

Envoy Message Queuing
version 1.2.5

Envoy MQ for AS/400
Supplement to the

Programmer's Guide

t For use with Microsoft Message Queue services (MSMQ) sof ware

 i

Envoy Message Queuing

version 1.2.5

Envoy MQ for AS/400
Supplement to the

Programmer's Guide

Envoy Technologies Inc. has made every effort to ensure that the information in this
document is accurate; however, there are no representations or warranties regarding
this information, including warranties of merchantability or fitness for a particular
purpose. Envoy Technologies Inc. assumes no responsibility for errors or omissions
that may occur in this document. The information in this document is subject to
change without prior notice and does not represent a commitment by Envoy
Technologies Inc., or its representatives.

The software supplied with this document is the property of Envoy Technologies Inc.
and is furnished under a licensing agreement. Neither the software nor this
document may be copied or transferred by any means, electronic or mechanical,
except as provided in the licensing agreement.

© 2001-2002 Envoy Technologies Inc.
All rights reserved.

Printed in the United States of America.

Envoy Message Queuing (Envoy MQ) is a trademark of Envoy Technologies Inc.

All other product and company names mentioned herein are for identification
purposes only and are the property of, and may be trademarks of, their respective
owners.

Envoy Technologies Inc.
Corporate Headquarters

120 Wood Avenue South
Iselin, NJ, 08830, USA
Phone: 732-549-6500

Fax: 732-549-3165
Web: http://www.envoytech.com

Tech Support: support@envoytech.com

ii

http://www.envoytech.com/
mailto:support@envoytech.com

Contents Envoy MQ for AS/400

Envoy MQ for AS/400
Contents

1 - Installation 1
System and network requirements ... 1
Installation procedure.. 2
Configuration... 3

Displaying the Envoy MQ Client menu ... 3
Environment variables pointing to configuration files.. 5
Editing the configuration files.. 6
Explanation of configuration parameters .. 8

Installation test .. 11

2 - ILE Programming 13
API implementation... 13
Programming in C ... 14
Programming in languages other than C .. 14
Binding .. 15

3 - RPG Interface 17
Programming steps... 18
FMQCONST copy member... 19

Message properties .. 19
Queue properties .. 23
Queue manager properties... 23
Value type constants .. 24
Miscellaneous named constants... 26

ii

Envoy MQ Client for AS/400 Contents

API functions ...26
Data structures (static method) ...30

Static method ..31
Property structures ..31
Substructures of property structures ...33

Data structures (dynamic method) ..38
Dynamic method ...38
Property structure..39
Substructures ..39
Using a dynamic property structure...40

String handling...42
Null-terminated strings ..43
EBCDIC to UNICODE conversion...43

Sample program ..44
Source code ..45

Online samples..48
Copy members ..49
Sample programs ..49

4 - COBOL Interface 53
Programming steps ...54
FMQCONST copy member ...55

Message properties...55
Queue properties...58
Queue manager properties ...59
Value type constants ...59
Miscellaneous named constants ...61

API functions ...62
Data structures ..65

Programming method..66
Property structure..66
Substructures of property structures ...68

String handling...73
Null-terminated strings ..74
EBCDIC to UNICODE conversion...74

Sample program ..74
Source code ..75

Online samples..84
Copy members ..84
Sample programs ..85

 iii

Contents Envoy MQ for AS/400

A - RPG Interface for OS/400 V3R2 87
Tables of API identifiers .. 88

Message properties .. 88
Queue properties .. 90
Queue manager properties... 91
Value type constants .. 91
Miscellaneous named constants... 92
API functions... 92

Null-terminated strings .. 94
Copy members and sample programs.. 94

Index 97

iv

Envoy MQ for AS/400 1. Installation

Chapter 1
Installation

The Envoy MQ Client for AS/400 is the component of Envoy MQ running in
the IBM AS/400 environment. The Envoy MQ Client communicates with
Envoy MQ Connector, connecting your AS/400 applications to the MSMQ
network.

The Envoy MQ Client for AS/400 is an extended version of Envoy MQ
Client, which is described in the Envoy Message Queuing Programmer's Guide.
The AS/400 Client is specially adapted for programming in IBM's Integrated
Language Environment (ILE), in languages such as RPG and COBOL as well
as C.

System and network requirements

You can install the Envoy MQ Client for AS/400 on an IBM AS/400
computer having the following minimum requirements:

 IBM OS/400 V3R2 or higher

 A TCP/IP communications link to at least one Windows NT system on
which Envoy MQ Connector (version 1.2) is installed

If you intend to write and compile your own Envoy MQ Client applications,
then you also need:

 An ILE compiler (C, C++, RPG, COBOL, or other ILE language)

 1

1. Installation Envoy MQ Client for AS/400

To install the software from the Envoy MQ CD-ROM, you need:

 A Windows system with a CD-ROM drive and an FTP connection to the
AS/400

 5 Mb of free disk space for the Envoy MQ Client software

Installation procedure

The following instructions are to install Envoy MQ Client on AS/400
systems. You must also install Envoy MQ Connector on at least one
Windows system in your network (for instructions, see the Envoy MQ
Connector Administrator's Guide).

Where to
install

You should install the Envoy MQ Client on each AS/400 system that you
want to connect to MSMQ.

Installation
file

The AS/400 client library is distributed in a compressed save (SAVF) file for
AS/400 CISC (V3R2M0) and RISC (V3R7M0) systems. On the Envoy MQ
installation CD-ROM, the save file is called ENVOY MQ .LIB. There are two
versions of the file, which are located in:

\clients\OS400\V3R2 For OS/400 V3R2 and higher

\clients\OS400\V3R7 For OS/400 V3R7 and higher

The only significant difference between the versions is for RPG
programming (see Chapter 3, RPG Interface). In the V3R7 version, you can
use long RPG names for the Envoy MQ API identifiers. The long names are
convenient because they are very similar to the identifiers in the native C-
language API.

RPG for V3R2 does not support identifiers longer than 10 characters. The
Envoy MQ version for V3R2 therefore uses short abbreviations for the RPG
identifiers. See Appendix A, RPG Interface for OS/400 V3R2, for details.

Procedure Please follow the instructions below to install the Envoy MQ Client on your
AS/400.

1. From a Windows system with a CD-ROM drive and an FTP connection to
the AS/400, start Telnet or another terminal emulation program.

2. Logon to the AS/400 using the QSECOFR user profile.

2

Envoy MQ for AS/400 1. Installation

3. Run the following CL command to create an empty save (SAVF) file on
the AS/400:

CRTSAVF FILE(QGPL/ENVOY MQ)

4. Insert the Envoy MQ CD-ROM in the drive.

5. Start an FTP program and send the save file to the AS/400. The following
is an example for a command-line FTP client. The example assumes that
the CD-ROM is in drive d:

OPEN <IP address of AS/400>
USER: QSECOFR
PASSWORD: ******
LCD d:\clients\OS400\V3Rx
CD QGPL
BINARY
PUT ENVOY MQ .LIB ENVOY MQ

6. Run the following command on the AS/400 to restore the library from
the save file:

RSTLIB SAVLIB(ENVOY MQ) DEV(*SAVF) SAVF(QGPL/ENVOY MQ)
+
MBROPT(*ALL) ALWOBJDIF(*ALL)

Configuration

Envoy MQ Client for AS/400 has a full-screen configuration editor. Before
you run messaging applications, you should use the configuration editor to
set parameters and options and to test the Envoy MQ Client/Server
connection.

Displaying the Envoy MQ Client menu

To display the Envoy MQ Client menu, enter the following commands on
the AS/400 system:

ADDLIBLE ENVOY MQ
GO FMQDC

 3

1. Installation Envoy MQ Client for AS/400

 In the menu, the abbreviation FalconMQ DC stands for Envoy MQ Client.

From the menu, you may choose the following options. Alternatively, you
can run an option by typing its name (CFGFMQDC, etc.) at the OS/400
command prompt.

Menu option Description

1. Configure FlaconMQ DC (CFGMQDC)

2. List FalconMQ DC configuration
(CFGMQDC)

Defines connections with Envoy MQ Connector and
code pages

Displays the existing definitions

3. Set FalconMQ DC environment
variables (SETENV)

4. Display FalconMQ DC environment
variables (DSPENV)

Sets or displays environment variables

5. Display default code page
(DSPDFTCP)

Displays the name of the AS/400 system code page
(the QCHRID system value)

4

Envoy MQ for AS/400 1. Installation

Menu option Description

6. Run GWPONG (GWPONG)

7. Run GWPING (GWPING)

Runs an installation test of the Envoy MQ
Client/Connector connection (see Installation test on
page 11)

8. Display FalconMQ DC log

9. Clear FalconMQ DC log

Displays the Envoy MQ error log

Deletes the contents of the log

10. Display FalconMQ DC version Displays Envoy MQ Client version information

Environment variables pointing to configuration files

To configure Envoy MQ Client, you need to create one or more
configuration files on the AS/400 computer. The default configuration file is
FMQ.ENV, located in the Envoy MQ Client library. Optionally, you can set
the following environment variables to define the location of configuration
files:

FMQROOT (Optional, default *LIBL) The library location of
the default FMQ.ENV file. The value of FMQROOT
should be the Envoy MQ Client library name.

FMQOVERRIDE (Optional) The location of an optional, secondary
file that supplements and overrides the settings in
the default FMQ.ENV file. Set FMQOVERRIDE to the
library and filename, for example
MYLIB/FMQ1.ENV.

The default FMQ.ENV file contains global default settings for all Envoy MQ
applications on the computer. The FMQOVERRIDE file can contain
supplementary settings for a particular user or application. For example, if
FMQOVERRIDE contains additional Envoy MQ Connector connections, an
application can connect to any of the Servers defined in either the default
FMQ.ENV file or the FMQOVERRIDE file. In case of conflict between the
settings in the files, the FMQOVERRIDE settings override the default
FMQ.ENV.

The FMQOVERRIDE file is not required. If it is missing, the system takes all
settings from the default FMQ.ENV file. Likewise, if a particular setting is
missing from FMQOVERRIDE, the system takes the setting from the default

 5

1. Installation Envoy MQ Client for AS/400

FMQ.ENV file. You can create any number of configuration files and switch
between them by changing the value of FMQOVERRIDE.

Procedure To set an environment variable, display the Envoy MQ Client menu and
choose the option:

Set FalconMQ DC environment variables

Alternatively, you can run the SETENV command at the OS/400 prompt or
embed the command in a CLP program.

For the FMQROOT variable, specify the name of the Envoy MQ Client library.
For the FMQOVERRIDE variable, specify a library and filename. If the file
doesn't exist, you can create it afterwards (see Editing the configuration files
below).

To display the current settings, choose the option:

Display FalconMQ DC environment variables

 For information about other Envoy MQ environment variables, see the Installation
chapter in the Envoy MQ Programmer's Guide.

Editing the configuration files

A configuration file contains the definitions of:

 Envoy MQ Connector connections, which Envoy MQ Client uses to
transmit data to and from the Envoy MQ Connector

 Code-page translation tables, which Envoy MQ Client uses to convert
EBCDIC string data to and from UNICODE

You can have any number of configuration files, but only two (the default
FMQ.ENV file and the one identified by the FMQOVERRIDE environment
variable) can be active at a time.

Each configuration file can contain any number of Envoy MQ Connector
connection definitions and any number of code-page definitions.

Procedure To edit a configuration file, display the Envoy MQ Client menu and choose
the option:

Configure FalconMQ DC

6

Envoy MQ for AS/400 1. Installation

At the top of the screen, specify the configuration file that you want to edit:

Environment to
configure

Enter *DFT to configure the default FMQ.ENV file,
or the name of a configuration file. If the file
doesn't exist, it is created.

Library name The location of the configuration file.

Follow the on-screen instructions to enter the other parameters and options
(for more information, see Explanation of configuration parameters on page 8).

Press Enter to save your settings in the configuration file.

You can then enter a new set of options, and press Enter again. In this way,
you can define multiple Server connection definitions and multiple code-
page definitions in a single file.

 FalconMQ Server is the former designation of Envoy MQ Connector.

 7

1. Installation Envoy MQ Client for AS/400

 The Envoy MQ Connector can run on any Windows server: NT, 2000 or XP..

Displaying
configuration
settings

To review the complete set of configuration settings, display the Envoy MQ
Client menu and choose the option:

List FalconMQ DC configuration

At the top of the screen, specify the configuration file that you want to
display.

Command-
line
configuration
utility

You can also configure Envoy MQ Client by running the FMQDCCFG
command line configuration utility. For instructions, see the Installation
chapter in the Envoy MQ Programmer's Guide.

Explanation of configuration parameters

The following paragraphs explain the parameters and options that you can
set on configuration screen. For additional discussion and examples of the
Envoy MQ Client configurations, see the Installation chapter of the Envoy
MQ Programmer's Guide.

8

Envoy MQ for AS/400 1. Installation

Envoy MQ
Connector
connection

The parameters in the FalconMQ Server section of the screen define a
connection to a Envoy MQ Connector. Later, an application can connect to a
Connector by specifying the connection name in the FMQConnect API
function (see Programming Messaging Applications in the Envoy MQ
Programmer's Guide). You can store any number of connections in a single
configuration file.

Action Enter *ADD to add a new connection definition to
the configuration file, *UPD to update a definition,
or *DLT to delete a definition. Enter *NONE if you
are not editing a connection definition.

Copies from server Where a parameter has not been explicitly defined
for a connection, use the parameters of another
connection as defaults (enter the second
connection name).

Server name The connection name.

Server TCP/IP address IP address of the Envoy MQ Connector, or
*DLT to delete an address that you previously
entered.

Server port number TCP/IP port of the Server, or *DLT to delete a port
that you previously entered. (default 1100).

Server timeout in sec TCP/IP timeout of the Client/Server
connection in seconds, or *DLT to delete a timeout
that you previously entered (default 30 seconds).

Code page Envoy MQ automatically translates string-valued message properties (for

example queue names) to UNICODE. For this to work, you need a
UNICODE translation table for the code page that your application uses.
Use the following switches to download code-page tables from Envoy MQ
Connector and to manage the tables. (Before you do this, the code-page
tables must be installed on the Server. See the Installation chapter of the
Envoy MQ Connector Administrator's Guide for instructions.)

You can download any number of code-page tables. Envoy MQ Client uses
the table for the code page that is in effect when your application runs (see
the Default code page setting below).

In the Code page section of the configuration screen, enter the following
options:

 9

1. Installation Envoy MQ Client for AS/400

Action Enter *ADD to download a code-page table, *DLT
to delete a table that you previously downloaded,
or *NONE if you are not editing a code-page
definition.

Page number The code-page number. Enter *DFT to download
the default code page of the AS/400 system (the
QCHRID system value).

Destination An AS/400 filename to store the downloaded
table.

Library name The location to store the table.

Logon
parameters

If you connect to Envoy MQ Connector using the explicit logon method, you
must specify a Windows user name, password, and domain name. If you
connect by the default login method, enter values of *NONE for all three
parameters, or *DLT to delete a parameter that you previously entered.

 For either logon method, you must also register a user in Windows (see the
Installation chapter of the Envoy MQ Connector Administrator's Guide for an
explanation of the logon methods and for instructions on user registration.

In the Envoy MQ Connector section of the configuration screen, specify the
Server name to which the logon parameters apply. You may use the same
logon parameters for all Envoy MQ Connector connections, or different
parameters for each connection.

Enter the following parameters in the Logon NT domain name section of
the configuration screen.

NT domain name Windows domain for Envoy MQ Connector logon.

User to log onto
the domain

Windows user name.

User password The Windows password.

