Delete a code-page table (specify the code page number).

-scp Select the code-page table that Envoy MQ Client should
use to translate to and from UNICODE (specify one of
the code page numbers that you downloaded).

Envoy MQ Client uses the system default code page if you do not specify the -scp
switch.

18

Envoy MQ Programmer's Guide 3. Installation

Switches to
display
information

The following switches display information:

-l Lists the current settings in the configuration file.

-? Displays help for the fmqdccfg utility.

Examples Define a Envoy MQ Server in a particular configuration file:

fmqdccfg –env/usr/users/jdoe/myenv.env -srv newserver2 –
node192.1.1.2 –port1100

Define a connection called newserver, at IP address 192.1.1.1, port 1100:

fmqdccfg -srv newserver -node192.1.1.1 -port1100

Set newserver as the default connection:

fmqdccfg -defnewserver

Set the default connection to a timeout of 20 seconds:

fmqdccfg -defnewserver -to20

Set the Windows logon parameters for a connection:

fmqdccfg -srv newserver –dmnEarth –userJDoe –pwdTopSecret

Define a connection called server2, whose parameters are identical to those of
newserver except for the IP address.

fmqdccfg -srv server2 -usesnewserver -node192.1.1.2

Download a translation table for code page 737 and store the table in a specified
file:

fmqdccfg -cp 737 /usr/users/fmq/codepages/cp737.tbl

Set the default code page of newserver to 737.

fmqdccfg -srv newserver -scp737

Define a connection called server3, make it the default, download a code-page
table, and define the code page as the default, all in a single command:

fmqdccfg –srv server3 –node192.1.1.3 –port1100 –defserver3 –
cp 850 /usr/users/fmq/codepages/cp850.tbl –scp850

Deleting
configuration
parameters

The -srv and -cp switches have a corresponding delete switch. For example, to
delete the newserver connection:

fmqdccfg -srvd newserver

 19

3. Installation Envoy MQ Programmer's Guide

Delete the translation table for code page 1249:

fmqdccfg -cpd 1249

To delete other settings, specify the switch without a value. For example, to delete
the port setting of the newserver connection:

fmqdccfg -srv newserver -port

To unassign a default connection, specify the -def switch without a value. If you
do this, and you do not set a default using the FMQCONNECT environment variable,
then your applications must call the FMQConnect function to connect to MQC (see
Connecting to Envoy MQ Connector in Chapter 4, Programming Messaging
Applications).

fmqdccfg -def

Full-screen configuration editor

On some platforms, such as the IBM AS/400, Envoy MQ Client has a full-screen
configuration editor. To set the parameters, follow the instructions on the screen or
in the documentation for the specific Envoy MQ Client. The parameters are
identical to those of the command line fmqdccfg utility.

20

Envoy MQ Programmer's Guide 3. Installation

Editing the configuration file manually

You can edit a configuration file manually using any text editor. A connection
password must be encrypted, however, so you can enter a password only using
the Envoy MQ Client utilities.

Environment variables

Envoy MQ Client uses the FMQROOT and FMQOVERRIDE environment variables to
define the location of configuration files (see Configuration files above.)

Optionally, you can define several additional environment variables to configure
Envoy MQ Client.

FMQLOGPATH The directory path of the Envoy MQ Client debug log, or
CONSOLE to send the log to stdout (see Debug logging in
Chapter 4, Programming Messaging Applications).

FMQDEBUG Enable debug logging. To enable logging, define
FMQDEBUG with any value (for example true). To
disable logging, delete the FMQDEBUG definition.

FMQCONNECT The name of the default MQC connection (overrides the
default connection in the configuration files).

For example, on a UNIX system you might start debug logging and define a
connection as follows:

setenv FMQLOGPATH /usr/users/jdoe
setenv FMQDEBUG true
setenv FMQCONNECT newserver

You can stop debug logging by deleting the FMQDEBUG definition:

unsetenv FMQDEBUG

Security of Envoy MQ Client applications

Before a Envoy MQ Client application can access an MQC, you must register a
Windows user name and password. To register new users or delete existing
authorizations, see the Installation chapter of the Envoy MQ Connector
Administrator's Guide.

 IMPORTANT Register your own user name immediately so you can run the
Installation test, below.

 21

3. Installation Envoy MQ Programmer's Guide

Logon methods

There are two ways that a Envoy MQ Client can connect to MQC:

Default logon method Access is controlled by the user name under which a
Envoy MQ application runs on a non-Windows system.
The application does not need to send a user name and
password explicitly.

Explicit logon method Access is controlled by a Windows logon. A Envoy MQ
application must send a domain name, a user name, and
a password that are valid in Windows. MQC verifies the
user and password in the specified domain.

If you use the default method, you need to register the user name, together with
the MQC prefix, in Windows (see the Installation chapter of the Envoy MQ
Connector Administrator's Guide for instructions). You do not need to specify a
domain name, user name, or password (-dmn, -user, and -pwd switches) when
you define the MQC connection (see Configuration above).

If you use the explicit method, you need to register the user name and password,
together with MQC password, in Windows. You must specify a domain name,
user name, and password in the Client connection definition.

Installation test

To test the operation of Envoy MQ Client, run the gwping and gwpong programs
supplied with the Envoy MQ software. These programs conduct a ping-pong test of
the messaging system:

 The gwping program sends a ping message via Envoy MQ Client and MQC to
a message queue.

 The gwpong program sends a pong reply to a second message queue, where it is
read by gwping.

 Executable files and the C source code for gwping and gwpong are supplied in your
Envoy MQ samples directory (see Chapter 5, Sample Application).

Default test To run a default test of communication from Envoy MQ Client to MQC and back,
run the gwpong and gwping batch or script files, which are supplied in the Envoy
MQ Client samples/pingpong directory for your platform.

 The names of the files may differ on some platforms. On some platforms, such as AS/400,
there is a full-screen interface to run the test programs. For details, see the Envoy MQ
Client documentation for your platform.

22

Envoy MQ Programmer's Guide 3. Installation

Open a command window and make your Envoy MQ Client samples/pingpong
directory the working directory. To start the gwpong program, enter the
command:

gwpong

Open a new command window, and again make your Envoy MQ
samples/pingpong directory the working directory. To start the gwping program,
enter the command:

gwping –n 10

The gwping program sends a sequence of ten test messages, each containing the
text "PING", to a queue called .\PongQ. The gwpong program waits to receive
the message, and then sends it back to a queue called .\PingQ. The gwping
program reads the reply from .\PingQ and signals you when it is received.

Results For each of the ten test messages, gwping should display Ping sent and Received
reply together with the elapsed time.

In the event of an error, review the installation and configuration of the Envoy MQ
Client and MQC.

Optional tests Optionally, you may enter gwping with any of the following command-line
switches:

-n <number of iterations> Number of ping-pong cycles tested (default = 1).

-q <pong queue> An MSMQ queue where gwping sends the ping message
to be read by gwpong (default = ".\PongQ").

-p <ping queue> An MSMQ queue where gwping reads the pong reply
(default = ".\PingQ").

-s <string to send> The text of the test message (default = "PING").

-l <message length> Length of the message text. By default, this is the length
of the message string (-s switch). You may specify a
larger value to test memory limitations, etc.

-r Sends messages of random length up to the maximum
specified by -l.

-v Abbreviated display of test results (default = verbose).

You may enter gwpong with the following switches:

-q <pong queue> Destination queue for the ping message (must match the
-q switch of gwping, default = ".\PongQ").

-v Abbreviated display of test results (default = verbose).

-c <sample size> Display results every <sample size> messages (default =
1).