The password that you enter here is actually only the suffix of the actual
Windows password. The prefix is stored on the Envoy MQ Connector
computer (see the Envoy MQ Connector Administrator's Guide). The password
is stored in encrypted form.

10

Envoy MQ for AS/400 1. Installation

Default
settings

The following parameters specify default settings for Envoy MQ Client:

Default server Enter the name of a Envoy MQ Connector
connection that you previously defined. If a
messaging application does not specify a
connection, Envoy MQ Client connects to the
default. Enter *NONE if you do not want to define a
default, or *DLT to delete an existing default
definition.

Default code page Enter the number of a code page that you
previously downloaded (see the Code page
settings above). Envoy MQ Client uses the default
code page to translate UNICODE to and from
EBCDIC. Enter *NONE if you do not want to define
a default code page, or *DLT to delete an existing
default definition (in that case, Envoy MQ Client
uses the system default, QCHRID value).

Installation test

To test the operation of Envoy MQ Client, run the GWPING and GWPONG
programs supplied with the Envoy MQ software. These programs conduct a
ping-pong test of the messaging system.

 The GWPING program sends ping messages via Envoy MQ Client and
Envoy MQ Connector to a message queue.

 The GWPONG program sends pong replies to a second message queue,
where it is read by GWPING.

 Before you run the tests, you must define a default connection to Envoy MQ
Connector and register the user name of the connection in Windows (for
instructions, see Configuration on this book).

Default test To run a default test of communication from Envoy MQ Client to Envoy MQ
Connector and back, follow these steps:

1. Enter the following commands to open the Envoy MQ Client menu:

ADDLIBLE ENVOY MQ
GO FMQDC

 11

1. Installation Envoy MQ Client for AS/400

2. Choose the Run GWPONG option to start the GWPONG program Press Enter
to accept the default test options.

3. Choose the Run GWPING option to start the GWPING program. Press
Enter to accept the default test options.

The GWPING program sends a sequence of ten test messages, each containing
the text "PING", to a queue called .\PongQ. The GWPONG program waits to
receive the messages, and then sends them back to a queue called .\PingQ.
The GWPING program reads the replies from .\PingQ and signals you when
they are received.

Results For each of the ten test messages, GWPING should display Ping sent and
Received reply together with the elapsed time.

In the event of an error, choose the Display Envoy MQ DC log option on
the Envoy MQ Client menu to examine the error log. Review the installation
and configuration of the Envoy MQ Client and Envoy MQ Connector.

Additional
tests

You can set many test options on the GWPING and GWPONG screens. For an
explanation of the options, see the Installation chapter of the Envoy MQ
Programmer's Guide.

12

Envoy MQ for AS/400 2. ILE Programming

Chapter 2
ILE Programming

The Envoy MQ Client for AS/400 is supplied as an ILE service program.
You can call the Envoy MQ Client API functions from programs written in
any ILE language, for example C, C++, RPG, or COBOL.

This short chapter provides:

 Instructions for programming and binding Envoy MQ Client applications
on the AS/400.

 Cross references to other Envoy MQ and MSMQ documentation, for
details and examples of the API implementation.

API implementation

The native language of the Envoy MQ API is C. The API is identical to the C-
language API of other Envoy MQ Clients, and nearly identical to the API of
MSMQ. Thus you can port MSMQ or Envoy MQ Client applications very
easily from other platforms to the AS/400.

The following references provide further information on the API:

 For programming information, please see the Programming Messaging
Applications chapter in the Envoy MQ Programmer's Guide.

 For details of the API syntax, you should have a copy of the Microsoft
MSMQ documentation and SDK online help.

 13

2. ILE Programming Envoy MQ Client for AS/400

Programming in C

Include the Envoy MQ wintypes.h and mq.h headers in your program.
The header members are located in file H of the Envoy MQ Client library.

Compile your program using the IBM ILE C/400 compiler, for example:

CRTCMOD MODULE(YOURLIB/YOURMOD)
SRCFILE(YOURLIB/YOURPROG)

Source-code
examples

For C source-code examples of Envoy MQ Client messaging applications,
see the Sample Application chapter in the Envoy MQ Programmer's Guide. The
source code of the GWPING and GWPONG programs is provided in the
SAMPLES file of the Envoy MQ Client library.

Coding note
for handles

If you set a handle to NULL, you should cast the NULL to the HANDLE type,
for example:

HANDLE hConn = (HANDLE)NULL;
hRes = FMQDisconnect((HANDLE)NULL);

This comment applies to all Envoy MQ handles, for example security
handles, connection handles, and queue handles.

Programming in languages other than C

You can call the C-language API from any ILE language. For example, you
can program in a language such as IBM's ILE RPG/400 or ILE COBOL/400.

In practice, the API function calls involve some complex data structures. The
structures are easy to create in C but may be difficult to translate into other
languages. An easy solution to this problem is to program a small ILE
module in C that handles the API calls.

Language
interfaces
supplied with
Envoy MQ
Client

If you program in RPG or COBOL, you can use one of the language
interfaces that are supplied with Envoy MQ Client. These interfaces provide
the definitions that you need to access the API. This solves the problem of
translating the C syntax, so you can call the API functions directly in your
RPG or COBOL code.

For details and source-code examples, see Chapter 3, RPG Interface, and
Chapter 4, COBOL Interface.

14

Envoy MQ for AS/400 2. ILE Programming

Binding

Compile your program to an ILE module and bind it to the following Envoy
MQ Client ILE service program:

ENVOY MQ /FMQDCLIB

For example, if your module is called YOURLIB/YOURMOD, issue the
following command:
CRTPGM PGM(YOURLIB/YOURMOD) BNDSRVPGM(FAALCONMQ/FMQDCLIB) +
ACTGRP(*NEW)

The ACTGRP(*NEW) parameter is essential for Envoy MQ Client to function
properly. It ensures initialization of the product static variables.

 15

Envoy MQ for AS/400 3. RPG Interface

Chapter 3
RPG Interface

The Envoy MQ Client for AS/400 provides an RPG interface, which lets you
call the Envoy MQ Client API functions directly from your RPG programs.
The interface provides all the needed RPG definitions, so you can access the
complete API without any C programming at all.

Versions for
OS/400 V3R2+
and V3R7+

The RPG interface described in this chapter runs on OS/400 version V3R7 or
higher. To use this interface, you must install the Envoy MQ Client version
for V3R7 or higher (see the Installation procedure on page 2).

For a functionally identical interface that runs on OS/400 V3R2 and higher,
see Appendix A, RPG Interface for OS/400 V3R2.

The only significant difference between the two interfaces is the length of the
API identifiers. RPG for V3R2 supports identifiers of up to 10 characters.
RPG for V3R7 supports long identifiers, which are more similar to the C-
language identifiers in the native Envoy MQ and MSMQ APIs and are more
convenient to use.

Overview of
the interface

The interface is implemented in an RPG copy member called FMQCONST.
This chapter explains:

 The steps for creating a Envoy MQ Client application in RPG

 The structure and contents of FMQCONST

 Techniques for calling the Envoy MQ Client API functions using the
definitions in FMQCONST

The interface provides two additional copy members, called FMQPROPVAR
and FMQLOCATE, which support dynamic programming techniques for
building message and queue property structures. The chapter includes:

 17

3. RPG Interface Envoy MQ Client for AS/400

 Sample RPG data structures representing MSMQ message and queue
properties, constructed using static or dynamic techniques

 Sample RPG messaging applications

API functions This chapter describes an interface that you can use to call the Envoy MQ
Client API functions in RPG programs. It does not document the API
functions themselves. For information on that subject, see API implementation
on page 13 and the references therein.

Programming steps
To program a Envoy MQ Client messaging application, follow these steps:

1. Copy the FMQCONST member, which is found in the QRPGLESRC file of
the Envoy MQ Client library, into the definition specifications of your
RPG program (see FMQCONST copy member on page 19).

2. Optionally, copy the FMQPROPVAR and/or FMQLOCATE members into the
definition specifications. These members can help you set up the data
structures you need for Envoy MQ Client API calls (see Copy members on
page 49).

3. Create RPG definitions for the required message and queue properties
(see Data structures (static method) on page 30 or Data structures (dynamic
method) on page 38).

4. Code the Envoy MQ Client API calls (see Sample program on page 44).

5. Compile the program to an ILE module using the IBM ILE RPG/400
compiler.

6. Bind the ILE module to the following Envoy MQ ILE service program:

ENVOY MQ /FMQDCLIB

For example, if your module is called YOURLIB/YOURMOD, issue the
following command:

CRTPGM PGM(YOURLIB/YOURMOD) +
MODULE(YOURLIB/YOURMOD) BNDSRVPGM(FALCONMQ/FMQDCLIB)
ACTGRP(*NEW)

18

Envoy MQ for AS/400 3. RPG Interface

FMQCONST copy member

The FMQCONST copy member provides the definitions that you need to
access the Envoy MQ Client API. You must copy FMQCONST into the
definition specifications of your RPG program. FMQCONST is found in the
QRPGLESRC file of the Envoy MQ Client library.

The FMQCONST definitions include:

 Constants representing message properties
 Constants representing queue properties
 Constants representing queue manager properties
 Constants representing the value types of properties
 Miscellaneous named constants
 Declarations and arguments of the API functions

In general, the definitions are identical to the C-language definitions in the C
header files, mq.h, wintypes.h, and fmqpubd.h, which are also supplied
with Envoy MQ Client. The main exception to this rule is that the names of
the constants are abbreviated relative to the C versions, according to the
requirements of the RPG syntax. For example, the C constant
PROPID_M_DEST_QUEUE_LEN (representing the message property
destination queue name length) is abbreviated to PID_M_DEST_LEN in RPG.

 The following tables list the most important identifiers in the RPG interface. Please
refer to the FMQCONST source code for other identifiers not listed in the tables.

Message properties

The following table lists the constants representing message properties in
RPG and their equivalents in C.

The table also lists the following information, which is needed to construct a
propvariant structure for each property (see Substructures of property
structures on page 33):

 The value type constant of the property in RPG (for a list of the
corresponding constants in C, see Value type constants on page 24)

 The data type of the property value

 19

3. RPG Interface Envoy MQ Client for AS/400

 The VT_NULL value types are permitted only when receiving a message. See the
Microsoft MSMQ documentation for complete details about the meaning of each
property and the permitted values and types.

RPG Equivalent in C

Message property Value type Data type Message property

PID_M_ACK VT_UI1 (or
VT_NULL)

1A PROPID_M_ACKNOWLEDGE

PID_M_ADMIN_Q VT_LPWSTR * PROPID_M_ADMIN_QUEUE

PID_M_ADMQ_LEN VT_UI4 10U 0 PROPID_M_ADMIN_QUEUE_LEN

PID_M_APPSPC VT_UI4 (or
VT_NULL)

10U 0 PROPID_M_APPSPECIFIC

PID_M_ARVTIME VT_UI4 (or
VT_NULL)

10U 0 PROPID_M_ARRIVEDTIME

PID_M_AUTH_LVL VT_UI4 10U 0 PROPID_M_AUTH_LEVEL

PID_M_AUTHTCAT VT_UI1 (or
VT_NULL)

1A PROPID_M_AUTHENTICATED

PID_M_BODY VT_VECTOR#UI1 Two fields:

10U 0
*

PROPID_M_BODY

PID_M_BODY_LEN VT_UI4 (or
VT_NULL)

10U 0 PROPID_M_BODY_SIZE

PID_M_BODY_TYP VT_UI4 (or
VT_NULL)

10U 0 PROPID_M_BODY_TYPE

PID_M_CERT_LEN VT_UI4 10U 0 PROPID_M_SENDER_CERT_LEN

PID_M_CLASS VT_UI2 (or
VT_NULL)

5I 0 PROPID_M_CLASS

PID_M_CONN_TYP VT_CLSID * PROPID_M_CONNECTOR_TYPE

PID_M_CORRID VT_VECTOR#UI1 Two fields:

10U 0
*

PROPID_M_CORRELATIONID

PID_M_DELIVERY VT_UI1 (or
VT_NULL)

10U PROPID_M_DELIVERY

20

Envoy MQ for AS/400 3. RPG Interface

RPG Equivalent in C

Message property Value type Data type Message property

PID_M_DEST_LEN VT_UI4 (or
VT_NULL)

10U 0 PROPID_M_DEST_QUEUE_LEN

PID_M_DEST_Q VT_LPWSTR * PROPID_M_DEST_QUEUE

PID_M_ENCR_ALG VT_UI4 10U 0 PROPID_M_ENCRYPTION_ALG

PID_M_EXT VT_VECTOR#UI1 Two fields:

10U 0
*

PROPID_M_EXTENSION

PID_M_EXT_LEN VT_UI4 10U 0 PROPID_M_EXTENSION_LEN

PID_M_HASH_ALG VT_UI4 10U 0 PROPID_M_HASH_ALG

PID_M_JOURNAL VT_UI1 1A PROPID_M_JOURNAL

PID_M_LABEL VT_LPWSTR * PROPID_M_LABEL

PID_M_LBL_LEN VT_UI4 10U 0 PROPID_M_LABEL_LEN

PID_M_MSGID VT_VECTOR#UI1 Two fields:

10U 0
*

PROPID_M_MSGID

PID_M_PRIORITY VT_UI1 (or
VT_NULL)

1A PROPID_M_PRIORITY

PID_M_PRIV_LVL VT_UI4 (or
VT_NULL)

10U 0 PROPID_M_PRIV_LEVEL

PID_M_PROV_TYP VT_UI4 10U 0 PROPID_M_PROV_TYPE

PID_M_PROVN VT_LPWSTR * PROPID_M_PROV_NAME

PID_M_PROVN_LN VT_UI4 (or
VT_NULL)

10U 0 PROPID_M_PROV_NAME_LEN

PID_M_RES_Q VT_LPWSTR * PROPID_M_RESP_QUEUE

PID_M_RESQ_LEN VT_UI4 10U 0 PROPID_M_RESP_QUEUE_LEN

PID_M_SEC_CNTX VT_UI4 10U 0 PROPID_M_SECURITY_CONTEXT

PID_M_SENDERID VT_VECTOR#UI1 Two fields:

10U 0
*

PROPID_M_SENDERID

 21

3. RPG Interface Envoy MQ Client for AS/400

RPG Equivalent in C

Message property Value type Data type Message property

PID_M_SENTTIME VT_UI4 (or
VT_NULL)

10U 0 PROPID_M_SENTTIME

PID_M_SID_LEN VT_UI4 10U 0 PROPID_M_SENDERID_LEN

PID_M_SID_TYPE VT_UI4 (or
VT_NULL)

10U 0 PROPID_M_SENDERID_TYPE

PID_M_SIGN VT_VECTOR#UI1 Two fields:

10U 0
*

PROPID_M_SIGNATURE

PID_M_SIGN_LEN VT_UI4 10U 0 PROPID_M_SIGNATURE_LEN

PID_M_SKEY VT_VECTOR#UI1 Two fields:

10U 0
*

PROPID_M_DEST_SYMM_KEY

PID_M_SKEY_LEN VT_UI4 10U 0 PROPID_M_DEST_SYMM_KEY_LEN

PID_M_SMCH_ID VT_CLSID * PROPID_M_SRC_MACHINE_ID

PID_M_SNDR_CRT VT_VECTOR#UI1 Two fields:

10U 0
*

PROPID_M_SENDER_CERT

PID_M_T2ARV VT_UI4 10U 0 PROPID_M_TIME_TO_REACH_QUEUE

PID_M_T2RCV VT_UI4 (or
VT_NULL)

10U 0 PROPID_M_TIME_TO_BE_RECEIVED

PID_M_TRACE VT_UI1 (or
VT_NULL)

1A PROPID_M_TRACE

PID_M_VERSION VT_UI4 10U 0 PROPID_M_VERSION

PID_M_XSTS_Q VT_LPWSTR * PROPID_M_XACT_STATUS_QUEUE

PID_M_XSTS_QLN VT_UI4 10U 0 PROPID_M_XACT_STATUS_QUEUE_LEN

22

Envoy MQ for AS/400 3. RPG Interface

Queue properties

The following table lists the constants representing queue properties in RPG
and their equivalents in C.

RPG Equivalent in C

Queue property Value type Data type Queue property

PID_Q_AUTHNCTE VT_UI1 1A PROPID_Q_AUTHENTICATE

PID_Q_BASEPRIO VT_I2 5I 0 PROPID_Q_BASEPRIORITY

PID_Q_CHGTIME VT_I4 10I 0 PROPID_Q_MODIFY_TIME

PID_Q_CRTIME VT_I4 10I 0 PROPID_Q_CREATE_TIME

PID_Q_INSTNC VT_CLSID * PROPID_Q_INSTANCE

PID_Q_JRN VT_UI1 1A PROPID_Q_JOURNAL

PID_Q_JRQUOTA VT_UI4 10U 0 PROPID_Q_JOURNAL_QUOTA

PID_Q_LABEL VT_LPWSTR * PROPID_Q_LABEL

PID_Q_PATH VT_LPWSTR * PROPID_Q_PATHNAME

PID_Q_PRIVLVL VT_UI4 10U 0 PROPID_Q_PRIV_LEVEL

PID_Q_QUOTA VT_UI4 10U 0 PROPID_Q_QUOTA

PID_Q_TYPE VT_CLSID * PROPID_Q_TYPE

PID_Q_XACT VT_UI1 1A PROPID_Q_TRANSACTION

Queue manager properties

The following table lists the constants representing queue manager
properties in RPG and their equivalents in C.

 23

3. RPG Interface Envoy MQ Client for AS/400

RPG Equivalent in C

Queue manager
property

Value type Data type Queue manager property

PID_QM_CONNECT VT_VECT#LPWSTR Two fields:

10U 0
*

PROPID_QM_CONNECTION

PID_QM_ENCRYPT VT_VECTOR#UI1 Two fields:

10U 0
*

PROPID_QM_ENCRYPTION_PK

PID_QM_MCH_ID VT_CLSID * PROPID_QM_MACHINE_ID

PID_QM_PATH VT_LPWSTR * PROPID_QM_PATHNAME

PID_QM_SITE_ID VT_CLSID * PROPID_QM_SITE_ID

Value type constants

The following table lists the value type constants defined in FMQCONST and
the corresponding constants defined in the C header files. Only the constants
that are currently used in MSMQ are listed.

The value types are used in propvariant structures, which store the values of
properties. For a full explanation, see Substructures of property structures on
page 33. For reference, the table also indicates:

 The data types of the value fields in a propvariant structure
 The interpretation of the value fields
 The names of the corresponding value fields in C

RPG Equivalent in C

Value type
constant

Data type Interpretation of
property value

Value type
constant

Data type Union
field
name

VT_CLSID * Base pointer
(points to a GUID
code, type 16A)

VT_CLSID CLSID
_RPC_FAR

*puuid

VT_I2 5I 0 Property value VT_I2 short iVal

24

Envoy MQ for AS/400 3. RPG Interface

RPG Equivalent in C

Value type
constant

Data type Interpretation of
property value

Value type
constant

Data type Union
field
name

VT_I4 10I 0 Property value VT_I4 long lVal

VT_LPWST
R

* Base pointer
(points to a null-
terminated string)

VT_LPWSTR LPWSTR pwszVa
l

VT_NULL No value
(permitted only
when receiving a
message)

VT_NULL

VT_UI1 1A Property value VT_UI1 UCHAR bVal

VT_UI2 5I 0 Property value VT_UI2 USHORT uiVal

VT_UI4 10U 0 Property value VT_UI4 ULONG ulVal

VT_VECT#
LPWSTR

Two fields:

10U 0

*

Length of buffer

Base pointer
(points to buffer)a

VT_VECTOR
|
VT_LPWSTR

CALPWSTR calpws
tr

VT_VECTO
R#UI1

Two fields:

10U 0

*

Length of buffer

Base pointer
(points to buffer)b

VT_VECTOR
| VT_UI1

CAUI1 caub

Notes a. For the value type VT_VECT#LPWSTR, the buffer contains a null-

terminated string.

b. For the value type VT_VECTOR#UI1, the buffer may contain various types
of binary or text data:

 The message body property (PID_M_BODY) has this value type and may
contain any data whatsoever.

 Other properties having this value type are restricted to certain types or
structures of data. For information about specific properties, see the
Microsoft MSMQ documentation and SDK online help.

 25

3. RPG Interface Envoy MQ Client for AS/400

Miscellaneous named constants

FMQCONST defines a large number of constants representing special values
of API function arguments, error codes, etc. The following are a few
examples:

Constant in RPG Equivalent in C

MQ_ACCESS_ALL PSD_SPECIALACCESS_ALL

MQ_ER_ACCESS MQ_ERROR_ACCESS_DENIED

MQ_ER_BUF_OVR MQ_ERROR_BUFFER_OVERFLOW

MQ_LE PRLE

 The constants are too numerous to list here. For a complete listing, please refer to the
FMQCONST source code.

API functions

FMQCONST provides a complete set of definitions for the Envoy MQ Client
API functions. The functions are defined as external procedures in RPG.

Function
example

The following is the definition of the external procedure MQSendMessage in
FMQCONST. The procedure is equivalent to the MQSendMessage() function
in the MSMQ or Envoy MQ Client API.

 D MQSendMessage PR 10U 0 EXTPROC('MQSendMessage')
 D QueueHandle 10U 0 VALUE
 D MsgProps * VALUE
 D ITransact 16A VALUE

The function accepts three parameters by value:

 A queue handle of type U(10,0), specifying the destination queue.

 A base pointer of type *(16), pointing to a message property structure
containing the content of the message.

26

Envoy MQ for AS/400 3. RPG Interface

 A transaction handle of type A(16), specifying a transaction to which the
message belongs (optionally NULL).

The function returns a result code of type U(10,0).

Calling
syntax

In the calculation specifications of your program, you can call the
MQSendMessage procedure using syntax such as the following:

C EVAL hRes = MQSendMessage(Q1_Handle :
C %ADDR(M1_MsgProps) :
C MQ_NO_XACT)

For the method of setting up the message property structure
(M1_MsgProps), see Data structures (static method) on page 30 or Data
structures (dynamic method) on page 38. For other examples of function calls,
see the Sample program on page 44.

Comparison
with C

For comparison, the following is the corresponding API function declaration
in C:

 27

3. RPG Interface Envoy MQ Client for AS/400

HRESULT APIENTRY MQSendMessage(
 QUEUEHANDLE hDestinationQueue,
 MQMSGPROPS * pMessageProps,
 ITransaction * pTransaction
);

Notice that the names of the parameters in RPG are abbreviated from the
argument names or data types in C.

List of Envoy
MQ Client
functions

The following is a list of Envoy MQ Client API functions. The names of the
RPG procedures are the same as the C function names. For the complete
RPG definition of each procedure, please see the FMQCONST source code.

For an explanation of the procedures and their parameters, please see the
following references:

A. The chapter on Programming Messaging Applications in the Envoy MQ
Programmer's Guide.

B. The Microsoft MSMQ documentation and SDK online help.

Procedure Reference

FMQAbort A

FMQCommit A

FMQConnect A

FMQDebug A

FMQDisconnect A

FMQGetLogPath A

FMQSetLogPath A

FMQVersion A

FMQV1Connect() A

MQBeginTransaction A

MQCloseCursor B

MQCloseQueue B

MQCreateCursor B

MQCreateQueue A, B

MQDeleteQueue B

28

Envoy MQ for AS/400 3. RPG Interface

Procedure Reference

MQFreeMemory B

MQFreeSecurityContext A, B

MQGetMachineProperties B

MQGetQueueProperties B

MQGetSecurityContext A, B

MQHandleToFormatName B

MQInstanceToFormatName B

MQLocateBegin A, B

MQLocateEnd B

MQLocateNext B

MQOpenQueue B

MQPathNameToFormatName B

MQReceiveMessage A, B

MQRegisterCertificate A, B

MQSendMessage B

MQSetQueueProperties B

Short API
function
names

For compatibility with Envoy MQ Client version 1.0, the following shorter
names for API functions are also supported. Please refrain from using the
short names because they may be discontinued in future versions.

Procedure Short name (version 1.0)

MQBeginTransaction MQBeginTrnsact

MQFreeSecurityContext MQFreSecContxt

MQGetMachineProperties MQGetMchProp

MQGetQueueProperties MQGetQueueProp

MQGetSecurityContext MQGetSecContxt

MQHandleToFormatName MQHndlToFormat

 29

3. RPG Interface Envoy MQ Client for AS/400

Procedure Short name (version 1.0)

MQInstanceToFormatName MQInstToFormat

MQPathNameToFormatName MQPathToFormat

MQReceiveMessage MQRcvMessage

MQSetQueueProperties MQSetQueueProp

Data structures (static method)

Many of the MSMQ and Envoy MQ Client API functions require parameters
that are pointers to data structures. These include:

Property structures Structures containing sets of message, queue, or
queue manager properties. The content of a
message, for example, is specified in a message
property structure.

Substructures of
property structures

Structures and arrays that are elements of property
structures. An example is the propvariant structure,
which contains the values of properties.

Query structures Structures required as parameters of the
MQLocateBegin function, which searches for
queues having specified property values.

This section explains a simple, static method to create the property structures
and substructures in your RPG programs. Most of the examples are taken
from the Sample program, which is presented in full on page 44. If you wish,
you can copy the examples (with minor modifications) into your RPG
programs.

For additional information on the interpretation and use of the structures,
please refer to the Microsoft MSMQ documentation and SDK online help.

For information on the query structures, please see the Online samples
described on page 48.

30

Envoy MQ for AS/400 3. RPG Interface

Static method

In the static method, a property structure specifies a fixed set of properties.

For example, you can create a static message property structure containing
the message body, delivery, and priority properties. Every message that you
send using this property structure contains exactly these three properties.

You need to define separate property structures for message properties and
for queue properties. Optionally, you can define multiple static structures
for different sets of message or queue properties.

In an RPG program, you can implement a static property structure using
simple data structure (DS) definitions. Often, you can leave the DS subfields
unnamed and initialize their values in the definition. Depending on the
needs of your application, you can also name the fields and assign or read
the values in the calculation specifications.

The examples in the following sections illustrate the static method. For
information on the alternative dynamic method, which lets you store a
varying set of properties in a single structure, see Data structures (dynamic
method) on page 38.

Property structures

A property structure contains a collection of properties and their values. There
are three types of property structures, each of which is equivalent to one of
the data structures defined in the C header files of the MSMQ API.

Structure Contains a collection of Equivalent to C data type

Message property structure Message properties MQMSGPROPS

Queue property structure Queue properties MQQUEUEPROPS

Queue manager property structure Queue manager properties MQQMPROPS

Each property structure contains the following four fields:

 31

3. RPG Interface Envoy MQ Client for AS/400

RPG data
type

C data type Field name
in C

Description

10U 0 DWORD cProp A count of the properties included in the structure. The value of
this field is the size of the arrays in the other fields of the
structure.

* Array of
PROPID

aPropID A pointer to an array of PID_... constants, identifying the
properties that are included in the structure (input to the API
functions).

* Array of
PROPVARIAN
T

aPropVa
r

A pointer to an array of propvariant structures, which contain the
values of the properties (input or output).

* Array of
HRESULT

aStatus A pointer to an array of status codes (output from the API
functions).

 For convenience, we sometimes refer to the fields by the generic names cProp,
aPropID, etc. In RPG, you must use field names that are unique throughout the
entire program. You can leave the fields unnamed if the program doesn't need to
change their values.

Message
properties

The following is a sample definition of a message property structure. The
structure is initialized to contain three message properties. The fields are
named with the prefix M1_..., on the assumption that you may define
more than one such structure (M2_..., M3_..., etc.) in your program. For
example, you could use M1_MsgProps for messages that you send and
M2_MsgProps for messages that you receive.

For the definitions of the array fields (M1_Props, M1_Values, and
M1_Status), see Substructures of property structures on page 33.

 * Message property structure
 D M1_MsgProps DS
 D M1_cProp 10U 0 INZ(3)
 D M1_aPropID * INZ(%ADDR(M1_Props))
 D M1_aPropVar * INZ(%ADDR(M1_Values))
 D M1_aStatus * INZ(%ADDR(M1_Status))

Queue
properties

A queue property structure is defined in exactly the same way as a message
property structure. In the following example, the fields of the structure are
unnamed, so they cannot be changed from their initial values.

32

Envoy MQ for AS/400 3. RPG Interface

 * Queue property structure
 D Q_QProps DS
 D 10U 0 INZ(3)
 D * INZ(%ADDR(Q_Props))
 D * INZ(%ADDR(Q_Values))
 D * INZ(%ADDR(Q_Status))

Queue
manager
properties

Queue manager property structures are completely analogous to message
and queue property structures. The following is a sample definition
containing a single queue manager property.

 * Queue manager property structure
 D QMProps DS
 D 10U 0 INZ(1)
 D * INZ(%ADDR(QM_Props))
 D * INZ(%ADDR(QM_Values))
 D * INZ(%ADDR(QM_Status))

Substructures of property structures

Each property structure (see Property structures on page 31) contains pointers
to three arrays:

aPropID Pointer to an array of property identifies
(PID_... constants) identifying message, queue,
or queue manger properties.

aPropVar Pointer to an array of propvariant structures,
which contain the values of the properties.

aStatus Pointer to an array of status codes, used for output
from the API functions.

The number of elements in each array is given by the cProp field of the
property structure. The order of properties must be identical in each array.
For example, if the aPropID array contains PID_... constants for the
message body, delivery, and priority properties, then the other arrays must
also contain elements for exactly the same properties, in the same order.

The following examples illustrate how you can construct the arrays in an
RPG program. For convenience, the arrays are represented as RPG data

 33

3. RPG Interface Envoy MQ Client for AS/400

structures (in essence, substructures of a property structure) instead of true
RPG arrays.

The examples are for the message and queue property structures,
M1_MsgProps and Q_QProps, which are defined in the Property structures
section on page 31.

There are three properties in each message array, as specified by the cProp
field of M1_MsgProps. The properties included in the example are:

 Message body
 Message delivery
 Message priority

There are three properties in each queue array, as specified by the cProp
field of Q_QProps:

34

Envoy MQ for AS/400 3. RPG Interface

 Queue path name
 Queue label
 Queue transaction status (transacted or nontransacted queue)

In a single property structure, the number and order of properties must be
identical in each array.

Array of
property
identifiers

The following data structure represents an array of PID constants
identifying the properties included in a message property structure. The
structure corresponds to the aProp field of a C property structure.

 * aProp array of message property identifiers
 D M1_Props DS
 D 10U 0 INZ(PID_M_BODY)
 D 10U 0 INZ(PID_M_DELIVERY)
 D 10U 0 INZ(PID_M_PRIORITY)

Arrays of queue and queue manager properties are defined in exactly the
same way, for example:

 * aProp array of queue property identifiers
 D Q_Props DS
 D 10U 0 INZ(PID_Q_PATH)
 D 10U 0 INZ(PID_Q_LABEL)
 D 10U 0 INZ(PID_Q_XACT)

Array of
propvariant
structures

MSMQ and Envoy MQ Client use propvariant structures to store the values
of message, queue, and queue manager properties. On the AS/400, a
propvariant is a 48-byte structure containing the following fields:

Value type constant A VT_... constant indicating the data type of the
property value.