For example, to send a single "PING" message back and forth between gwping
and gwpong, enter:

(In first command window) gwpong

 23

3. Installation Envoy MQ Programmer's Guide

(In second window) gwping

To send the message "hello, world" five times, enter:

(In first command window) gwpong
(In second window) gwping -n 5 -s "hello, world"

To test the response of gwpong to several gwping programs sending messages
concurrently:

(In first command window) gwpong
(In second window) gwping -n 10 -p ".\queue1" -s "ping
1"
(In third window) gwping -n 10 -p ".\queue2" -s "ping
2"
(In fourth window) gwping -n 10 -p ".\queue3" -s "ping
3"

The gwpong program replies to the appropriate response queue for each message
that it receives.

% gwping -n 100 -s "hello, world"
Attempting to create Pong queue .\PongQ
Pong Queue .\PongQ Exists: 0XC0090006
Pong queue .\PongQ Format name = PUBLIC=798831c1-2b74-11d0-9760-00a024804bc1

Attempting to open Pong queue for send
Pong Queue .\PongQ Opened
Attempting to create ping queue .\PingQ
Ping queue .\PingQ Format name = PUBLIC=798831cc-2b74-11d0-9760-00a024804bc1

Ping Queue .\PingQ Opened
Ping #: 1 "hello, world" sent to queue .\PongQ
Received reply 1: "hello, world"
Ping #: 2 "hello, world" sent to queue .\PongQ
Received reply 2: "hello, world"
...
Total time 17 seconds
press the <Enter> Key...

Testing
communica-
tion to
another
computer

You can test communication from Envoy MQ Client, via MQC, to another
computer.

For example, suppose your network contains a Envoy MQ Client installation,
connected by default to a MQC installed on a Windows system called GATEWAY1.
The network also contains another system running Envoy MQ Client, connected to
an MQC on Windows system GATEWAY2.

To test the communication, enter the following command on the second computer:

gwpong -q ".\PongQ"

On the first computer, enter the command:

gwping -n 10 -q "GATEWAY2\PongQ"

The -n 10 switch repeats the ping-pong cycle 10 times.

24

Envoy MQ Programmer's Guide 4. Programming Messaging Applications

Chapter 4

Programming Messaging
Applications

The Envoy MQ Client implements a subset of the MSMQ API on non-Windows
operating systems. With a few exceptions, the implementation is identical to
MSMQ. Source code written for MSMQ should run on the Envoy MQ Client with
little or no adaptation.

Before programming Envoy MQ Client applications, you should be familiar with
the Microsoft MSMQ API. Please refer to the Microsoft documentation and SDK
online help for information on the data structures, message properties, and API
functions defined in MSMQ. The Microsoft documentation provides complete and
definitive documentation of the API, which is beyond the scope of this chapter.

In addition, you should review Chapter 2, How Envoy MQ Works with MSMQ,
especially the section Differences between Envoy MQ and MSMQ. That section
explains general considerations for programming Envoy MQ applications and for
porting MSMQ applications to Envoy MQ.

This chapter documents the specific differences of Envoy MQ Client from MSMQ,
including:

 Header files and libraries needed to compile and link Envoy MQ Client
applications

 Code page translation
 Error codes
 Compiling and linking
 Minor differences in implementation of the MSMQ API functions

 25

4. Programming Messaging Applications Envoy MQ Programmer's Guide

Envoy MQ Client provides several types of API functions that have no direct
equivalent in MSMQ:

 Opening and closing MQC connections
 Transaction support

Header files wintypes.h
 mq.h
 fmqpubd.h

Include the following header files and definition in your Envoy MQ Client
applications. The files are found in your Envoy MQ include directory.

#include <wintypes.h>
#include <mq.h>

Header file Description

wintypes.
h

Windows data types and other definitions used in the Envoy MQ API.

mq.h Main API header file. Declares data structures and API functions similar
to those of the native MSMQ API.

The Envoy MQ Client directory contains a third header file, called fmqpubd.h,
which provides additional Envoy MQ declarations. The mq.h file includes
fmqpubd.h, so you don't need to reference fmqpubd.h explicitly in your
program code.

Header file Description

fmqpubd.h Additional declarations for Envoy MQ API functions that have no analog
in MSMQ, such as FMQConnect, FMQDisconnect,
FMQCommit, and FMQAbort.

Data structures MQVAL

The data structures defined in Envoy MQ Client are identical to those of MSMQ.

The most important structures are:

MQMSGPROPS Contains a set of message properties and their values.

MQQUEUEPROPS Contains a set of queue properties and their values.

MQQMPROPS Contains a set of queue manager properties and their
values.

26

Envoy MQ Programmer's Guide 4. Programming Messaging Applications

MQPROPVARIANT Stores a property value.

 For a complete list of the MSMQ data structures and their declarations, see the Microsoft
MSMQ documentation. The Microsoft documentation refers to a PROPVARIANT
structure. PROPVARIANT and MQPROPVARIANT are equivalent and can be used
interchangeably.

Notation of property value fields MQPROPVARIANT
 MQVAL

Named union
in the
MQPROP
VARIANT
structure

In MSMQ, the MQPROPVARIANT structure uses an unnamed union to store a
property value. Unnamed unions are not supported by some C compilers that are
commonly used on non-Windows platforms. The Envoy MQ version of
MQPROPVARIANT therefore uses a named union (called val) for the above
purpose.

The following table shows the difference between the MSMQ and Envoy MQ
declarations of MQPROPVARIANT.

In MSMQ In Envoy MQ
struct tagMQPROPVARIANT {
 /* nonunion fields */
 union
 { /* union fields */ };
 };

typedef struct tagMQPROPVARIANT
MQPROPVARIANT;

struct tagMQPROPVARIANT {
 /* nonunion fields */
 union
 { /* union fields */ }
val;
 };

typedef struct tagMQPROPVARIANT
MQPROPVARIANT;

Union
notation

The use of a named union means that the notation for property value fields differs
in MSMQ applications and in Envoy MQ Client applications.

For example, suppose that PropVar1 is an MQPROPVARIANT structure storing the
body of a message. The union field for the message body property is called caub.
In an MSMQ application, you can specify the message body using the following
notation:

PropVar1.caub

In a Envoy MQ application, however, you must specify the name of the union. The
Envoy MQ notation is therefore:

PropVar1.val.caub

Portable
MQVAL
notation

To write code that runs with both MSMQ and Envoy MQ, use the MQVAL macro to
specify the name of the union field.

The MQVAL macro is defined in the Envoy MQ header file wintypes.h, in the
following way:

 27

4. Programming Messaging Applications Envoy MQ Programmer's Guide

#ifdef _WIN32
define MQVAL(x) x
#else
define MQVAL(x) val.x
#endif

For example, you can write the message body field using the following notation:

PropVar1.MQVAL(caub)

On a Windows system, the compiler converts this notation to PropVar1.caub, as
required to run with MSMQ. On a non-Windows system, the compiler converts
the notation to PropVar1.val.caub, as required to run with Envoy MQ.

Code page translation

Envoy MQ and MSMQ communicate using the UNICODE (2-byte) character set.
Envoy MQ automatically translates string properties and parameters (for example
queue names) from many different code pages to UNICODE, and vice versa.

To enable the translation, you must download the appropriate code-page
translation table from MQC. For instructions, see Configuration in Chapter 3,
Installation. Envoy MQ uses the translation table for the code page that is active
when your application is running.

Message body
property

Envoy MQ Client translates the message body property (PROPID_M_BODY) if the
message body type property (PROPID_M_BODY_TYPE) is VT_LPWSTR or
VT_BSTR.

Envoy MQ Client does not translate a message body of any other type, or a
message that does not have a body type property, because it doesn't know whether
the body contains text or binary data. Instead, you should program whatever
conversions are needed.

Sending a
message body
with
translation

When you send a message body having one of the translated types, Envoy MQ
Client converts the contents of the message buffer (pElems field) to UNICODE
and adjusts the message size indicator (cElems field) accordingly.

For example, suppose your Envoy MQ Client application sends a "hello"
message of 6 bytes (counting the null terminator). The message should have a
message body property with the following characteristics:

 A pElems buffer of at least 6 bytes, storing the "hello" string
 A cElems value of 6

The message should also have a body type property with the value VT_LPWSTR.