Reserved Reserved for future use.

Value1 The value of the property. For certain properties,
Value1 is the size of the value in bytes (equivalent
to the cElems field in C).

Value2 If Value1 contains the value, Value2 is an empty
placeholder field. If Value1 contains the size of the
value, then Value2 is a pointer to the value
(equivalent to the pElems field in C).

The following example is a data structure containing three propvariant
substructures. The propvariant elements contain the values of the message

 35

3. RPG Interface Envoy MQ Client for AS/400

body, delivery, and priority properties, respectively. The structure as a
whole corresponds to the aPropVar array of a C message property
structure.

 * aPropVar array of message property values
 D M1_Values DS
 *
 * Propvariant structure specifying the message body
 * (The body is stored in a 100-byte buffer M1_Body)
 D 5U 0 INZ(VT_VECTOR#UI1)
 D 14A INZ(MQ_Reserved)
 D 10U 0 INZ(100)
 D * INZ(%ADDR(M1_Body))
 *
 * Propvariant structure specifying the message delivery
 * (MQ_DLV_RECVRBL means recoverable delivery, guaranteed even after
 * recovery from a crash)
 D 5U 0 INZ(VT_UI1)
 D 14A INZ(MQ_Reserved)
 D 2B 0 INZ(MQ_DLV_RECVRBL)
 D *
 *
 * Propvariant structure specifying a message priority of 3
 D 5U 0 INZ(VT_UI1)
 D 14A INZ(MQ_Reserved)
 D 2B 0 INZ(3)
 D *

In each propvariant, the value type constant and the data types of Value1
and Value2 are set according to the property whose value is stored. To
determine the correct value and data types, refer to the tables in the
FMQCONST copy member section, starting on page 19.

For example, the first propvariant stores the value of the message body
property, PID_M_BODY. Referring to the Message properties table on page 19,
the value type constant for PID_M_BODY is VT_VECTOR#UI1. The data type
of Value1 is 10U 0, and the data type of Value2 is *. Value1 stores the length
of the message buffer, and Value2 is a pointer to the message buffer
M1_Body.

Elsewhere in the program, you need to define the message buffer and store a
message in it, for example:

 * Content of the message body
 D M1_Body S 100A INZ('Hello, world')

36

Envoy MQ for AS/400 3. RPG Interface

 In the above example, Value1 for the message body is set to the full length of the
message buffer (100 bytes). Depending on how your application interprets the
contents of the message buffer, you may need to set Value1 to the true length of the
message stored in the buffer ('Hello, world' = 12 bytes, or 13 bytes if the
string is null terminated).

The aPropVar array of queue property values is constructed according to
the same principles. The following code is an example.

 * aPropVar array of queue property values
 D Q_Values DS
 *
 * Propvariant structure specifying the queue path name
 D 5U 0 INZ(VT_LPWSTR)
 D 14A INZ(MQ_Reserved)
 D pQPath * INZ(%ADDR(Q_Path))
 D *
 *
 * Propvariant structure specifying the queue label
 D 5U 0 INZ(VT_LPWSTR)
 D 14A INZ(MQ_Reserved)
 D pQLabel * INZ(%ADDR(Q_Label))
 D *
 *
 * Propvariant structure specifying the queue transaction status
 D 5U 0 INZ(VT_UI1)
 D 14A INZ(MQ_Reserved)
 D Q_Xact 1A
 D *

Elsewhere in the program, you need to define buffers for the queue path
name and label:

 * Buffers for the queue path name and label
 D Q_Path S 50A
 D Q_Label S 100A

Array of
status codes

The following example is structure of message status codes. The structure
corresponds to an aStatus array in a C message property structure.

The status codes are output from various API functions. In the example, the
three codes are given names (M1_Body_sts, etc.) so the program can
retrieve the output values.

 37

3. RPG Interface Envoy MQ Client for AS/400

 * aStatus array of message-property status codes
 D M1_Status DS INZ
 D M1_Body_sts 10U 0
 D M1_Delvr_sts 10U 0
 D M1_Prio_sts 10U 0

The status array for a queue property structure is analogous, for example:

 * aStatus array of queue-property status codes
 D Q_Status DS INZ
 D Q_Path_sts 10U 0
 D Q_Label_sts 10U 0
 D Q_Xact_sts 10U 0

Data structures (dynamic method)

You can create a property structure either statically or dynamically in an RPG
program. This section explains the dynamic method, which lets you create a
single structure containing a varying set of message, queue, or queue
manager properties.

 For a complete explanation of the data structures, see Data structures (static
method) on page 30.

Dynamic method

Suppose that your application creates a queue and sends and receives
messages containing varying sets of message properties. Before you call the
MQCreateQueue API function, you need to create a queue property
structure including several queue properties. Before you call
MQSendMessage and MQRcvMessage, you need to create a message
property structure containing a variable number of message properties.

Using the static method, you would need to define a separate property
structure for each set of message or queue properties that the program

38

Envoy MQ for AS/400 3. RPG Interface

needs. Using the dynamic method, you can define a single property
structure that accommodates all the combinations.

In an RPG program, you can implement a dynamic property structure using
arrays or multiple-occurrence data structures. In the definition
specifications, you need to define the maximum size of the arrays or the
maximum number of occurrences. You also need to define a base pointer to
the first element or occurrence.

In the calculation specifications, the program sets the number of active
elements or occurrences, that is, the number of properties included in the
structure. The program then moves the desired queue or message properties
into the arrays or structures.

In this way, the program can change the set of properties before each Envoy
MQ Client API call.

Property structure

At the top level, a dynamic property structure definition is similar to a static
definition. The differences are the following:

 You need to define only one property structure, where you can
afterwards store queue or message properties as needed.

 You must give a name to the first field in the property structure (cProp
in the example). Before each API call, you must assign a value to this field
indicating how many properties are actually in the property structure.

 * Top-level property structure
 D Props DS
 D cProp 10U 0 INZ(0)
 D aPropID * INZ(%ADDR(MQ_PropID))
 D aPropVar * INZ(%ADDR(PROPVRIANT))
 D aStatus * INZ(%ADDR(MQ_Result))

Substructures

In the dynamic method, define the substructures of a property structure as
RPG arrays or multiple-occurrence data structures. Set the array size or the

 39

3. RPG Interface Envoy MQ Client for AS/400

number of occurrences to the maximum number of properties in any single
API call, anywhere in your program.

The following examples illustrate the definitions for a dynamic property
structure containing up to 10 properties.

Array of
property
identifiers

The array of property identifiers corresponds to the aProp field of a
property structure in C. In RPG, you can define the array as follows:

 * aProp array of up to 10 property identifiers
 D MQ_PropID S 10U 0 DIM(10)

Array of
propvariant
structures

In RPG, the array of propvariant structures is defined as a multiple-
occurrence data structure. The structure corresponds to the aPropVar field
of a property structure in C.

Note the use of the FMQPROPVAR copy member (which is found in the
QRPGLESRC file of the Envoy MQ Client library) as the array element.
FMQPROPVAR contains a complete RPG definition of the propvariant data
structure.

 * aPropVar array of property values
 D PROPVRIANT DS OCCURS(10)
 D/COPY FMQPROPVAR

Array of
status codes

The array of status codes corresponds to the aStatus field in C. A sample
definition follows:

 * aStatus array of property status codes
 D MQ_Result S 10U 0 DIM(10)

Using a dynamic property structure

There are several steps to use a dynamic property structure. The following is
a typical procedure:

1. In the cProp field of the top-level structure, set the number of properties
that you want to include in the structure.

2. Clear the substructures.

40

Envoy MQ for AS/400 3. RPG Interface

3. Move the desired property identifiers (PID_... constants) into the
aProp array.

4. Move the value types and values of each property into the aPropVar
array.

5. If a property requires a buffer, store the value in the buffer.

6. Call the desired Envoy MQ Client API function providing the property
structure as a parameter.

In the following example, we send a message including two message
properties:

 Message body
 Message label

 For a more comprehensive example (including additional properties, receiving a
message, and creating a queue), see the FMQRDYN program which is described in
Online samples, page 48.

 D M_Label S 124A
 D hRes S 10U 0
 D Handle S 10U 0
 D Body S 100A
 D pTransaction S 16A
 *
 * For simplicity, the steps of obtaining a queue handle and beginning
 * a transaction are omitted here. See the FMQRDYN sample program for
 * these steps.
 *
 * 1. Set the number of properties in the property structure
 C Eval cProp = 2
 *
 * 2. Clear the substructures
 *
 C Clear MQ_PropID
 C Clear MQ_Result
 C Clear *ALL PROPVRIANT
 *
 * 3. Set the message property identifiers in the aProp array
 *
 C Move PID_M_BODY MQ_PropID(1)
 C Move PID_M_LABEL MQ_PropID(2)
 *
 * 4. Set the property values in the aPropVar array
 *
 * The field names (vt, cElems, pElems, and pwszVal) are defined
 * in the FMQPROPVAR copy member
 C 1 Occur PROPVRIANT
 C Move VT_VECTOR#UI1 vt

 41

3. RPG Interface Envoy MQ Client for AS/400

 C Eval cElems = 50
 C Eval pElems = %ADDR(Body)
 C 2 Occur PROPVRIANT
 C Move VT_LPWSTR vt
 C Eval pwszVal = %ADDR(M_Label)
 *
 * 5. Set the buffers for the property values
 *
 C Do 5 I 1 0
 C MoveL I cI 1
 *
 * The message body is 'Message number <loop index>',
 * padded with blanks up to the value of cElems (50)
 C Eval Body = 'Message number ' + cI
 *
 * The message label is 'Label number <loop index>',
 * converted to a null-terminated string
 C 2 Occur PROPVRIANT
 C Eval %str(pwszVal:50) = 'Label number ' + cI
 *
 * 6. Call the send-message API
 *
 C Eval hRes = MQSendMessage(Handle :
 C %ADDR(Props) :

 C pTransaction)
 C EndDo

String handling

Several of the message, queue, and queue manager properties have values
that are character strings. For example, the message label (PID_M_LABEL) is
a string of up to 250 characters. In addition, certain Envoy MQ Client API
functions (for example FMQConnect), require parameters that are strings.

This section describes the differences between C and RPG strings and the
steps to ensure compatibility of your programs with the MSMQ standard.

 For details of the maximum string length, etc., see the Microsoft MSMQ
documentation and SDK online help.

42

Envoy MQ for AS/400 3. RPG Interface

Null-terminated strings

MSMQ and Envoy MQ Client require that every string value be terminated
by a null character. In RPG, strings are predefined in length and are padded
with trailing blanks. You can convert strings between the two formats using
the RPG built-in function %STR, for example:

 D M_Label S 124A
 D pM_Label S *
 C Eval M_Label =%STR(pM_Label:124)

You can also create a null-terminated string by concatenating X'00' at the
end of the meaningful text, for example:

 D M_Label S 124A
 C Eval M_Label = 'Test message ' + X'00'

To make sure that the null character is added to the end of the meaningful
text use the built-in function %TRIM, for example:

 D M_Label S 124A
 C Eval M_Label = %TRIM('Test message ') + X'00'

EBCDIC to UNICODE conversion

Envoy MQ Client uses a code-page translation table to translate string
properties and parameters from EBCDIC to UNICODE or vice versa.

All message and queue properties are converted, with the following
exceptions:

 The message body (PID_M_BODY) is converted only if the message body
type (PID_M_BODY_TYP) is VT_LPWSTR or VT_BSTR. Envoy MQ does
not translate a message body of any other type because it doesn't know
whether the body contains text or binary data. Instead, you should
program whatever conversions are needed.

 The message extension (PID_M_EXT).

 43

3. RPG Interface Envoy MQ Client for AS/400

Sample program

This section presents the complete source code of the FMQBOOK sample
program, which is supplied online in the Samples file of the Envoy MQ
Client library. The program illustrates some basic messaging operations,
including:

 Creating and deleting a queue
 Opening and closing a queue
 Sending and receiving a message

The program uses the static method to create the required MSMQ and
Envoy MQ data structures. For a detailed discussion of the structures, see
Data structures (static method) on page 30.

 For additional sample programs, see Online samples on page 48.

44

Envoy MQ for AS/400 3. RPG Interface

Source code

 H
 **
 * *
 * Program name: FMQBOOK *
 * *
 * Description: Sample ILE RPG program demonstrating basic *
 * Envoy MQ messaging operations *
 * *
 * Envoy MQ Client for AS/400 *
 * (C) Copyright 2002 by Envoy Technologies Inc. *
 * All rights reserved *
 * *
 **
 *
 *
 * Include Envoy MQ definitions in the program
 D/COPY FMQCONST
 *
 * aProp array of queue property identifiers
 D Q_Props DS
 D 10U 0 INZ(PID_Q_PATH)
 D 10U 0 INZ(PID_Q_LABEL)
 D 10U 0 INZ(PID_Q_XACT)
 *
 * aStatus array of queue-property status codes
 D Q_Status DS INZ
 D Q_Path_sts 10U 0
 D Q_Label_sts 10U 0
 D Q_Xact_sts 10U 0
 *
 * aPropVar array of queue property values
 D Q_Values DS
 *
 * Propvariant structure specifying the queue path name
 D 5U 0 INZ(VT_LPWSTR)
 D 14A INZ(MQ_Reserved)
 D pQPath * INZ(%ADDR(Q_Path))
 D *
 *
 * Propvariant structure specifying the queue label
 D 5U 0 INZ(VT_LPWSTR)
 D 14A INZ(MQ_Reserved)
 D pQLabel * INZ(%ADDR(Q_Label))
 D *
 *
 * Propvariant structure specifying the queue transaction status
 D 5U 0 INZ(VT_UI1)

 45

3. RPG Interface Envoy MQ Client for AS/400

 D 14A INZ(MQ_Reserved)
 D Q_Xact 1A
 D *
 *
 * Queue property structure
 D Q_QProps DS
 D 10U 0 INZ(3)
 D * INZ(%ADDR(Q_Props))
 D * INZ(%ADDR(Q_Values))
 D * INZ(%ADDR(Q_Status))
 *
 * aProp array of message property identifiers
 D M1_Props DS
 D 10U 0 INZ(PID_M_BODY)
 D 10U 0 INZ(PID_M_DELIVERY)
 D 10U 0 INZ(PID_M_PRIORITY)
 *
 * aStatus array of message-property status codes
 D M1_Status DS INZ
 D M1_Body_sts 10U 0
 D M1_Delvr_sts 10U 0
 D M1_Prio_sts 10U 0
 *
 * aPropVar array of message property values
 D M1_Values DS
 *
 * Propvariant structure specifying the message body
 * (The body is stored in a 100-byte buffer M1_Body)
 D 5U 0 INZ(VT_VECTOR#UI1)
 D 14A INZ(MQ_Reserved)
 D 10U 0 INZ(100)
 D * INZ(%ADDR(M1_Body))
 *
 * Propvariant structure specifying the message delivery
 * (MQ_DLV_RECVRBL means recoverable delivery, guaranteed even after
 * recovery from a crash)
 D 5U 0 INZ(VT_UI1)
 D 14A INZ(MQ_Reserved)
 D 2B 0 INZ(MQ_DLV_RECVRBL)
 D *
 *
 * Propvariant structure specifying a message priority of 3
 D 5U 0 INZ(VT_UI1)
 D 14A INZ(MQ_Reserved)
 D 2B 0 INZ(3)
 D *
 *
 * Message property structure
 D M1_MsgProps DS
 D M1_cProp 10U 0 INZ(3)
 D M1_aPropID * INZ(%ADDR(M1_Props))
 D M1_aPropVar * INZ(%ADDR(M1_Values))