When the application calls MQSendMessage() with this message, Envoy MQ
Client converts "hello" to a 12-byte UNICODE representation. Thus message is
stored on the destination queue in the UNICODE representation, with a cElems
value of 12.

28

Envoy MQ Programmer's Guide 4. Programming Messaging Applications

Receiving a
message body
with
translation

When you receive a message body having one of the translated types, Envoy MQ
Client converts the pElems buffer from UNICODE. Envoy MQ Client does not
adjust the cElems buffer size indicator.

For example, suppose your application receives a 12-byte UNICODE "hello"
message having a body type property of VT_LPWSTR. The application must
allocate a buffer of at least 12 bytes to receive the message. The application should
then call MQReceiveMessage() with this buffer. Envoy MQ Client translates the
message from UNICODE, so the application actually receives 6 meaningful bytes
in the buffer. The received message body still has a cElems value of 12.

To determine the required receive buffer size before you receive a message, you
can call MQReceiveMessage() to peek at the PROPID_M_BODY_SIZE property.
Allocate the buffer and call MQReceiveMessage() again to receive
PROPID_M_BODY.

Message
extension
property

Envoy MQ does not translate the message extension property
(PROPID_M_EXTENSION) because it does not know the internal structure of the
extension.

Examples For source code examples illustrating how to send and receive messages with
code-page translation, see Chapter 5, Sample Application.

Error handling

Envoy MQ Client returns two types of error or status values identical to MSMQ:

 Function return values—returned by API functions

 Property status values—reported in the property status fields of messages

In addition, Envoy MQ Client provides an error handling mechanism for problems
in Envoy MQ communication or operation.

 Envoy MQ errors—returned by API functions as a generic MQ_ERROR value

Function return values MQ_OK
 MQ_ERROR_...
 MQ_INFORMATION_...

The Envoy MQ Client API functions return the same values as MSMQ API
functions, for example:

HRESULT hr;

/* Create a queue */
hr = MQCreateQueue(NULL, &qprops, wsFormat, &dwSize);

 29

4. Programming Messaging Applications Envoy MQ Programmer's Guide

/* Check if creation failed, not because queue already exists
*/
if (FAILED(hr))
{ if (hr != MQ_ERROR_QUEUE_EXISTS)
 Error("Cannot create queue.", hr);
}

The MQ_... return codes are defined in the mq.h header file. For a complete list of
the return codes and their interpretation, see the Microsoft MSMQ documentation.

Illegal
message
property error

In MSMQ, if a message property structure contains an invalid property, an API
function may succeed and return MQ_INFORMATION_ILLEGAL_PROPERTY. In
Envoy MQ Client, the function fails and returns MQ_ERROR_ILLEGAL_PROPID.

Property status values aStatus[]

Errors in setting or reading specific message properties are recorded in the property
status (aStatus[]) fields of the message data structure. The interpretation of
these fields is identical in MSMQ and Envoy MQ.

For complete information, see the Microsoft MSMQ documentation.

Envoy MQ errors

Certain errors may occur in Envoy MQ that do not occur in MSMQ. An example is
a communication failure between the Envoy MQ Client and MQC.

In the event of such an error, the Envoy MQ Client API functions return the
generic MSMQ error MQ_ERROR. This error value is almost never returned by
MSMQ itself.

Error logging

Envoy MQ Client places error, warning, and information messages in an error log.

On most Envoy MQ platforms, the log file is log/fmqsys.log, in the Envoy MQ
Client directory. Check the Envoy MQ documentation for your platform to
confirm the exact log location.

Debug logging

Optionally, you can enable debug logging. If you do this, Envoy MQ Client stores a
copy of all error, warning, and information messages in a special debug log.

30

Envoy MQ Programmer's Guide 4. Programming Messaging Applications

To enable debug logging, set the FMQDEBUG environment variable (see
Environment variables in Chapter 3, Installation) or call the FMQDebug() function
(see Enabling debug logging below in this chapter).

Each process has a separate debug log, named dc_xxxx.log, where xxxx is the
process id (for example dc_1234.log). On most Envoy MQ platforms, the
default location of debug logs is the log/user subdirectory of the Envoy MQ
Client directory (check the Envoy MQ documentation for your platform to confirm
the exact location). To set a different location, set the FMQLOGPATH environment
variable or call the FMQSetLogPath() function.

Link libraries

Link your Envoy MQ Client application to the Envoy MQ library for your
operating system:

Operating system Link libraries

UNIX libfmqdc.a (referenced as –lfmqdc)

Other Please consult the Envoy MQ Client documentation for your system,
supplied with the Envoy MQ software

Sample
makefile

The following is a sample makefile for the Sun Solaris version of the gwping and
gwpong programs.

CC=cc
CC_FLAGS=-c -I../../include
LINK_FLAGS=-L../../lib -lthread -lfmqdc -lsocket -lnsl
TARGET=gwpong gwping
PONGDEP=gwpong.o
PINGDEP=gwping.o

all: $(TARGET)

clean:
 rm $(PONGDEP) $(PINGDEP) $(TARGET)

.c.o:
 $(CC) $(CC_FLAGS) $< -o $@

gwpong: $(PONGDEP)
 $(CC) -o $@ $(PONGDEP) $(LINK_FLAGS)

gwping: $(PINGDEP)
 $(CC) -o $@ $(PINGDEP) $(LINK_FLAGS)

 31

4. Programming Messaging Applications Envoy MQ Programmer's Guide

MSMQ API functions

The following is a complete list of MSMQ API functions and their implementation
in the Envoy MQ Client. Implementations marked with an asterisk (Yes*) differ in
some way from their MSMQ equivalents. For details, see the discussions of specific
functions.

For full information on the API functions, see the Microsoft MSMQ
documentation.

MSMQ API function Description Implemented in
Envoy MQ Client?

MQCreateQueue() Create a message queue Yes*

MQDeleteQueue() Delete a queue Yes

MQLocateBegin()
MQLocateNext()
MQLocateEnd()

Search for queues with specified properties Yes*

MQOpenQueue()
MQCloseQueue()

Access a queue for reading or writing Yes

MQSendMessage() Write a message to a queue Yes

MQReceiveMessage() Read a message from a queue Yes*

MQCreateCursor()
MQCloseCursor()

Enumerate messages on a queue (e.g., to peek
at successive messages without deleting)

Yes

MQSetQueueProperties()
MQGetQueueProperties()

Set or retrieve properties of a queue Yes

MQSetQueueSecurity()
MQGetQueueSecurity()

Set or retrieve the read/write/delete access
privileges of individual queues

No

MQRegisterCertificate Register a certificate used to send authenticated
messages

Yes*

MQGetSecurityContext()
MQFreeSecurityContext()

Obtain or free a security context handle used to
authenticate messages

Yes*

MQFreeMemory() Free allocated memory Yes

MQHandleToFormatName()
MQPathNameToFormatName()
MQInstanceToFormatName()

Convert queue identifiers to MSMQ format
names

Yes

MQGetMachineProperties() Retrieve properties of the MSMQ Queue
Manager

Yes

MQBeginTransaction() Create a new transaction Yes

32

Envoy MQ Programmer's Guide 4. Programming Messaging Applications

Creating a queue MQCreateQueue()

The pSecurityDescriptor argument must be either NULL (default security
policy) or PSD_SPECIALACCESS_ALL (defined in fmqpubd.h, providing full
queue access rights to everyone).

Searching for queues MQLocateBegin()

If this function is called with the pColumns argument set to NULL, MSMQ returns
an MQ_ERROR_INSUFFICIENT_RESOURCES error. Envoy MQ Client returns an
MQ_ERROR_ILLEGAL_MQCOLUMNS error instead.

Receiving a message MQReceiveMessage()

To receive the message body property (PROPID_M_BODY), you must supply a
receive buffer that is large enough for the entire body. Even if Envoy MQ Client
translates the body from UNICODE to the local code page, you must allocate a
buffer that is large enough to contain the UNICODE representation (usually twice
the size of the code-page representation, see Code page translation above).

Envoy MQ Client does not support the asynchronous receive (callback) feature of
MSMQ. Therefore the lpOverlapped and fnReceiveCallback arguments of
MQReceiveMessage() must be NULL.

Queue access privileges MQSetQueueSecurity()
 MQGetQueueSecurity()

These functions are not implemented in Envoy MQ Client. Calls to these functions
return MQ_ERROR.

Retrieving security context MQRegisterCertificate()
 MQGetSecurityContext()
 MQFreeSecurityContext()

Before you can send authenticated messages, you need to register an certificate on
the Windows system where MQC is installed. There are two options for doing
this:

 33

4. Programming Messaging Applications Envoy MQ Programmer's Guide

 You can register a certificate manually on the Windows system. For the
registration procedure, see the Installation chapter in the Envoy MQ Connector
Administrator's Guide.

 A program can register a certificate by calling the Envoy MQ API function
MQRegisterCertificate. The function operates identically to the MSMQ
MQRegisterCertificate function, except that the registration is on the
remote Windows system and not on the local system.

If you store a certificate on the external system, send it in the lpCertBuffer
argument of MQGetSecurityContext(). Otherwise, the function seeks an
internal MSMQ certificate for the Envoy MQ user.

 Authentication is provided for the portion of the transmission route between Windows
systems, not for the portion between Windows and non-Windows systems (see
Differences between Envoy MQ and MSMQ in Chapter 2, How Envoy MQ Works
with MSMQ).

API functions for connecting to Envoy MQ Connector

Envoy MQ Client provides the following API functions for connecting to an MQC:

Envoy MQ Client API function Description

FMQConnect() Open a session with a specified MQC through which Envoy MQ Client routes
messages

FMQDisconnect() Close the session to the MQC

Connecting to Envoy MQ Connector FMQConnect()

The first time your application calls a Envoy MQ API function, Envoy MQ Client
automatically connects to the default MQC.

You can call the FMQConnect() function to establish a non-default connection.
The connection must be defined in your Client configuration.

For each thread of a process, you must call FMQConnect() before any other call to
the Envoy MQ API. Otherwise Envoy MQ Client automatically connects to the
default MQC.

You cannot call FMQConnect() if a connection is already open. You must close
the connection by calling FMQDisconnect() before calling FMQConnect() (see
Disconnecting from Envoy MQ Connector below). If a connection is lost, you must
call FMQDisconnect() before re-establishing a connection.

34

Envoy MQ Programmer's Guide 4. Programming Messaging Applications

The prototype of FMQConnect() is declared in fmqpubd.h. The function has no
equivalent in MSMQ.

HRESULT APIENTRY FMQConnect(PCSTR pszQMName, HANDLE*
phConnect);

Prototype

Arguments pszQMName The name of an MQC connection. To define connections,
see Configuration in Chapter 3, Installation. If NULL,
FMQConnect uses the default connection.

phConnect (Output) The connection handle.

Return value MQ_OK for success.

HANDLE h; Example
FMQConnect("newserver", &h);

 In Envoy MQ version 1.0, the FMQConnect() function accepted Windows logon
arguments directly (host, domain, user, and password). This function still exists, but has
been renamed FMQV1Connect().

Although you may substitute FMQV1Connect() temporarily in your existing Envoy
MQ applications, we suggest that you change to the new FMQConnect() syntax. This
lets you maintain connection information more easily and ensures compatibility with
future versions of Envoy MQ.

Disconnecting from Envoy MQ Connector FMQDisconnect()

Use FMQDisconnect() to close the session with an MQC. You can call
FMQConnect() for the same or a different MQC later on (see Connecting to Envoy
MQ Connector above).

The operating system automatically closes the session with an MQC when your
application process ends. In multithreaded applications, however, terminating a
thread does not automatically disconnect the MQC You should call the
FMQDisconnect() function to close the session before you end the thread.
Otherwise, subsequent Envoy MQ API calls from another thread may give
unexpected results.

The prototype of FMQDisconnect() is declared in fmqpubd.h. The function has
no equivalent in MSMQ.

HRESULT APIENTRY FMQDisconnect (HANDLE hConnect); Prototype

Argument hConnect NULL. Optionally (for compatibility with future versions
supporting multiple simultaneous connections), you may
specify the connection handle returned by
FMQConnect().

Return value MQ_OK for success.

FMQDisconnect(NULL); Example

 35

4. Programming Messaging Applications Envoy MQ Programmer's Guide

API functions supporting MSMQ transactions

Envoy MQ Client provides API functions supporting the MSMQ internal
transaction coordinator.

Before calling these functions, you must obtain a transaction handle by calling
MQBeginTransaction().

The MQC contains a list of all transactions involving its open clients. If a client
terminates without committing one or more of its transactions, those transactions
are automatically aborted. The transaction commit coordinator is the Windows
system where the MQC is installed.

Envoy MQ Client API function Similar to MSMQ Description

FMQCommit() ITransaction::Commit() Commit a transaction

FMQAbort() ITransaction::Abort() Abort a transaction

Committing a transaction FMQCommit()

This function commits and releases an MSMQ transaction.

HRESULT FMQCommit (Itransaction** ppTransaction, BOOL
fRetaining, DWORD grfTC, DWORD grfRM);

Prototype

Arguments ppTransaction (Input/output) The transaction to commit. On output,
ppTransaction is set to NULL and Envoy MQ frees
*ppTransaction.

The other arguments are the same as in the method ITransaction::Commit()
of an MSMQ transaction object.

Return value MQ_OK for success.

Aborting a transaction FMQAbort()

This function aborts and releases an MSMQ transaction.

HRESULT FMQAbort (Itransaction** ppTransaction, BOID*
pboidReason, BOOL fRetaining, BOOL fAsync);

Prototype

Arguments ppTransaction (Input/output) The transaction to abort. On output,
ppTransaction is set to NULL and Envoy MQ frees
*ppTransaction.

The other arguments are the same as in the method ITransaction::Abort() of
an MSMQ transaction object.

Return value MQ_OK for success.

36

Envoy MQ Programmer's Guide 4. Programming Messaging Applications

API functions for information and debugging

Envoy MQ Client provides the following API functions for outputting debugging
and version information.

Envoy MQ Client API function Description

FMQGetLogPath Retrieve the location of the debug log

FMQSetLogPath() Set the location of the debug log

FMQDebug() Enable or disable debug logging

FMQVersion() Retrieve Envoy MQ Client version information

Setting the location of the debug log FMQSetLogPath()
 FMQGetLogPath()

The FMQSetLogPath() function sets the directory path of the Envoy MQ Client
debug log for your application (see Debug logging above). FMQGetLogPath()
retrieves the current path.

You can also define the log path by setting the FMQLOGPATH environment variable
(see Environment variables in Chapter 3, Installation). Calling FMQSetLogPath()
overrides the FMQLOGPATH setting. If you do not define the log path by either of
these methods, Envoy MQ Client places the log in the default location (on most
platforms, this is the log/user subdirectory of the Envoy MQ Client directory).

The name of the log file is dc_xxxx.log, where xxxx is the process id of the
application that generated the log, for example dc_1234.log.

To use the log file, you must enable debug logging by calling the FMQDebug
function or by setting the FMQDEBUG environment variable.

The prototypes of FMQSetLogPath() and FMQGetLogPath() are declared in
fmqpubd.h. The function has no equivalent in MSMQ.

HRESULT APIENTRY FMQSetLogPath(PCSTR pszLogPath); Prototypes
HRESULT APIENTRY FMQGetLogPath(PSTR pszLogPath, DWORD
dwCount);

Arguments pszLogPath The directory path of the log (not including a filename).
If you specify "CONSOLE", Envoy MQ Client sends the
log to stdout.

dwCount The size of the pszLogPath buffer.