46

Envoy MQ for AS/400 3. RPG Interface

 D M1_aStatus * INZ(%ADDR(M1_Status))
 *
 * Standalone field definitions
 *
 * Buffers for the queue path and label
 D Q_Path S 50A
 D Q_Label S 100A
 * Return code of Envoy MQ Client API functions
 D hRes S 10U 0
 * Envoy MQ Connector connection handle
 D hConn S 10U 0
 * Queue handle
 D Q1_Handle S 10U 0
 * Queue format name buffer
 D Q1_FmtName S 256A
 * Length of the queue format name buffer
 D Q1_FmtNameLng S 10U 0 INZ(50)
 * Buffer for the message body (initialized with a test message)
 D M1_Body S 100A INZ('Hello, world')
 *
 --
 *
 * Create a queue called '.\AS400SAMPLE'
 C EVAL %str(pQPath : 50) = '.\AS400SAMPLE'
 C EVAL %str(pQLabel: 100) = 'AS400 Test Queue'
 C EVAL Q_Xact = MQ_Q_XACT_NONE
 C EVAL hRes = MQCreateQueue(MQ_ACCESS_ALL :
 C %ADDR(Q_QProps) :
 C Q1_FmtName :
 C Q1_FmtNameLng)
 *
 * Open the queue for sending
 C EVAL hRes = MQOpenQueue(Q1_FmtName :
 C MQ_SEND :
 C MQ_DENY_NONE :
 C Q1_Handle)
 *
 * Send a message
 C EVAL hRes = MQSendMessage(Q1_Handle :
 C %ADDR(M1_MsgProps) :
 C MQ_NO_XACT)
 *
 * Close the queue
 C EVAL hRes = MQCloseQueue(Q1_Handle)
 *
 * Open the queue for receiving
 C EVAL hRes = MQOpenQueue(Q1_FmtName :
 C MQ_RECEIVE :
 C MQ_DENY_SHARE :
 C Q1_Handle)
 *
 * Receive the message

 47

3. RPG Interface Envoy MQ Client for AS/400

 C MOVE *BLANKS M1_Body
 C EVAL hRes = MQReceiveMessage(Q1_Handle :
 C MQ_INFINITE :
 C MQ_ACT_RECEIVE :
 C %ADDR(M1_MsgProps) :
 C *NULL :
 C *NULL :
 C 0 :
 C MQ_NO_XACT)
 *
 * Display the message body
 C EVAL Res = %subst(M1_Body:1:50)
 C DSPLY Res 50
 *
 * Close the queue
 C EVAL hRes = MQCloseQueue(Q1_Handle)
 *
 * Delete the queue
 C EVAL hRes = MQDeleteQueue(Q1_FmtName)
 *
 * Disconnect from Envoy MQ Connector
 C EVAL hRes= FMQDisconnect(hConn)
 *
 C SETON LR

Online samples

The Envoy MQ Client library includes several online programs and source
members that you can use in your RPG applications.

File Description

QRPGLESRC Copy members that you can include in your applications

SAMPLES Sample programs illustrating various Envoy MQ programming techniques
and solutions to programming problems

The following paragraphs describe the online samples in more detail.

48

Envoy MQ for AS/400 3. RPG Interface

Copy members

FmqConst You should include the FMQCONST copy member in every Envoy MQ Client
RPG application.

This member contains definitions of MSMQ properties, named constants,
and API functions. For a complete description, see FMQCONST copy member
on page 19.

FmqPropvar The FMQPROPVAR copy member provides a complete RPG definition of the
MSMQ propvariant data structure. For an explanation of the propvariant
structure, see Substructures of property structures on page 33.

The member is recommended for use in programs that create property
structures dynamically. For an example of its use, see the FMQRDYN sample
program.

FmqLocate The FMQLOCATE copy member defines the data structures used in queue
queries.

The member is recommended for use in programs that create the query
structures dynamically. For an example, see the FMQRDYNLOC sample
program.

Sample programs

FmqBook FMQBOOK is a sample program illustrating basic messaging operations.

The program provides example of:

 Creating and deleting a queue
 Opening and closing a queue
 Sending and receiving a message

The complete source code of this program is printed in the Sample program
section of this chapter on page 44.

FmqrStc FMQRSTC is a sample program illustrating messaging operations.

The program provides examples of:

 Connecting to and disconnecting from Envoy MQ Connector
 Creating and deleting a queue
 Converting a queue path name to a format name
 Opening and closing a queue
 Sending and receiving a message

 49

3. RPG Interface Envoy MQ Client for AS/400

FmqrXact FMQRXACT is a sample program illustrating transacted messaging.

The program sends and receives a set of messages in a single MSMQ
transaction. The program provides examples of:

 Connecting to and disconnecting from Envoy MQ Connector
 Creating a transactional queue
 Opening, and closing a queue
 Sending a set of messages
 Beginning and committing an MSMQ transaction
 Receiving a set of messages in a single MSMQ transaction

FmqrDyn FMQRDYN is a sample program illustrating the dynamic creation of property
structures. The program uses the FMQPROPVAR copy member to define the
propvariant data structure.

The program illustrates most of the common messaging operations, such as:

 Creating and opening a queue
 Sending and receiving an authenticated message

50

Envoy MQ for AS/400 3. RPG Interface

 Sending and receiving transacted messages
 Disconnecting from Envoy MQ Connector

FmqrLoc FMQRLOC is a sample program illustrating how to construct a queue query.
The program calls the MQLocateBegin, MQLocateNext, and
MQLocateEnd functions to find a queue having a specified label.

FmqrDynLoc FMQRDYNLOC is a sample program that creates a queue query dynamically.
The program illustrates the use of the FMQLOCATE copy member, and finds a
queue having a specified label.

FmqrLog

FMQRLOG illustrates the Envoy MQ Client debug logging functions
(FMQDebug, FMQGetLogPath, and FMQSetLogPath).

FmqrVer

FMQRVER displays Envoy MQ Client version information on the screen. It
illustrates the use of the FMQVersion API function.

 51

Envoy MQ for AS/400 4. COBOL Interface

Chapter 4
COBOL Interface

The Envoy MQ Client for AS/400 provides a COBOL interface, which lets
you call the Envoy MQ Client API functions directly from your COBOL
programs. The interface provides all the needed COBOL definitions, so you
can access the complete API without any C programming at all.

The COBOL interface is similar to the RPG interfaces described in chapters 3
and 4 of this book. If you are already familiar with one of the RPG interfaces,
you will find the COBOL interface very easy to learn.

Operating
system
requirements

The COBOL interface described in this chapter runs on OS/400 version
V3R2 or higher.

Overview of
the interface

The interface is implemented as a set of external API procedures and copy
members. This chapter explains:

 The steps for creating a Envoy MQ Client application in COBOL

 The structure and contents of FMQCONST, which is the most important of
the copy members

 Techniques for calling the Envoy MQ Client API procedures

The interface provides two additional copy members, called FMQPROPVAR
and FMQLOCATE, which support dynamic programming techniques for
building message and queue property structures. The chapter includes:

 Sample COBOL data structures representing MSMQ message and queue
properties, constructed using the dynamic techniques

 Sample COBOL messaging applications

 53

4. COBOL Interface Envoy MQ Client for AS/400

API functions This chapter describes an interface that you can use to call the Envoy MQ
Client API functions in COBOL programs. It does not document the API
functions themselves. For information on that subject, see API implementation
on page 13 and the references therein.

Programming steps

 You can run COBOL applications with the Envoy MQ Client version for OS/400
V3R2 or the version for OS/400 V3R7. The COBOL interfaces of the two versions
are identical.

To program a Envoy MQ Client messaging application, follow these steps:

1. Copy the FMQCONST member, which is found in the QCBLLESRC file of
the Envoy MQ Client library, into the working storage section of your
COBOL program (see FMQCONST copy member on page 55).

2. Optionally, copy the FMQPROPVAR and/or FMQLOCATE members into the
working storage section of your program. These members can help you
set up the data structures you need for Envoy MQ Client API calls (see
Data structures on page 65).

3. Create COBOL definitions for the required message and queue properties
(see Data structures on page 65).

4. Code the Envoy MQ Client API calls (see Sample program on page 74).

5. Compile the program to an ILE module using the IBM ILE COBOL/400
compiler.

For example, if your module should be called YOURLIB/YOURMOD, issue the
following commands:

ADDLIBLE ENVOY MQ
CRTCBLMOD MODULE(YOURLIB/YOURMOD)
SRCFILE(YOURLIB/YOURFILE) +
SRCMBR(YOURMEMBER) OPTION(*NOMONOPRC *APOST)

6. Bind the ILE module to the following Envoy MQ ILE service program:

FALCONMQ/FMQDCLIB

For example:

CRTPGM PGM(YOURLIB/YOURMOD) +

54

Envoy MQ for AS/400 4. COBOL Interface

MODULE(YOURLIB/YOURMOD) BNDSRVPGM(FALCONMQ/FMQDCLIB)
ACTGRP(*NEW)

FMQCONST copy member

The FMQCONST copy member provides the definitions that you need to
access the Envoy MQ Client API. You must copy FMQCONST into the
working storage section of your COBOL program. FMQCONST is found in the
QCBLLESRC file of the Envoy MQ Client library.

The FMQCONST definitions include:

 Constants representing message properties
 Constants representing queue properties
 Constants representing queue manager properties
 Constants representing the value types of properties
 Miscellaneous named constants

In general, the definitions are very similar to the C-language definitions in
the C header files, mq.h, wintypes.h, and fmqpubd.h, which are also
supplied with Envoy MQ Client. The main difference is that the COBOL
identifiers contain hyphens (-) rather than underscores (_). For example, the
C constant PROPID_M_DEST_QUEUE_LEN (representing the message
property destination queue name length) is represented as PROPID-M-DEST-
QUEUE-LEN in COBOL.

Message properties

The following table lists the constants representing message properties in
COBOL. The constants are identical to the property identifiers in C, except
that underscores (_) are replaced with hyphens (-).

The table also lists the following information, which is needed to construct a
propvariant structure for each property (see Substructures of property
structures on page 68):

 The value type constant of the property in COBOL (for a list of the
corresponding constants in C, see Value type constants on page 59)

 The data type of the property value

 55

4. COBOL Interface Envoy MQ Client for AS/400

 The VT-NULL value types are permitted only when receiving a message. See the
Microsoft MSMQ documentation for complete details about the meaning of each
property and the permitted values and types.

Message property Value type Data type

PROPID-M-ACKNOWLEDGE VT-UI1 (or VT-NULL) PIC X

PROPID-M-ADMIN-QUEUE VT-LPWSTR POINTER

PROPID-M-ADMIN-QUEUE-LEN VT-UI4 PIC 9(9) BINARY

PROPID-M-APPSPECIFIC VT-UI4 (or VT-NULL) PIC 9(9) BINARY

PROPID-M-ARRIVEDTIME VT-UI4 (or VT-NULL) PIC 9(9) BINARY

PROPID-M-AUTH-LEVEL VT-UI4 PIC 9(9) BINARY

PROPID-M-AUTHENTICATED VT-UI1 (or VT-NULL) PIC X

PROPID-M-BODY VT-VECTOR-UI1 Two fields:

PIC S9(9) BINARY
POINTER

PROPID-M-BODY-SIZE VT-UI4 (or VT-NULL) PIC 9(9) BINARY

PROPID-M-BODY-TYPE VT-UI4 (or VT-NULL) PIC 9(9) BINARY

PROPID-M-CLASS VT-UI2 (or VT-NULL) PIC 9(4) BINARY

PROPID-M-CONNECTOR-TYPE VT-CLSID POINTER

PROPID-M-CORRELATIONID VT-VECTOR-UI1 Two fields:

PIC S9(9) BINARY
POINTER

PROPID-M-DELIVERY VT-UI1 (or VT-NULL) PIC X

PROPID-M-DEST-QUEUE VT-LPWSTR POINTER

PROPID-M-DEST-QUEUE-LEN VT-UI4 (or VT-NULL) PIC 9(9) BINARY

PROPID-M-DEST-SYMM-KEY VT-VECTOR-UI1 Two fields:

PIC S9(9) BINARY
POINTER

PROPID-M-DEST-SYMM-KEY-LEN VT-UI4 PIC 9(9) BINARY

PROPID-M-ENCRYPTION-ALG VT-UI4 PIC 9(9) BINARY

56

Envoy MQ for AS/400 4. COBOL Interface

Message property Value type Data type

PROPID-M-EXTENSION VT-VECTOR-UI1 Two fields:

PIC S9(9) BINARY
POINTER

PROPID-M-EXTENSION-LEN VT-UI4 PIC 9(9) BINARY

PROPID-M-HASH-ALG VT-UI4 PIC 9(9) BINARY

PROPID-M-JOURNAL VT-UI1 PIC X

PROPID-M-LABEL VT-LPWSTR POINTER

PROPID-M-LABEL-LEN VT-UI4 PIC 9(9) BINARY

PROPID-M-MSGID VT-VECTOR-UI1 Two fields:

PIC S9(9) BINARY
POINTER

PROPID-M-PRIORITY VT-UI1 (or VT-NULL) PIC X

PROPID-M-PRIV-LEVEL VT-UI4 (or VT-NULL) PIC 9(9) BINARY

PROPID-M-PROV-NAME VT-LPWSTR POINTER

PROPID-M-PROV-NAME-LEN VT-UI4 (or VT-NULL) PIC 9(9) BINARY

PROPID-M-PROV-TYPE VT-UI4 PIC 9(9) BINARY

PROPID-M-RESP-QUEUE VT-LPWSTR POINTER

PROPID-M-RESP-QUEUE-LEN VT-UI4 PIC 9(9) BINARY

PROPID-M-SECURITY-CONTEXT VT-UI4 PIC 9(9) BINARY

PROPID-M-SENDER-CERT VT-VECTOR-UI1 Two fields:

PIC S9(9) BINARY
POINTER

PROPID-M-SENDER-CERT-LEN VT-UI4 PIC 9(9) BINARY

PROPID-M-SENDERID VT-VECTOR-UI1 Two fields:

PIC S9(9) BINARY
POINTER

PROPID-M-SENDERID-LEN VT-UI4 PIC 9(9) BINARY

PROPID-M-SENDERID-TYPE VT-UI4 (or VT-NULL) PIC 9(9) BINARY

PROPID-M-SENTTIME VT-UI4 (or VT-NULL) PIC 9(9) BINARY

 57

4. COBOL Interface Envoy MQ Client for AS/400

Message property Value type Data type

PROPID-M-SIGNATURE VT-VECTOR-UI1 Two fields:

PIC S9(9) BINARY
POINTER

PROPID-M-SIGNATURE-LEN VT-UI4 PIC 9(9) BINARY

PROPID-M-SRC-MACHINE-ID VT-CLSID POINTER

PROPID-M-TIME-TO-BE-RECEIVED VT-UI4 (or VT-NULL) PIC 9(9) BINARY

PROPID-M-TIME-TO-REACH-QUEUE VT-UI4 PIC 9(9) BINARY

PROPID-M-TRACE VT-UI1 (or VT-NULL) PIC X

PROPID-M-VERSION VT-UI4 PIC 9(9) BINARY

PROPID-M-XACT-STATUS-QUEUE VT-LPWSTR POINTER

PROPID-M-XACT-STATUS-QUEUE-LEN VT-UI4 PIC 9(9) BINARY

Queue properties

The following table lists the constants representing queue properties in
COBOL.