Return value MQ_OK for success.

 37

4. Programming Messaging Applications Envoy MQ Programmer's Guide

Enabling debug logging FMQDebug()

The FMQDebug() function enables or disables debug logging (see Debug logging
above).

By default, debug logging is disabled. If you enable debug logging, Envoy MQ
Client places a copy of error and information messages in the debug log file.

You can also enable debug logging by setting the FMQDEBUG environment variable
(see Environment variables in Chapter 3, Installation). Calling FMQDebug()
overrides the FMQDEBUG setting.

The prototype of FMQDebug() is declared in fmqpubd.h. The function has no
equivalent in MSMQ.

HRESULT APIENTRY FMQDebug(FMQ_DEBUG_OP Debug); Prototype

Argument Debug FMQ_DEBUG_ON to enable debug logging,
FMQ_DEBUG_OFF to disable.

Return value MQ_OK for success.

Retrieving the Envoy MQ version FMQVersion()

The FMQVersion() function returns the version of Envoy MQ Client.

The function outputs an FMQVERSION structure, which contains the version
information.

The prototype of FMQVersion() and the FMQVERSION structure are declared in
fmqpubd.h. The function has no equivalent in MSMQ.

 You can also run the fmqver utility to display version information. The utility is
supplied in the Envoy MQ Client bin subdirectory.

HRESULT APIENTRY FMQVersion(FMQVERSION *FmqVersion); Prototype

Argument FmqVersion (In/out) On input, supply a pointer to an FMQVERSION
structure. On output, FmqVersion->
StringSummary contains the Envoy MQ Client version.
FmqVersion->OperatingSystem contains the name
of the operating system. (FVersion also has several
other fields that store version information. See the
declaration of FMQVERSION in fmqpubd.h for details).

Return value MQ_OK for success.

38

Envoy MQ Programmer's Guide 5. Sample Application

 Chapter 5

Sample Application

This chapter presents the complete source code of the gwping program. The
program calls Envoy MQ Client API functions for messaging operations such as:

 Creating and opening a queue
 Sending a message
 Defining a response queue for a reply to the message
 Receiving a message

The program is supplied with Envoy MQ Client to test the Envoy MQ operation.
For operating instructions, see the Installation test in Chapter 3, Installation.

The explanations in this chapter are necessarily brief. For complete information on
the data structures and the calling syntax of API functions, see Chapter 4,
Programming Messaging Applications.

Online sample
programs

C-language source code and executable versions of the following sample
applications are supplied with the Envoy MQ Client software:

gwping Ping-pong test of Envoy MQ operation (sends ping test
messages and receives the pong replies, see Ping-pong
messaging programs below).

gwpong Companion program to gwping (generates the pong
replies).

Ping-pong messaging programs gwping
 gwpong

The gwping and gwpong programs are designed to test the operation of a Envoy
MQ installation. You can run the programs on any system where the Envoy MQ
Client is installed. For operating instructions, see Installation test in Chapter 3,
Installation.

 39

5. Sample Application Envoy MQ Programmer's Guide

The programs conduct a ping-pong test of the Envoy MQ messaging system:

 gwping writes a ping message (by default containing the text "PING") to a
queue, along with the name of response queue where a reply should be sent

 gwpong (running in the background) reads the ping message and the name of
the response queue

 gwpong writes a pong response message (containing the same text as the ping)
to the response queue

 gwping reads the pong message from the response queue and compares it to
the ping

 The source code of gwping is presented below. You can examine the source code of
gwpong online in your Envoy MQ directory.

Source code gwping

Headers and
definitions

The Envoy MQ header files wintypes.h and mq.h are included (see Header files
in Chapter 4, Programming Messaging Applications).

#include <time.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "wintypes.h"
#include "mq.h"

#define ARRAY_SIZE(array) (sizeof(array)/sizeof(*(array)))

int main (unsigned int argc, char *argv[]) { Main function

 unsigned int i;
 WCHAR * pszPingQName = ".\\PingQ";
 WCHAR * pszPongQName = ".\\PongQ";
 unsigned int bVerbose = 1, cbSend = 0, numTimes = 1,
 dwLen = 0, bRandSize = 0, bRandTime = 0;
 char * pszMessage = "PING";
 char * pszSend = 0;
 char * pszRecv = 0;
 char * pszRand = 0;

Message and
queue
property
structures

Structures are declared and initialized for the destination and response queues and
for the ping and pong messages.

40

Envoy MQ Programmer's Guide 5. Sample Application

For an explanation of the message property structure, see Set up ping message
below.

 QUEUEPROPID aPIQueue[4];
 MQPROPVARIANT aPVQueue[4];
 HRESULT aHRQueue[4];
 MQQUEUEPROPS mqQProps = {0,NULL,NULL,NULL};
 WCHAR wszPongFName[256], wszPingFName[256];
 DWORD cbPongFName = ARRAY_SIZE(wszPongFName),
 cbPingFName = ARRAY_SIZE(wszPingFName);
 HRESULT hRes;
 QUEUEHANDLE hPingQueue, hPongQueue;
 ULONG dwCount = (ULONG)(-1);
 clock_t startTime;
 DWORD dwTotalTime;

 MSGPROPID aPIMsgPing[] =
 {PROPID_M_BODY, PROPID_M_APPSPECIFIC,
 PROPID_M_RESP_QUEUE, PROPID_M_BODY_TYPE};

 MQPROPVARIANT aPVMsgPing[ARRAY_SIZE(aPIMsgPing)] =
 {{VT_VECTOR | VT_UI1}, {VT_UI4}, {VT_LPWSTR}, {VT_UI4}};
 HRESULT aHRMsgPing[ARRAY_SIZE(aPIMsgPing)] = {0};
 MQMSGPROPS mqMPropsPing =
 {ARRAY_SIZE(aPIMsgPing),NULL,NULL,NULL};

 MSGPROPID aPIMsgPong[] =
{PROPID_M_BODY,PROPID_M_APPSPECIFIC};
 MQPROPVARIANT aPVMsgPong[ARRAY_SIZE(aPIMsgPong)] =
 {{VT_VECTOR | VT_UI1},{VT_UI4}};
 HRESULT aHRMsgPong[ARRAY_SIZE(aPIMsgPong)] = {0};
 MQMSGPROPS mqMPropsPong =
 {ARRAY_SIZE(aPIMsgPong),NULL,NULL,NULL};

 mqQProps.aPropID = aPIQueue;
 mqQProps.aPropVar = aPVQueue;
 mqQProps.aStatus = aHRQueue;

 mqMPropsPing.aPropID = aPIMsgPing;
 mqMPropsPing.aPropVar = aPVMsgPing;
 mqMPropsPing.aStatus = aHRMsgPing;

 mqMPropsPong.aPropID = aPIMsgPong;
 mqMPropsPong.aPropVar = aPVMsgPong;
 mqMPropsPong.aStatus = aHRMsgPong;

Interpret user
input

For an explanation of the command-line syntax, see Installation test in Chapter 3,
Installation.

 for (i=1; i<argc; i++) {
 if (strcmp(argv[i], "-q") == 0) {
 pszPongQName = argv[++i];
 continue;

 41

 }

5. Sample Application Envoy MQ Programmer's Guide

 if (strcmp(argv[i], "-p") == 0) {
 pszPingQName = argv[++i];
 continue;
 }

 if (strcmp(argv[i], "-n") == 0) {
 numTimes = atoi(argv[++i]);
 continue;
 }

 if (strcmp(argv[i], "-s") == 0) {
 pszMessage = argv[++i];
 continue;
 }

 if (strcmp(argv[i], "-l") == 0) {
 cbSend = atoi(argv[++i]);
 continue;
 }

 if (strcmp(argv[i], "-v") == 0) {
 bVerbose = 0;
 continue;
 }
 if (strcmp(argv[i], "-r") == 0) {
 bRandSize = 1;
 continue;
 }

 printf("Usage: \n"
 "-p: Ping queue\n"
 "-q: Pong queue\n"
 "-n: Number of iterations\n"
 "-s: String to send\n"
 "-l: Message length\n"
 "-r: Random length up to message length\n"
 "-v: Short output\n");
 return 0;
 }

 if (!cbSend) cbSend = strlen(pszMessage) + 1;

Allocate
buffers

The program allocates buffers to send the ping message and to receive the pong
reply. Both buffers are allocated with twice the size that is actually needed for the
message string.

The double-sized buffer is required for receiving because MQReceiveMessage()
receives the UNICODE (2-byte character) representation of the string, which it
then converts to the local code page (see Code page translation in Chapter 4,
Programming Messaging Applications).

The double-sized buffer is not required for sending. A single-sized buffer would
suffice, but the double size is allocated for coding consistency.

 pszSend = (char *) malloc(cbSend * 2);

42

Envoy MQ Programmer's Guide 5. Sample Application

 pszRecv = (char *) malloc(cbSend * 2);
 pszRand = (char *) malloc(cbSend * 2);
 if (!pszSend || !pszRecv || !pszRand) {
 printf("Failed to allocate memory buffers for
messages\n");
 exit(1);
 }

 dwLen = strlen(pszMessage);
 for (i=0; i+dwLen < cbSend; i+=dwLen) memmove(pszSend+i,
 pszMessage,dwLen);
 memmove(pszSend+i, pszMessage,(cbSend-1) % dwLen);
 pszSend[cbSend-1] = 0;

Create
destination
queue

The program calls the Envoy MQ API function MQCreateQueue() to create a
destination queue for the ping if it doesn't already exist. By default, the queue is
called .\PongQ because it is local to the gwpong program.

The gwpong program independently attempts to create the same queue. When
gwping and gwpong run concurrently, at least one of them receives
MQ_ERROR_QUEUE_EXISTS indicating that the queue already exists.

The program assigns one property to the queue: the queue path name. The code
uses the MQVAL macro to assign the property value. MQVAL is used to make the
code portable between Envoy MQ and MSMQ (see Notation of property value fields
in Chapter 4, Programming Messaging Applications).

 aPIQueue[0] = PROPID_Q_PATHNAME;
 aPVQueue[0].vt = VT_LPWSTR;
 aPVQueue[0].MQVAL(pwszVal) = pszPongQName;
 mqQProps.cProp = 1;
 if (bVerbose) printf ("Attempting to create Pong queue
%s\n",
 pszPongQName);
 hRes = MQCreateQueue(PSD_SPECIALACCESS_ALL, &mqQProps,
 wszPongFName, &cbPongFName);
 if (hRes == MQ_ERROR_QUEUE_EXISTS) {
 if (bVerbose) printf("Pong Queue %s Exists: %#8.8X\n",
 pszPongQName, hRes);
 } else if (hRes != MQ_OK) {
 printf("Attempt to create pong queue %s failed:
%#8.8X\n",
 pszPongQName, hRes);
 exit(1);
 }

Determine
format name
of destination
queue

MQPathNameToFormatName() determines the format name, which is needed to
open the queue. (The format name is returned by MQCreateQueue() only if a
new queue is created.)

 cbPongFName = ARRAY_SIZE(wszPongFName);
 hRes = MQPathNameToFormatName(pszPongQName, wszPongFName,
 &cbPongFName);

 43

 if (hRes == MQ_OK){

5. Sample Application Envoy MQ Programmer's Guide

 if (bVerbose) printf("Pong queue %s Format name =
%s\n\n",
 pszPongQName, wszPongFName);
 } else {
 printf("MQPathNameToFormatName %s failed: %#8.8X\n",
 pszPongQName, hRes);
 exit(1);
 }

Open
destination
queue

The program calls MQOpenQueue() to open the destination queue for sending
(gwpong opens it for receiving).

 if (bVerbose) printf("Attempting to open Pong queue for
send\n");
 hRes = MQOpenQueue(wszPongFName, MQ_SEND_ACCESS, 0,
&hPongQueue);
 if (hRes != MQ_OK) {
 printf("Attempt to open pong queue %s failed: %#8.8X\n",
 pszPongQName, hRes);
 exit(1);
 } else {
 if (bVerbose) printf("Pong Queue %s Opened\n",
pszPongQName);
 }

Create
response
queue

The program creates a second queue for the pong response (by default called
.\PingQ because it is local to the gwping program).

 aPIQueue[0] = PROPID_Q_PATHNAME;
 aPVQueue[0].vt = VT_LPWSTR;
 aPVQueue[0].MQVAL(pwszVal) = pszPingQName;
 mqQProps.cProp = 1;
 if (bVerbose) printf ("Attempting to create ping queue
%s\n",
 pszPingQName);
 hRes = MQCreateQueue(PSD_SPECIALACCESS_ALL, &mqQProps,
 wszPingFName, &cbPingFName);
 if (hRes == MQ_ERROR_QUEUE_EXISTS) {
 if (bVerbose) printf("Ping Queue %s Exists: %#8.8X\n",
 pszPingQName, hRes);
 } else if (hRes != MQ_OK) {
 printf("Attempt to create ping queue %s failed:
%#8.8X\n",
 pszPingQName, hRes);
 exit(1);
 }

 cbPingFName = ARRAY_SIZE(wszPingFName); Determine

format name
of response
queue

 hRes =

MQPathNameToFormatName(pszPingQName,wszPingFName,&cbPingFName
);
 if (hRes == MQ_OK){

44

Envoy MQ Programmer's Guide 5. Sample Application

 if (bVerbose) printf("Ping queue %s Format name =
%s\n\n",
 pszPingQName, wszPingFName);
 } else {
 printf("MQPathNameToFormatName %s failed: %#8.8X\n",
 pszPingQName, hRes);
 exit(1);
 }

Open response
queue

The response queue is opened for receiving (gwpong opens it for sending).

 hRes = MQOpenQueue(wszPingFName, MQ_RECEIVE_ACCESS,
 MQ_DENY_RECEIVE_SHARE, &hPingQueue);
 if (hRes != MQ_OK) {
 printf("Attempt to open ping queue %s failed: %#8.8X\n",
 pszPongQName, hRes);
 exit(1);
 } else {
 if (bVerbose) printf("Ping Queue %s Opened\n",
pszPongQName);
 }

Set up ping
message

The message data structure includes four properties:

 The message body—containing the message string (e.g., "PING")

 An application-specific integer—containing the sequence number of the current
ping-pong iteration (e.g., 10)

 The format name of the response queue—obtained from
MQPathNameToFormatName() above

 The message body type—which has a value of VT_LPWSTR, indicating that the
message body contains a UNICODE string. This body type causes Envoy MQ
Client to translate the message body from the local code page to UNICODE (see
Code page translation in Chapter 4, Programming Messaging Applications).

The cProp, aPropID and vt fields were previously initialized (see Message and
queue property structures above).

 45

5. Sample Application Envoy MQ Programmer's Guide

 aPVMsgPing[0].MQVAL(caub.cElems) = cbSend;
 aPVMsgPing[0].MQVAL(caub.pElems) = (unsigned char
*)pszSend;
 aPVMsgPing[2].MQVAL(pwszVal) = wszPingFName;
 aPVMsgPing[3].MQVAL(ulVal) = VT_LPWSTR;

Set up empty
structure for
pong message

The pong message is received into an empty message structure containing two
message properties:

 The message body

 The application specific property (message sequence number)

For the declarations of the message structure, see Message and queue property
structures above. The program sets the size indicator of the receive buffer (cElems
field) to twice the actual string length of the message because
MQReceiveMessage() needs to receive the string in a UNICODE representation
(see Allocate buffers above).