Queue property Value type Data type

PROPID-Q-AUTHENTICATE VT-UI1 PIC X

PROPID-Q-BASEPRIORITY VT-I2 PIC S9(4) BINARY

PROPID-Q-CREATE-TIME VT-I4 PIC S9(9) BINARY

PROPID-Q-INSTANCE VT-CLSID POINTER

PROPID-Q-JOURNAL VT-UI1 PIC X

PROPID-Q-JOURNAL-QUOTA VT-UI4 PIC 9(9) BINARY

PROPID-Q-LABEL VT-LPWSTR POINTER

PROPID-Q-MODIFY-TIME VT-I4 PIC S9(9) BINARY

PROPID-Q-PATHNAME VT-LPWSTR POINTER

58

Envoy MQ for AS/400 4. COBOL Interface

Queue property Value type Data type

PROPID-Q-PRIV-LEVEL VT-UI4 PIC 9(9) BINARY

PROPID-Q-QUOTA VT-UI4 PIC 9(9) BINARY

PROPID-Q-TRANSACTION VT-UI1 PIC X

PROPID-Q-TYPE VT-CLSID POINTER

Queue manager properties

The following table lists the constants representing queue manager
properties in COBOL.

Queue manager property Value type Data type

PROPID-QM-CONNECTION VT-VECTOR-LPWSTR Two fields:

PIC S9(9) BINARY
POINTER

PROPID-QM-ENCRYPTION-PK VT-VECTOR-UI1 Two fields:

PIC S9(9) BINARY
POINTER

PROPID-QM-MACHINE-ID VT-CLSID POINTER

PROPID-QM-PATHNAME VT-LPWSTR POINTER

PROPID-QM-SITE-ID VT-CLSID POINTER

Value type constants

The following table lists the value type constants defined in FMQCONST and
the corresponding constants defined in the C header files. Only the constants
that are currently used in MSMQ are listed.

 59

4. COBOL Interface Envoy MQ Client for AS/400

The value types are used in propvariant structures, which store the values of
properties. For a full explanation, see Substructures of property structures on
page 68. For reference, the table also indicates:

 The data types of the value fields in a propvariant structure
 The suggested data names for the property values
 The interpretation of the value fields
 The names of the corresponding value fields in C

COBOL Equivalent in C

Value
type
constant

Data type Suggested
data
namesc

Interpretation of
property value

Value type
constant

Data type Union field
name

VT-
CLSID

POINTER MQ-PUUID Base pointer
(points to a GUID
code, type 16A)

VT_CLSID CLSID
_RPC_FAR

*puuid

VT-I2 PIC
S9(4)
BINARY

MQ-IVAL Property value VT_I2 short iVal

VT-I4 PIC
S9(9)
BINARY

MQ-LVAL Property value VT_I4 long lVal

VT-
LPWSTR

POINTER MQ-
LPWSTR

Base pointer
(points to a null-
terminated string)

VT_LPWSTR LPWSTR pwszVal

VT-NULL No value
(permitted only
when receiving a
message)

VT_NULL

VT-UI1 PIC X MQ-BVAL Property value VT_UI1 UCHAR bVal

VT-UI2 PIC 9(4)
BINARY

MQ-UIVAL Property value VT_UI2 USHORT uiVal

VT-UI4 PIC 9(9)
BINARY

MQ-ULVAL Property value VT_UI4 ULONG ulVal

60

Envoy MQ for AS/400 4. COBOL Interface

COBOL Equivalent in C

Value
type
constant

Data type Suggested
data
namesc

Interpretation of
property value

Value type
constant

Data type Union field
name

VT-
VECTOR-
LPWSTR

Two fields:

PIC
S9(9)
BINARY

POINTER

MQ-
CALPWSTR
-CELEMS

MQ-
CALPWSTR
-PELEMS

Length of buffer

Base pointer
(points to buffer)a

VT_VECTOR |
VT_LPWSTR

CALPWSTR calpwstr

VT-
VECTOR-
UI1

Two fields:

PIC
S9(9)
BINARY

POINTER

MQ-CAUB-
CELEMS

MQ-CAUB-
PELEMS

Length of buffer

Base pointer
(points to buffer)b

VT_VECTOR |
VT_UI1

CAUI1 caub

Notes a. For the value type VT-VECTOR-LPWSTR, the buffer contains a null-

terminated string.

b. For the value type VT-VECTOR-UI1, the buffer may contain various types
of binary or text data:

 The message body property (PROPID-M-BODY) has this value type and
may contain any data whatsoever.

 Other properties having this value type are restricted to certain types or
structures of data. For information about specific properties, see the
Microsoft MSMQ documentation and SDK online help.

c. The data names are defined in the FMQPROPVAR copy member. You can
replace the MQ- prefix with another prefix when you copy FMQPROPVAR into
your program.

Miscellaneous named constants

FMQCONST defines a large number of constants representing special values
of API function arguments, error codes, etc. The following are a few
examples:

 61

4. COBOL Interface Envoy MQ Client for AS/400

Constant in COBOL Equivalent in C

MQ-ACCESS-ALL PSD_SPECIALACCESS_ALL

MQ-ERROR-ACCESS-DENIED MQ_ERROR_ACCESS_DENIED

MQ-ERROR-BUFFER-OVERFLOW MQ_ERROR_BUFFER_OVERFLOW

MQ-LE PRLE

 The constants are too numerous to list here. For a complete listing, please refer to the
FMQCONST source code.

API functions

The COBOL interface provides a complete set of definitions for the Envoy
MQ Client API functions. The functions are called as external procedures in
COBOL.

Calling
syntax

In the procedure section of your program, you can call the MQSendMessage
procedure using syntax such as the following. The procedure is equivalent
to the MQSendMessage() function in the MSMQ or Envoy MQ Client API.

 CALL LINKAGE TYPE IS PROCEDURE 'MQSendMessage'
 USING BY VALUE Queue-Handle
 BY REFERENCE Props
 BY VALUE pTransaction
 RETURNING MQ-Result-Long.
 EVALUATE MQ-Result

ge-Exit WHEN MQ-OK GO TO Send-Messa
 WHEN OTHER DISPLAY ERR-MSG

 PERFORM Envoy MQ -Disconnect
 END-EVALUATE.

The procedure accepts three parameters:

Queue-Handle Specifies the destination queue.

Props A message property structure, containing the
content of the message.

62

Envoy MQ for AS/400 4. COBOL Interface

pTransaction A transaction handle of type A(16), specifying a
transaction to which the message belongs
(optionally NULL).

The procedure returns a numerical result code MQ-Result-Long.

Comparison
with C

For comparison, the following is the corresponding API function declaration
in C:

HRESULT APIENTRY MQSendMessage(
 QUEUEHANDLE hDestinationQueue,
 MQMSGPROPS * pMessageProps,
 ITransaction * pTransaction
);

Samples of
other API
calls

For other examples of COBOL API calls, see the Sample program on page 74.

For a complete set of examples for the Envoy MQ Client API procedures, see
the Online samples listed on page 84. In the online samples, you can find
examples of all the Envoy MQ Client API procedures including:

 Setting up the input parameters of each procedure

 The correct syntax for the procedure call

 Interpreting the output parameters and return values

List of Envoy
MQ Client
procedures

The following is a list of Envoy MQ Client API procedures. The table
includes:

 The COBOL procedure names, which are identical to the C function
names

 The Envoy MQ Client sample programs where the API calls are
illustrated (see Online samples on page 84)

 References for additional information, including a complete explanation
of each procedure and its parameters.

The key for the additional references is as follows:

A. The chapter on Programming Messaging Applications in the Envoy MQ
Programmer's Guide.

B. The Microsoft MSMQ documentation and SDK online help

Procedure Sample programs where
illustrated

Additional
references

FMQAbort A

 63

4. COBOL Interface Envoy MQ Client for AS/400

Procedure Sample programs where
illustrated

Additional
references

FMQCommit FMQBDYN A

FMQConnect FMQBSTC A

FMQDebug A

FMQDisconnect FMQBDYN, FMQBSTC,
FMQBDYNLOC

A

FMQGetLogPath A

FMQSetLogPath A

FMQVersion A

FMQV1Connect A

MQBeginTransaction FMQBDYN A

MQCloseCursor FMQBSAMPLE B

MQCloseQueue FMQBDYN, FMQBSTC B

MQCreateCursor FMQBSAMPLE B

MQCreateQueue FMQBDYN, FMQBSTC A, B

MQDeleteQueue FMQBSTC B

MQFreeMemory FMQBDYNLOC B

MQFreeSecurityContext FMQBDYN A, B

MQGetMachineProperties FMQBSAMPLE B

MQGetQueueProperties FMQBSAMPLE B

MQGetSecurityContext FMQBDYN A, B

MQHandleToFormatName FMQBSAMPLE B

MQInstanceToFormatName FMQBSAMPLE B

MQLocateBegin FMQBDYNLOC A, B

MQLocateEnd FMQBDYNLOC B

MQLocateNext FMQBDYNLOC B

MQOpenQueue FMQBDYN, FMQBSTC B

MQPathNameToFormatName FMQBDYN, FMQBSTC B

64

Envoy MQ for AS/400 4. COBOL Interface

Procedure Sample programs where
illustrated

Additional
references

MQReceiveMessage FMQBDYN, FMQBSTC A, B

MQRegisterCertificate A, B

MQSendMessage FMQBDYN, FMQBSTC B

MQSetQueueProperties FMQBSAMPLE B

Data structures

Many of the MSMQ and Envoy MQ Client API functions require parameters
that are pointers to data structures. These include:

Property structures Structures containing sets of message, queue, or
queue manager properties. The content of a
message, for example, is specified in a message
property structure.

Substructures of
property structures

Structures and arrays that are elements of property
structures. An example is the propvariant structure,
which contains the values of properties.

Query structures Structures required as parameters of the
MQLocateBegin function, which searches for
queues having specified property values.

This section explains how you can create the property structures and
substructures in your COBOL programs. If you wish, you can copy the
examples (with minor modifications) into your COBOL programs. You can
find additional examples in the Sample program on page 74.

For additional information on the interpretation and use of the structures,
please refer to the Microsoft MSMQ documentation and SDK online help.

For information on the query structures, please see the Online samples
described on page 84.

 65

4. COBOL Interface Envoy MQ Client for AS/400

Comparison
of RPG and
COBOL
programming
methods

The method described in this section corresponds to the dynamic method
described for the Envoy MQ Client RPG Interface (see Data structures
(dynamic method) in Chapter 3, page 38). The dynamic method lets you create
a single structure containing a varying set of message, queue, or queue
manager properties..

You can also use a static method to construct the data structures, but this is
less convenient in COBOL than in RPG (see Data structures (static method) in
Chapter 3, page 30). For an example using static COBOL structures, see the
FMQBSTC sample program supplied with Envoy MQ Client (see Online
samples on page 84).

Programming method

Suppose that your application creates a queue and sends and receives
messages containing various sets of message properties. Before you call the
MQCreateQueue API function, you need to create a queue property
structure including several queue properties. Before you call
MQSendMessage and MQReceiveMessage, you need to create a message
property structure containing the message properties.

In a COBOL program, you can implement the property structure using
arrays or multiple-occurrence data structures. In the definition
specifications, you need to define the maximum size of the arrays or the
maximum number of occurrences. You also need to define pointers to the
first element or occurrence.

In the procedure division, the program sets the number of active array
elements or occurrences, that is, the number of properties included in the
structure. The program then moves the desired queue or message properties
into the arrays or structures.

In this way, the program can change the set of properties before each Envoy
MQ Client API call.

Property structure

A property structure contains a collection of properties and their values. There
are three types of property structures, which have different C data types.

66

Envoy MQ for AS/400 4. COBOL Interface

Structure Contains a collection of C data type

Message property structure Message properties MQMSGPROPS

Queue property structure Queue properties MQQUEUEPROPS

Queue manager property structure Queue manager properties MQQMPROPS

Each property structure contains the following four fields:

COBOL
data type

C data type Field name in
C

Description

PIC
9(9)
BINARY

DWORD cProp A count of the properties included in the structure. The value of
this field is the size of the arrays in the other fields of the
structure.

POINTER Array of PROPID aPropID A pointer to an array of PROPID_... constants, identifying
the properties that are included in the structure (input to the API
functions).

POINTER Array of
PROPVARIANT

aPropVar A pointer to an array of propvariant structures, which contain the
values of the properties (input or output).

POINTER Array of
HRESULT

aStatus A pointer to an array of status codes (output from the API
functions).

 In the following discussion, we refer to the fields by their generic names cProp,
aPropID, etc. In COBOL, you must use field names that are unique throughout
the entire program.

The three types of property structures all contain the same four fields. This
means that you can represent them in COBOL by defining a single top-level
property structure. To create a message property structure, you can store
pointers to arrays of message properties in the fields. To create a queue or
queue-manager property structure, you can store pointers to arrays of queue
properties or queue-manager properties in the fields.

 67

4. COBOL Interface Envoy MQ Client for AS/400

The following is a sample definition of the property structure:

* Top level property structure
 01 Props.
 02 cProp PIC 9(9) BINARY.
 02 aPropID USAGE IS POINTER.
 02 aPropVar USAGE IS POINTER.
 02 aStatus USAGE IS POINTER.

Substructures of property structures

The property structure contains pointers to three arrays:

aPropID Pointer to an array of property identifies
(PROPID-... constants) identifying message,
queue, or queue manger properties.

aPropVar Pointer to an array of propvariant structures,
which contain the values of the properties.

aStatus Pointer to an array of status codes, used for output
from the API functions.

68

Envoy MQ for AS/400 4. COBOL Interface

The number of elements in each array is given by the cProp field of the
property structure. The order of properties must be identical in each array.
For example, if the aPropID array contains PROPID_... constants for the
message body, delivery, and priority properties, then the other arrays must
also contain elements for exactly the same properties, in the same order.

The following example illustrates how you can construct the arrays in a
COBOL program. For convenience, the arrays are represented as multiple-
occurrence data structures (in essence, substructures of a property structure)
instead of true COBOL arrays.

The example is for a message property structure containing a maximum of
10 properties. We will use the property structure to construct a message
containing three properties:

 Message body
 Message delivery
 Message priority

 69

4. COBOL Interface Envoy MQ Client for AS/400

The other seven properties in the property structure are not used in this
example.

Setting the
number of
active
properties

The number of properties in the property structure is stored in the cProp
field of the property structure. In the sample message, there are three
properties. You can specify this in the procedure division by writing:

 MOVE 3 TO cProp.

This instructs Envoy MQ Client to use the first three properties of the
property structure. If any additional properties exist in the structure, they
are ignored.

If you later need a property structure containing a different number of
properties, you can reset cProp to the new value, up to the array size of the
property structure.

Array of
property
identifiers

The array of property identifiers corresponds to the aProp field of a
property structure in C. In COBOL, you can define the array as follows:

* aPropID array of up to 10 property identifiers
 01 MQ-PropID-Array.
 02 MQ-PropID PIC 9(9) BINARY OCCURS 10.

Here, we have defined the array size for a maximum of 10 properties. Only
three of the properties are used in the message example.

In the procedure division, we need to:

 Set the aPropID pointer of the property structure to point to the array

 Move the property identifiers to the array

For our sample message, we would write:

* Set the aPropID pointer of the property structure
 SET aPropID TO ADDRESS OF MQ-PropID-Array.
*
* Move the property identifiers to the array
 MOVE PROPID-M-BODY TO MQ-PropID(1).
 MOVE PROPID-M-DELIVERY TO MQ-PropID(2).
 MOVE PROPID-M-PRIORITY TO MQ-PropID(3).

70

Envoy MQ for AS/400 4. COBOL Interface

Array of
propvariant
structures

MSMQ and Envoy MQ Client use propvariant structures to store the values
of message, queue, and queue manager properties. On the AS/400, a
propvariant is a 48-byte structure containing the following fields:

Value type constant A VT-... constant indicating the data type of the
property value.