46

Envoy MQ Programmer's Guide 5. Sample Application

 aPVMsgPong[0].MQVAL(caub.pElems) = (unsigned char
*)pszRecv;
 aPVMsgPong[0].MQVAL(caub.cElems) = cbSend * 2;

Send ping
message

The program initializes a timer and sends the sequence of ping messages. The
arguments of MQSendMessage() are:

Argument Meaning

hPongQueue Handle of the destination queue, obtained from
MQOpenQueue() above

&mqMPropsPing Pointer to the message data structure

NULL Pointer to a transaction object

 startTime = time(NULL);

 for (i=1; i<=numTimes; i++) {
 aPVMsgPing[1].MQVAL(ulVal) = i;
 if (bRandSize) {
 int len =(ULONG)(((1.0 * rand()) / RAND_MAX) * cbSend +
1);
 aPVMsgPing[0].MQVAL(caub.cElems) = len;
 strcpy(pszRand,pszSend);
 pszRand[len-1]='\0';
 aPVMsgPing[0].MQVAL(caub.pElems) = (unsigned char
*)pszRand;
 }

 hRes = MQSendMessage(hPongQueue, &mqMPropsPing, NULL);

 47

5. Sample Application Envoy MQ Programmer's Guide

 if (hRes != MQ_OK) {
 printf("Failed to send ping to queue %s, status =
%#8.8X\n",
 pszPongQName, hRes);
 } else {
 if (bVerbose) printf(
 "Ping #: %d \"%.20s\" sent to queue %s\n", i,
 aPVMsgPing[0].MQVAL(caub.pElems),
 pszPongQName);
 }

 if (hRes == MQ_ERROR) break;

 if (bRandSize) {
 aPVMsgPong[0].MQVAL(caub.cElems) =
 aPVMsgPing[0].MQVAL(caub.cElems) * 2;
 }

Receive pong
response

The arguments of MQReceiveMessage() are:

Argument Meaning

hPingQueue Handle of the response queue, obtained from
MQOpenQueue() above

INFINITE Time to wait for the response (could alternatively be set to a finite
time, e.g., 10,000 msec; if no response were received within the
specified time, MQReceiveMessage() would return an
error)

MQ_ACTION_RECE
IVE

The desired action (RECEIVE and delete the message from the
queue, as opposed to PEEK which reads but does not delete)

&mqMPropsPong Pointer to the empty message data structure

NULL
NULL

MSMQ callback function (not supported by Envoy MQ)

0 Cursor handle (not used by gwping)

NULL Pointer to a transaction object

 For an example of receiving a message together with the name of a response queue, examine
the gwpong source code provided online with Envoy MQ.

 hRes = MQReceiveMessage(hPingQueue, INFINITE,
MQ_ACTION_RECEIVE,
 &mqMPropsPong, NULL, NULL, 0, NULL);

48

Envoy MQ Programmer's Guide 5. Sample Application

Compare
contents of
ping and pong
messages

The program compares the sequence number, message size, and message contents
of the ping message and the pong reply.

The message buffer size (cElems field) of the pong message is twice the actual
length of the received string because MQReceiveMessage() initially received the
message in a UNICODE representation. The program therefore divides cElems by
2 to determine the actual length of the pong string.

 if (hRes == MQ_OK) {
 if (aPVMsgPong[1].MQVAL(ulVal) ==
aPVMsgPing[1].MQVAL(ulVal))
 {
 if (bVerbose)
 printf("Received reply %d: \"%.20s\"\n",
 aPVMsgPong[1].MQVAL(ulVal),
 aPVMsgPong[0].MQVAL(caub.pElems));
 if ((aPVMsgPing[0].MQVAL(caub.cElems) !=
 aPVMsgPong[0].MQVAL(caub.cElems))/2 ||
 memcmp(aPVMsgPong[0].MQVAL(caub.pElems),
 aPVMsgPing[0].MQVAL(caub.pElems),
 aPVMsgPing[0].MQVAL(caub.cElems))) {
 printf("Reply buffer different from sent
buffer\n");
 }
 } else {
 printf("Wrong reply sequence %d expected %d\n",

aPVMsgPong[1].MQVAL(ulVal),aPVMsgPing[1].MQVAL(ulVal));
 }
 } else {
 printf("Failed to recv reply for ping %d, status =
%#8.8X\n",
 i, hRes);
 }
 }

Report
elapsed time

The program reports the time for sending the sequence of ping messages and
receiving the pong replies.

 dwTotalTime = (time(NULL) - startTime);

 printf("Total time %lu seconds\n",dwTotalTime);

 hRes = MQCloseQueue(hPingQueue); Close the

queues hRes = MQCloseQueue(hPongQueue);

Delete the
response
queue

The program deletes the response queue that it created. It does not delete the
destination queue, because that queue is considered to belong to the gwpong
program.

 hRes = MQDeleteQueue(wszPingFName);

 if (bVerbose) {
 printf("press the <Enter> Key...\n");

 49

 getchar();

5. Sample Application Envoy MQ Programmer's Guide

 }
 if (pszSend) free(pszSend);
 if (pszRecv) free(pszRecv);
 if (pszRand) free(pszRand);
 return 0;
}

50

Envoy MQ Programmer's Guide Glossary

Appendix A

Glossary

Abort Cancel and roll back all operations in a transaction.

API Application programming interface.

Application See Envoy MQ application.

Asynchronous Not needing to wait until operation is completed.

Authentication A digital signature method confirming that a
received message comes from the purported
sender and has not been altered.

Certificate A unique user identifier for message
authentication.

Code page A mapping of characters and symbols (usually of a
specific language) to single-byte numerical values.

Commit Confirm and irrevocably execute all operations in a
transaction.

Connectionless
messaging

A method for sending messages between
applications that do not need to be connected in a
communication session.

Default logon Access to MQC controlled by the user name under
which an application runs on an external system.

Destination queue The queue to which a message is sent.

Encryption A digital encoding that prevents unauthorized
persons from reading a message.

Envoy MQ Envoy Technologies messaging interface software
products.

Envoy MQ application A program that calls the Envoy MQ API.

Envoy MQ Client Envoy MQ component running on non-Windows
operating systems and providing a programming
interface for messaging applications.

 51

Glossary Envoy MQ Programmer's Guide

Envoy MQ Connector Envoy MQ component running under the
Windows operating systems and interfacing
MSMQ with Envoy MQ Clients.

Explicit logon Access to Envoy MQ Connector controlled by a
user name and password, sent by an application.

Extension field A field of the message extension property
containing a GUID plus any data.

External certificate A certificate obtained from a certificate authority,
used to verify who sent a message.

Format name A code assigned by MSMQ to uniquely identify a
queue throughout a network.

GUID Globally Unique Identifier code identifying
software objects.

Internal certificate A public key written in the form of an X.509
certificate, used to verify that the sender identifier
attached to a message is valid.

Local queue A message queue stored on the same computer as
an application or messaging software installation.

LU Logical unit.

Message A set of data transmitted from an application to
another application on the same or a different
computer.

Message body The message property whose value is the main
message content (text or binary).

Message extension A structured message property containing any
number of extension fields.

Message property A data field of a message that is predefined in the
messaging software.

Message queue A location where messages are stored, which can
be written and read by applications.

MSMQ Microsoft Message Queue Server.

Path name A queue name including a network path, e.g.,
.\queue1.mq or machine2\queue1.mq.

Property structure A data structure representing a set of message,
queue, or queue manager properties.

PROPVARIANT A data structure containing the value of a message,
queue, or queue manager property.

Query structure A data structure used to represent a queue query.

Queue name See Format name and Path name.

Read Retrieve a message from a queue; receive.

52

Envoy MQ Programmer's Guide Glossary

Receiving application A program that calls the messaging software API
to receive a message.

Remote queue A message queue stored on a different computer
from an application or messaging software
installation.

Response A message sent in reply to another message.

Response queue A queue specified by a sending application, to
which a receiving application should send a reply.

Roll back Undo all operations in a transaction.

RPC Remote procedure call. A function call on one
computer, acting on data in that computer, but
executed on another computer.

SDK Software Development Kit.