Reserved Reserved for future use.

Value1 The value of the property. For certain properties,
Value1 is the size of the value in bytes (equivalent
to the cElems field in C).

Value2 If Value1 contains the value, Value2 is an empty
placeholder field. If Value1 contains the size of the
value, then Value2 is a pointer to the value
(equivalent to the pElems field in C).

In COBOL, you can define the array of propvariant structures as a multiple-
occurrence data structure. The elements of the structure are copies of the
FMQPROPVAR member, which is supplied in the QCBLLESRC file of the
Envoy MQ Client library. FMQPROPVAR contains a complete COBOL
definition of the propvariant data structure.

 71

4. COBOL Interface Envoy MQ Client for AS/400

* aPropVar array of up to 10 property values
 01 MQ-PropVar-Array.
 02 MQ-PropVar OCCURS 10.
 COPY FMQPROPVAR REPLACING ==:MQ:== BY ==MQ==.

 You can define more than one aPropVar array using the FMQPROPVAR copy
member. In each array, copy FMQPROPVAR replacing :MQ: with a different string,
such as MQ1, MQ2, etc.

In the procedure division, we need to:

 Set the aPropVar pointer of the property structure to point to the array

 Move the appropriate value type constant, Value1, and Value2 for each
message property, to the first three elements of the array

The Value1 and Value2 fields in FMQPROPVAR have different names and data
types depending on the property that you want to store. The names are
illustrated in the sample code below. For a complete listing of the Value
names, see the table of Value type constants on page 59.

* Set the aPropVar pointer of the property structure
 SET aPropVar TO ADDRESS OF MQ-PropVar-Array.
*
* Set the message body to a 'Hello, World' test string
 MOVE VT-VECTOR-UI1 TO MQ-VARTYPE(1).
* Value1 of the message body property is the length of
the body
 MOVE 12 TO MQ-CAUB-
CELEMS(1).
* Value2 is a pointer to a buffer containing the message
body
 SET MQ-CAUB-PELEMS(1) TO ADDRESS OF MSG-BODY-
STRING.
*
* Set the delivery property to recoverable
 MOVE VT-UI1 TO MQ-VARTYPE(2).
* Value1 of the delivery property (there is no Value2)
 MOVE MQMSG-DELIVERY-RECOVERABLE TO MQ-BVAL(2).
*
* Set the priority property to a value of 3
 MOVE VT-UI1 TO MQ-VARTYPE(3).
* Value1 of the priority property (there is no Value2)
 MOVE 3 TO MQ-BVAL(3).

72

Envoy MQ for AS/400 4. COBOL Interface

Elsewhere in the program, you need to define a buffer and store the message
in body in it, for example:

* Buffer containing a test message body
 77 MSG-BODY-STRING PIC X(50) VALUE 'Hello, world'.

Array of
status codes

The array of status codes corresponds to the aStatus field in C. A sample
definition follows:

 01 MQ-Prop-Result-Array.
 02 MQ-Prop-Result PIC 9(9) BINARY OCCURS 10.

The status codes are output from various API functions. In the procedure
division, you need to set the aStatus pointer in the property structure to
the address of the array:

 SET aStatus TO ADDRESS OF MQ-Prop-Result-Array.

String handling

Several of the message, queue, and queue manager properties have values
that are character strings. For example, the message label is a string of up to
250 characters. In addition, certain Envoy MQ Client API functions (for
example FMQConnect), require parameters that are strings.

This section describes the differences between C and COBOL strings and the
steps to ensure compatibility of your programs with the MSMQ standard.

 For details of the maximum string length, etc., see the Microsoft MSMQ
documentation and SDK online help.

 73

4. COBOL Interface Envoy MQ Client for AS/400

Null-terminated strings

MSMQ and Envoy MQ Client require that every string value be terminated
by a null character. In COBOL, strings are predefined in length and are
padded with trailing blanks. You can convert strings between the two
formats using the COBOL built-in function STRING.

EBCDIC to UNICODE conversion

Envoy MQ Client uses a code-page translation table to translate string
properties and parameters from EBCDIC to UNICODE or vice versa.

All message and queue properties are converted, with the following
exceptions:

 The message body (PROPID-M-BODY) is converted only if the message
body type (PROPID-M-BODY-TYPE) is VT_LPWSTR or VT_BSTR. Envoy
MQ does not translate a message body of any other type because it
doesn't know whether the body contains text or binary data. Instead, you
should program whatever conversions are needed.

 The message extension (PROPID-M-EXTENSION).

Sample program

This section presents the complete source code of the FMQBDYN sample
program, which is supplied online in the SAMPLES file of the Envoy MQ
Client library. The program illustrates some basic messaging operations,
including:

 Connecting to and disconnecting from Envoy MQ Connector

 Creating and deleting a queue

 Converting a queue path name to a format name

 Opening and closing a queue

 Sending and receiving a message

74

Envoy MQ for AS/400 4. COBOL Interface

The program uses the dynamic method to create the required MSMQ and
Envoy MQ Client data structures. For a detailed discussion of the structures,
see Data structures on page 65.

 For additional sample programs, see Online samples on page 84.

Source code

 IDENTIFICATION DIVISION.
 PROGRAM-ID. FMQBDYN.
**
* *
* Description: Sample ILE COBOL/400 program demonstrating the *
* use of dynamic property structures and the *
* FMQCONST and FMQPROPVAR copy members *
* *
* Ver: V3R2 *
* *
* Envoy MQ Client for AS/400 *
* (C) Copyright 2002 by Envoy Technologies Inc. *
* All rights reserved *
* *
**
*
 DATA DIVISION.
 WORKING-STORAGE SECTION.
*
* Include Envoy MQ definitions in the program
 COPY FMQCONST OF QCBLLESRC.
*
* aPropID array of up to 10 property identifiers
 01 MQ-PropID-Array.
 02 MQ-PropID PIC 9(9) BINARY OCCURS 10.
*
* aPropVar array of up to 10 property values
* Note : This sample uses the same property structure for both
* Queue and Message properties. You may define additional
* property structures using the COPY REPLACING feature.
 01 MQ-PropVar-Array.
 02 MQ-PropVar OCCURS 10.
 COPY FMQPROPVAR REPLACING ==:MQ:== BY ==MQ==.
*

 75

4. COBOL Interface Envoy MQ Client for AS/400

* aStatus array of up to 10 property status codes
 01 MQ-Prop-Result-Array.
 02 MQ-Prop-Result PIC 9(9) BINARY OCCURS 10.
*
* Top level property structure
 01 Props.
 02 cProp PIC 9(9) BINARY.
 02 aPropID USAGE IS POINTER.
 02 aPropVar USAGE IS POINTER.
 02 aStatus USAGE IS POINTER.
*
 77 MQ-Result PIC X(4).
 77 MQ-Result-Long REDEFINES MQ-Result PIC 9(9) BINARY.
*
 77 FormatName PIC X(125).
 77 FormatName-Length PIC S9(9) BINARY.
 77 Queue-Handle PIC 9(9) BINARY.
 77 Connection-Handle PIC 9(9) BINARY VALUE 0.
 77 SecContext-Handle PIC 9(9) BINARY.
 77 pTransaction USAGE IS POINTER.
 77 Q-PATH-STRING PIC X(125).
 77 Q-LABEL-STRING PIC X(125).
 77 MSG-COUNTER PIC 9(3).
 77 MSG-BODY-STRING PIC X(50).
 77 MSG-BODY-PREFIX PIC X(15) VALUE 'Message number '.
 77 MSG-LABEL-STRING PIC X(22).
 77 MSG-LABEL-PREFIX PIC X(14) VALUE 'Message label '.
 77 ERR-MSG PIC X(23) VALUE 'Envoy MQ call failed!'.
 77 AUTH-Msg PIC X(30) VALUE 'Authenticated message received'.
 77 NOT-AUTH-Msg PIC X(30) VALUE 'Unauthenticated message! '.
*---
 PROCEDURE DIVISION.
*
 Main SECTION.
*
 Main-P.
*
* Set the pointers of the property structure. The same structure is
* used for both queue and message properties.
 SET aPropID TO ADDRESS OF MQ-PropID-Array.
 SET aPropVar TO ADDRESS OF MQ-PropVar-Array.
 SET aStatus TO ADDRESS OF MQ-Prop-Result-Array.
*
* Create a queue if it doesn't already exist
 PERFORM Create-Queue.
* Open the queue for sending
 PERFORM Open-Queue-Send.

76

Envoy MQ for AS/400 4. COBOL Interface

* Send 6 transacted, authenticated messages to the queue
 PERFORM Get-Security-Context.
 PERFORM Begin-Transaction.
 PERFORM Send-Message
 VARYING MSG-COUNTER FROM 1 BY 1 UNTIL MSG-COUNTER = 6.
 PERFORM Commit-Transaction.
 PERFORM Free-Security-Context.
* Close the queue
 PERFORM Close-Queue.
*
* Reopen the queue for receiving
 PERFORM Open-Queue-Receive.
* Receive the first message from the queue
 PERFORM Receive-Message.
* Close the queue
 PERFORM Close-Queue.
*
* Disconnect from Envoy MQ Connector
 PERFORM EnvoyMQ-Disconnect.
*---
 Create-Queue SECTION.
*
 Create-Queue-P.
*
* Set the parameters for an MQCreateQueue call
* 1. Create a property structure including five queue properties
* 1.1 Set the queue property names in the MQ-PropID array
 MOVE PROPID-Q-PATHNAME TO MQ-PropID(1).
 MOVE PROPID-Q-LABEL TO MQ-PropID(2).
 MOVE PROPID-Q-TRANSACTION TO MQ-PropID(3).
 MOVE PROPID-Q-TYPE TO MQ-PropID(4).
 MOVE PROPID-Q-BASEPRIORITY TO MQ-PropID(5).
*
* 1.2 Set the property values in the MQ-PropVar array
 MOVE VT-LPWSTR TO MQ-VARTYPE(1).
 SET MQ-LPWSTR(1) TO ADDRESS OF Q-PATH-STRING.
*
 MOVE VT-LPWSTR TO MQ-VARTYPE(2).
 SET MQ-LPWSTR(2) TO ADDRESS OF Q-LABEL-STRING.
*
 MOVE VT-UI1 TO MQ-VARTYPE(3).
 MOVE MQ-TRANSACTIONAL TO MQ-BVAL(3).
*
 MOVE VT-CLSID TO MQ-VARTYPE(4).
 SET MQ-PUUID(4) TO ADDRESS OF MQ-QTYPE-TEST.
*
 MOVE VT-I2 TO MQ-VARTYPE(5).

 77

4. COBOL Interface Envoy MQ Client for AS/400

 MOVE -2 TO MQ-IVAL(5).
*
* 1.3 Set the total number of active properties in the property
* structure
 MOVE 5 TO cProp.
*
* 2. Set the queue path name and label
 STRING '.\AS400SAMPLE' LOW-VALUE
 DELIMITED BY SIZE INTO Q-PATH-STRING.
 STRING 'AS400 Test Queue' LOW-VALUE
 DELIMITED BY SIZE INTO Q-LABEL-STRING.
*
* 3. Assign a buffer for the queue format name (output)
 MOVE LENGTH OF FormatName TO FormatName-Length.
*
* Call the MQCreateQueue API function to create the queue
 CALL LINKAGE TYPE IS PROCEDURE 'MQCreateQueue'
 USING BY VALUE MQ-ACCESS-ALL
 BY REFERENCE Props
 FormatName
 FormatName-Length
 RETURNING MQ-Result-Long.
 EVALUATE MQ-Result
 WHEN MQ-OK GO TO Create-Queue-Exit
 WHEN MQ-ERROR-QUEUE-EXISTS PERFORM Path-To-FormatName
 WHEN OTHER DISPLAY ERR-MSG
 PERFORM EnvoyMQ-Disconnect
 END-EVALUATE.
 Create-Queue-Exit.
 EXIT.
*---
 Path-To-FormatName SECTION.
*
 Path-To-FormatName-P.
*
* If a queue with the given path name already exists, call
* MQPathNameToFormatName to retrieve its format name
 CALL LINKAGE TYPE IS PROCEDURE 'MQPathNameToFormatName'
 USING BY REFERENCE Q-PATH-STRING
 FormatName
 FormatName-Length
 RETURNING MQ-Result-Long.
 EVALUATE MQ-Result
 WHEN MQ-OK GO TO Path-To-FormatName-Exit
 WHEN OTHER DISPLAY ERR-MSG
 PERFORM EnvoyMQ-Disconnect
 END-EVALUATE.

78

Envoy MQ for AS/400 4. COBOL Interface

 Path-To-FormatName-Exit.
 EXIT.
*---
 Open-Queue-Send SECTION.
*
 Open-Queue-Send-P.
*
* Call MQOpenQueue to open the queue for sending
 CALL LINKAGE TYPE IS PROCEDURE 'MQOpenQueue'
 USING BY REFERENCE FormatName
 BY VALUE MQ-SEND-ACCESS
 MQ-DENY-NONE
 BY REFERENCE Queue-Handle
 RETURNING MQ-Result-Long.
 EVALUATE MQ-Result
 WHEN MQ-OK GO TO Open-Queue-Send-Exit
 WHEN OTHER DISPLAY ERR-MSG
 PERFORM EnvoyMQ-Disconnect
 END-EVALUATE.
 Open-Queue-Send-Exit.
 EXIT.
*---
 Open-Queue-Receive SECTION.
*
 Open-Queue-Receive-P.
*
* Call MQOpenQueue to open the queue for receiving
 CALL LINKAGE TYPE IS PROCEDURE 'MQOpenQueue'
 USING BY REFERENCE FormatName
 BY VALUE MQ-RECEIVE-ACCESS
 MQ-DENY-RECEIVE-SHARE
 BY REFERENCE Queue-Handle
 RETURNING MQ-Result-Long.
 EVALUATE MQ-Result
 WHEN MQ-OK GO TO Open-Queue-Receive-Exit
 WHEN OTHER DISPLAY ERR-MSG
 PERFORM EnvoyMQ-Disconnect
 END-EVALUATE.
 Open-Queue-Receive-Exit.
 EXIT.
*---
 Get-Security-Context SECTION.
*
* Retrieve security information needed to authenticate messages
* using an internal (MSMQ) certificate. The certificate must
* be registered for the current user on the Envoy MQ Connector
* machine.