Sending application A program that calls the messaging software API
to send a message.

SNA System Network Architecture. A set of IBM
protocols for network communication.

Store and forward Save a message at a sequence of one or more
intermediate locations until it can be sent to its
final destination.

Synchronous Needing to wait until operation is completed.

TCP/IP A standard protocol for network communication.

Trace file A file recording calls to the Envoy MQ API and a
hexadecimal dump of transmissions.

Transaction A set of operations packaged together and
committed or aborted as a group.

UNICODE An international standard that maps the characters
and symbols of many languages to a unique set of
double-byte numerical values.

Write Place a message on a queue; send.

 53

Index Envoy MQ Programmer's Guide

Envoy MQ Programmer's Guide

Index

sample application programs, 39 API
Envoy MQ API, 31 Envoy MQ Client, 25

FMQAbort(), 36 Asynchronous messaging, 5, 10
FMQCommit(), 36 Asynchronous receive, 12, 33
FMQConnect(), 34 Authentication, 12, 33
FMQDebug(), 37 Callback function, 12, 33
FMQDisconnect(), 35 Certificates
FMQGetLogPath(), 37 registering, 33
FMQSetLogPath(), 37 CICS
FMQV1Connect(), 35 version support, 15
FMQVersion(), 38 Code page
MQCreateQueue(), 32 translation table, 18
MQFreeSecurityContext(), 33 Code pages
MQGetQueueSecurity(), 33 translation, 28
MQGetSecurityContext(), 33 Configuration
MQLocateBegin(), 33 Envoy MQ Client, 16
MQReceiveMessage(), 33 files, 16
MQRegisterCertificate(), 33 Connection
MQSetQueueSecurity(), 33 defining, 17

Envoy MQ Client, 2 Connectionless messaging, 5, 10
API, 25 Debugging, 37
configuration, 16 Default connection
data structures, 26 Envoy MQ Connector, 18
error handling, 29 Default logon method, 21
header files, 26 Encryption, 12
installation, 16 Environment variables, 20
link libraries, 31 FMQCONNECT, 21
named union, 26 FMQDEBUG, 20, 37
ping-pong test program, 39 FMQLOGPATH, 20, 37
security, 21 FMQOVERRIDE, 16
system requirements, 15 FMQROOT, 16
testing operation, 22 Envoy MQ, 8
version information, 38 API, 9

Envoy MQ Connector client-server, 9
default connection, 18 components, 9

Envoy MQ Server, 1 differences from MSMQ, 10
addressing, 10, 11 documentation, 3
defining connection, 17 interaction with MSMQ, 10

54

Envoy MQ Programmer's Guide Index

Envoy MQ and MSMQ, 10 disconnecting, 35
handle, 11 security, 12
local or remote, 7, 11 selecting nondefault, 34
location, 11 Error handling
naming, 7, 11 Envoy MQ Client, 29
searching, 33 Error logging, 36, 37

Messages Explicit logon method, 21
defined, 6 fmqdccfg
receiving, 33 configuration program, 17

Microsoft Message Queue. See MSMQ FMQOVERRIDE, 16
MQMSGPROPS FMQROOT, 16

data structure, 26 FMQV1Connect()
MQPROPVARIANT version 1.0 compatibility, 35

data structure, 26 fmqver
named union in, 27 version utility, 38

MQQMPROPS Format names, 7
data structure, 26 GUID names, 7

MQQUEUEPROPS gwping
data structure, 26 source code example, 39

MQVAL macro, 27 gwping program
MSMQ, 5 for Envoy MQ Client, 39

concepts, 6 gwping test program, 22
differences from Envoy MQ, 10 gwpong program
documentation, 4 for Envoy MQ Client, 39

Multithreaded applications, 11 Header files
Online help, 4 Envoy MQ Client, 26
OpenVMS Help

version support, 15 online, 4
Operating systems Installation

supported, 15 Envoy MQ Client, 16
OS/400 IP address

version support, 15 Envoy MQ Connector, 17
Path names, 7 ISO Reference Model, 6
Ping-pong messaging Libraries

sample program, 39 Envoy MQ Client, 31
Ping-pong test Local queues, 7, 11

Envoy MQ Client, 22 Log file
Programming debugging, 37

Envoy MQ applications, 25 enabling debug logging, 37
Property values setting, 36

notation, 27 Log files
PROPVARIANT debugging, 30

data structure, 27 error, 30
Queue manager Logon

properties, 13 default method, 21
Queues. See Message queues explicit method, 21
Remote procedure call, 10 Windows, 18
Remote queues, 7, 11 Logon methods
Sample Envoy MQ application programs, 39 default and explicit, 21
Security Message properties

context handle, 33 defined, 6
Envoy MQ Client, 21 Message queues
Envoy MQ Server, 12 addressing, 11
message, 12 creating, 32
queue, 12, 33 defined, 6

 55

Index Envoy MQ Programmer's Guide

SNA communication, 16
Synchronous messaging, 10
System requirements

Envoy MQ Client, 15
TCP/IP communication, 16
Threads

closing, 35
Timeout

TCP/IP, 17
Transactions

aborting, 36
committing, 36
Envoy MQ Client support, 35
Envoy MQ support, 13
MSMQ support, 6

UNICODE
translation, 28

Union
for property value notation, 27
named, 26

Unisys ClearPath
version support, 15

UNIX
version support, 15

User registration, 21
Utility programs

fmqdccfg, 17
fmqver, 38

Windows
logon, 21

56

	Contents
	Overview
	Envoy MQ Client and Connector
	How you can use Envoy MQ
	How to use this book
	Other Envoy MQ documentation
	MSMQ documentation
	Online help

	How Envoy MQ Works with MSMQ
	Introduction to MSMQ
	Principles of MSMQ operation

	Purpose of Envoy MQ
	Envoy MQ components
	Application programming interface
	How Envoy MQ interacts with MSMQ

	Differences between Envoy MQ and MSMQ
	Connectionless messaging
	Envoy MQ Server addressing
	Queue locations and names
	Conflicts between local queue names
	Scope of handles and cursors
	Asynchronous receive
	Envoy MQ Connector security
	Message security
	Queue security
	Queue manager properties
	Transaction support
	Return codes
	Programming

	Installation
	System and network requirements
	Installation procedure
	Configuration
	Configuration filesFMQROOT�FMQOVERRIDE
	Command line utility to set configuration parameters
	Full-screen configuration editor
	Editing the configuration file manually
	Environment variables

	Security of Envoy MQ Client applications
	Logon methods

	Installation test

	Programming Messaging Applications
	Header fileswintypes.h�mq.h�fmqpubd.h
	Data structuresMQVAL
	Notation of property value fieldsMQPROPVARIANT�MQVAL

	Code page translation
	Error handling
	Function return valuesMQ_OK�MQ_ERROR_...�MQ_INFORMATION_...
	Property status valuesaStatus[]
	Envoy MQ errors
	Error logging
	Debug logging

	Link libraries
	MSMQ API functions
	Creating a queueMQCreateQueue()
	Searching for queuesMQLocateBegin()
	Receiving a messageMQReceiveMessage()
	Queue access privilegesMQSetQueueSecurity()�MQGetQueueSecurity()
	Retrieving security contextMQRegisterCertificate()�MQGetSecurityContext()�MQFreeSecurityContext()

	API functions for connecting to Envoy MQ Connector
	Connecting to Envoy MQ ConnectorFMQConnect()
	Disconnecting from Envoy MQ ConnectorFMQDisconnect()

	API functions supporting MSMQ transactions
	Committing a transactionFMQCommit()
	Aborting a transactionFMQAbort()

	API functions for information and debugging
	Setting the location of the debug logFMQSetLogPath()�FMQGetLogPath()
	Enabling debug loggingFMQDebug()
	Retrieving the Envoy MQ versionFMQVersion()

	Sample Application
	Ping-pong messaging programsgwping�gwpong
	Source codegwping

	Glossary
	Index