 79

4. COBOL Interface Envoy MQ Client for AS/400

*
 Get-Security-Context-P.
*
 CALL LINKAGE TYPE IS PROCEDURE 'MQGetSecurityContext'
 USING BY VALUE NULL
 BY VALUE 0
 BY REFERENCE SecContext-Handle
 RETURNING MQ-Result-Long.
 EVALUATE MQ-Result
 WHEN MQ-OK GO TO Get-Security-Context-Exit
 WHEN OTHER DISPLAY ERR-MSG
 PERFORM EnvoyMQ-Disconnect
 END-EVALUATE.
 Get-Security-Context-Exit.
 EXIT.
*---
 Free-Security-Context SECTION.
*
 Free-Security-Context-P.
*
 CALL LINKAGE TYPE IS PROCEDURE 'MQFreeSecurityContext'
 USING BY VALUE SecContext-Handle.
 Free-Security-Context-Exit.
 EXIT.
*---
 Begin-Transaction SECTION.
*
 Begin-Transaction-P.
*
* Begin a transaction
 CALL LINKAGE TYPE IS PROCEDURE 'MQBeginTransaction'
 USING BY REFERENCE pTransaction
 RETURNING MQ-Result-Long.
 EVALUATE MQ-Result
 WHEN MQ-OK GO TO Begin-Transaction-Exit
 WHEN OTHER DISPLAY ERR-MSG
 PERFORM EnvoyMQ-Disconnect
 END-EVALUATE.
 Begin-Transaction-Exit.
 EXIT.
*---
 Send-Message SECTION.
*
 Send-Message-P.
*
* Send a message and ask MSMQ to authenticate it.
*

80

Envoy MQ for AS/400 4. COBOL Interface

* 1. Create a property structure including four message properties
* 1.1 Set the strings for the message body and label properties
* (The message body is 'Message number <i>'. The message label
* is 'Message label <i>'.)
 STRING MSG-BODY-PREFIX MSG-COUNTER
 DELIMITED BY SIZE INTO MSG-BODY-STRING.
 STRING MSG-LABEL-PREFIX MSG-COUNTER LOW-VALUE
 DELIMITED BY SIZE INTO MSG-LABEL-STRING.
*
* 1.2 Set the total number of active properties in the property
* structure
 MOVE 4 TO cProp.
*
* 1.3 Set the aPropID array containing the message property
* identifiers
 MOVE PROPID-M-BODY TO MQ-PropID(1).
 MOVE PROPID-M-LABEL TO MQ-PropID(2).
 MOVE PROPID-M-AUTH-LEVEL TO MQ-PropID(3).
 MOVE PROPID-M-SECURITY-CONTEXT TO MQ-PropID(4).
*
* 1.4 Set the aPropVar array containing the property values
 MOVE VT-VECTOR-UI1 TO MQ-VARTYPE(1).
 MOVE 50 TO MQ-CAUB-CELEMS(1).
 SET MQ-CAUB-PELEMS(1) TO ADDRESS OF MSG-BODY-STRING.
*
 MOVE VT-LPWSTR TO MQ-VARTYPE(2).
 SET MQ-LPWSTR(2) TO ADDRESS OF MSG-LABEL-STRING.
*
 MOVE VT-UI4 TO MQ-VARTYPE(3).
 MOVE MQMSG-AUTH-LEVEL-ALWAYS TO MQ-ULVAL(3).
*
 MOVE VT-UI4 TO MQ-VARTYPE(4).
 MOVE SecContext-Handle TO MQ-ULVAL(4).
*
* Call MQSendMessage to send the message
 CALL LINKAGE TYPE IS PROCEDURE 'MQSendMessage'
 USING BY VALUE Queue-Handle
 BY REFERENCE Props
 BY VALUE pTransaction
 RETURNING MQ-Result-Long.
 EVALUATE MQ-Result
 WHEN MQ-OK GO TO Send-Message-Exit
 WHEN OTHER DISPLAY ERR-MSG
 PERFORM EnvoyMQ-Disconnect
 END-EVALUATE.
 Send-Message-Exit.
 EXIT.

 81

4. COBOL Interface Envoy MQ Client for AS/400

*---
 Receive-Message SECTION.
*
 Receive-Message-P.
*
* Receive a message (not as part of a transaction) and check for
* authentication.
*
* Notes on the property settings:
* 1. The BODY and LABEL message properties are left unchanged
* from the previous send operation.
* A successful receive will place the message body into
* MSG-BODY-STRING and the Message Label into MSG-LABEL-STRING.
*
* 2. The AUTH-LEVEL property used in the send operation is replaced
* with the AUTHENTICATED property to enable authentication
* checking.
*
* 3. The SECURITY CONTEXT property used in the send operation is
* replaced with the LABEL-LEN property, which specifies the size
* of the LABEL buffer
*
* Set the total number of active properties in the property structure
 MOVE 4 TO cProp.
 MOVE PROPID-M-AUTHENTICATED TO MQ-PropID(3).
 MOVE VT-NULL TO MQ-VARTYPE(3).
*
* Set the buffer length for the LABEL output
 MOVE PROPID-M-LABEL-LEN TO MQ-PropID(4).
 MOVE VT-UI4 TO MQ-VARTYPE(4).
 MOVE 125 to MQ-ulVal(4).
*
* Receive the message
 CALL LINKAGE TYPE IS PROCEDURE 'MQReceiveMessage'
 USING BY VALUE Queue-Handle
 MQ-INFINITE
 MQ-ACTION-RECEIVE
 BY REFERENCE Props
 BY VALUE NULL
 NULL
 0
 MQ-NO-TRANSACTION
 RETURNING MQ-Result-Long.
 EVALUATE MQ-Result
 WHEN MQ-OK GO TO Authentication-Check
 WHEN OTHER DISPLAY ERR-MSG
 PERFORM EnvoyMQ-Disconnect

82

Envoy MQ for AS/400 4. COBOL Interface

 END-EVALUATE.
*
* Check for authentication of the message
 Authentication-Check.
 IF MQ-BVAL(3) = X'01'
 DISPLAY AUTH-Msg
 ELSE DISPLAY NOT-AUTH-Msg
 GO TO Receive-Call-Exit.
 Receive-Call-Exit.
 EXIT.
*---
 Close-Queue SECTION.
*
 Close-Queue-P.
*
* Close the queue
 CALL LINKAGE TYPE IS PROCEDURE 'MQCloseQueue'
 USING BY VALUE Queue-Handle
 RETURNING MQ-Result-Long.
 EVALUATE MQ-Result
 WHEN MQ-OK GO TO Close-Queue-Exit
 WHEN OTHER DISPLAY ERR-MSG
 PERFORM EnvoyMQ-Disconnect
 END-EVALUATE.
 Close-Queue-Exit.
 EXIT.
*---
 Commit-Transaction SECTION.
*
 Commit-Transaction-P.
*
* Commit the transaction
 CALL LINKAGE TYPE IS PROCEDURE 'Commit'
 USING BY REFERENCE pTransaction
 BY VALUE 0
 0
 0
 RETURNING MQ-Result-Long.
 EVALUATE MQ-Result
 WHEN MQ-OK GO TO Commit-Transaction-Exit
 WHEN OTHER DISPLAY ERR-MSG
 PERFORM EnvoyMQ-Disconnect
 END-EVALUATE.
 Commit-Transaction-Exit.
 EXIT.
*---
 EnvoyMQ-Disconnect SECTION.

 83

4. COBOL Interface Envoy MQ Client for AS/400

*
 EnvoyMQ-Disconnect-P.
*
* Call FMQDisconnect() to close the session with the Envoy MQ
* Connector.
 CALL LINKAGE TYPE IS PROCEDURE 'FMQDisconnect'
 USING BY VALUE Connection-Handle.
 STOP RUN.
 EnvoyMQ-Disconnect-Exit.
 EXIT.

Online samples

The Envoy MQ Client library includes several online programs and source
members that you can use in your COBOL applications.

File Description

QCBLLESRC Copy members that you can include in your applications

SAMPLES Sample programs illustrating various Envoy MQ programming techniques
and solutions to programming problems

The following paragraphs describe the online samples in more detail.

Copy members

The following copy members, which are located in the QCBLLESRC file of
the Envoy MQ Client library, contain code for use in your applications.

FmqConst You should include the FMQCONST copy member in every Envoy MQ Client
COBOL application.

This member contains definitions of MSMQ properties, named constants,
and API functions. For a complete description, see FMQCONST copy member
on page 55.

84

Envoy MQ for AS/400 4. COBOL Interface

FmqPropvar The FMQPROPVAR copy member provides a complete COBOL definition of
the MSMQ propvariant data structure. For an explanation of the propvariant
structure, see Substructures of property structures on page 68.

The member is recommended for use in programs that create property
structures dynamically. For an example of its use, see the Sample program on
page 74.

FmqLocate The FMQLOCATE copy member defines the data structures used in queue
queries.

The member is recommended for use in programs that create the query
structures dynamically. For an example, see the FMQBDYNLOC sample
program.

Sample programs

The following sample programs, which are located in the SAMPLES file of
the Envoy MQ Client library, contain code that illustrates various messaging
operations. In particular, the samples illustrate the correct syntax for each
API call. You can cut and paste code from the samples, with appropriate
modifications, into your programs.

FmqbDyn FMQBDYN is a sample program illustrating the dynamic creation of property
structures. The program uses the FMQPROPVAR copy member to define the
propvariant data structure.

The program illustrates most of the common messaging operations, such as:

 Creating and opening a queue
 Sending and receiving an authenticated message
 Sending and receiving transacted messages
 Disconnecting from Envoy MQ Connector

The complete source code of this program is printed in the Sample program
section of this chapter, page 74.

FmqbStc FMQBSTC is a sample program illustrating basic messaging operations.

The program provides examples of:

 Connecting to and disconnecting from Envoy MQ Connector
 Creating and deleting a queue
 Converting a queue path name to a format name
 Opening and closing a queue
 Sending and receiving a message

 85

4. COBOL Interface Envoy MQ Client for AS/400

FmqbDynLoc FMQBDYNLOC is a sample program that creates a queue query dynamically.
The program illustrates the use of the FMQLOCATE copy member, and finds a
queue having a specified label.

FmqbSample FMQBSAMPLE contains sample API calls for a variety of messaging
operations:

 Creating and closing a cursor
 Setting and retrieving queue properties
 Retrieving machine properties
 Converting a queue handle or GUID to a format name

FMQBSAMPLE is not a complete, compilable program. Rather, it contains
fragments of code illustrating the above operations.

86

Envoy MQ for AS/400 Appendix A. RPG Interface for OS/400 V3R2

Appendix A
RPG Interface for OS/400

V3R2

Chapter 3 of this book, RPG Interface, describes the Envoy MQ interface for
OS/400 V3R7 or higher.

This appendix describes a functionally identical interface that runs on
OS/400 V3R2 or higher. To use this interface, you must install the Envoy
MQ Client version for V3R2 (see the Installation procedure on page 2).

Differences
between the
V3R2 and
V3R7
interfaces

The only significant difference between the two interfaces is that RPG for
V3R2 supports identifiers of up to 10 characters, whereas RPG for V3R7
supports longer identifiers. The RPG interface for V3R7 uses the longer
identifiers, which are more similar to the C-language identifiers in the native
Envoy MQ and MSMQ APIs.

Programs compiled using the V3R2 interface run on OS/400 V3R2 or higher,
including V3R7. Thus if you are programming for a mixed environment of
V3R2 and V3R7, you should use the V3R2 interface.

Programs compiled using the V3R7 interface run only on V3R7 or higher. If
you are programming for a V3R7 environment, you can use either the V3R2
or V3R7 interface. The V3R7 interface is recommended because the longer
identifiers are easier to use.

Other
programming
topics

The end of this appendix explains the technique for creating null-terminated
strings in RPG V3R2 and describes the V3R2 online sample programs and
copy members supplied with Envoy MQ Client.

 87

Appendix A. RPG Interface for OS/400 V3R2 Envoy MQ for AS/400

Tables of API identifiers

The Envoy MQ interface for RPG V3R2 is identical to the interface for RPG
V3R7 except for the API identifiers. You can translate Envoy MQ code
between the two versions by substituting the identifiers.

The following tables list the identifiers for the following API entities:

 Message properties
 Queue properties
 Queue manager properties
 Value type constants
 Miscellaneous named constants
 API functions

 The identifiers are defined in the FMQCONST copy members of the two Envoy MQ
Client versions. Please refer to the FMQCONST source code for other identifiers not
listed in the tables.

Message properties

C RPG V3R2 RPG V3R7

PROPID_M_ACKNOWLEDGE P_M_ACK PID_M_ACK

PROPID_M_ADMIN_QUEUE P_M_ADM_Q PID_M_ADMIN_Q

PROPID_M_ADMIN_QUEUE_LEN P_M_ADM_QL PID_M_ADMQ_LEN

PROPID_M_APPSPECIFIC P_M_APPSPC PID_M_APPSPC

PROPID_M_ARRIVEDTIME P_M_ARTIME PID_M_ARVTIME

PROPID_M_AUTH_LEVEL P_M_AUTHL PID_M_AUTHTCAT

PROPID_M_AUTHENTICATED P_M_AUTH PID_M_AUTH_LVL

PROPID_M_BODY P_M_BODY PID_M_BODY

PROPID_M_BODY_SIZE P_M_BODYL PID_M_BODY_TYP

PROPID_M_BODY_TYPE P_M_BODY_T PID_M_BODY_LEN

88

Envoy MQ for AS/400 Appendix A. RPG Interface for OS/400 V3R2

C RPG V3R2 RPG V3R7

PROPID_M_CLASS P_M_CLASS PID_M_CLASS

PROPID_M_CONNECTOR_TYPE P_M_CONTYP PID_M_CONN_TYP

PROPID_M_CORRELATIONID P_M_CORRID PID_M_CORRID

PROPID_M_DELIVERY P_M_DLVR PID_M_DELIVERY

PROPID_M_DEST_QUEUE P_M_DEST_Q PID_M_DEST_Q

PROPID_M_DEST_QUEUE_LEN P_M_DEST_L PID_M_DEST_LEN

PROPID_M_DEST_SYMM_KEY P_M_SKEY PID_M_SKEY

PROPID_M_DEST_SYMM_KEY_LEN P_M_SKEY_L PID_M_SKEY_LEN

PROPID_M_ENCRYPTION_ALG P_M_E_ALG PID_M_ENCR_ALG

PROPID_M_EXTENSION P_M_EXT PID_M_EXT

PROPID_M_EXTENSION_LEN P_M_EXT_L PID_M_EXT_LEN

PROPID_M_HASH_ALG P_M_H_ALG PID_M_HASH_ALG

PROPID_M_JOURNAL P_M_JRN PID_M_JOURNAL

PROPID_M_LABEL P_M_LABEL PID_M_LABEL

PROPID_M_LABEL_LEN P_M_LABELL PID_M_LBL_LEN

PROPID_M_MSGID P_M_MSGID PID_M_MSGID

PROPID_M_PRIORITY P_M_PRTY PID_M_PRIORITY

PROPID_M_PRIV_LEVEL P_M_PRIV PID_M_PRIV_LVL

PROPID_M_PROV_NAME P_M_PROV PID_M_PROVN

PROPID_M_PROV_NAME_LEN P_M_PROV_L PID_M_PROVN_LN

PROPID_M_PROV_TYPE P_M_PROV_T PID_M_PROV_TYP

PROPID_M_RESP_QUEUE P_M_RES_Q PID_M_RES_Q

PROPID_M_RESP_QUEUE_LEN P_M_RES_QL PID_M_RESQ_LEN

PROPID_M_SECURITY_CONTEXT P_M_SECNTX PID_M_SEC_CNTX

PROPID_M_SENDER_CERT P_M_CERT PID_M_SNDR_CRT

PROPID_M_SENDER_CERT_LEN P_M_CERT_L PID_M_CERT_LEN

PROPID_M_SENDERID P_M_SID PID_M_SENDERID

 89

Appendix A. RPG Interface for OS/400 V3R2 Envoy MQ for AS/400

C RPG V3R2 RPG V3R7

PROPID_M_SENDERID_LEN P_M_SID_L PID_M_SID_LEN

PROPID_M_SENDERID_TYPE P_M_SID_T PID_M_SID_TYPE

PROPID_M_SENTTIME P_M_SNTIME PID_M_SENTTIME

PROPID_M_SIGNATURE P_M_SIGN PID_M_SIGN

PROPID_M_SIGNATURE_LEN P_M_SIGN_L PID_M_SIGN_LEN

PROPID_M_SRC_MACHINE_ID P_M_SMCHID PID_M_SMCH_ID

PROPID_M_TIME_TO_BE_RECEIVED P_M_T2RCV PID_M_T2RCV

PROPID_M_TIME_TO_REACH_QUEUE P_M_T2ARV PID_M_T2ARV

PROPID_M_TRACE P_M_TRACE PID_M_TRACE

PROPID_M_VERSION P_M_VER PID_M_VERSION

PROPID_M_XACT_STATUS_QUEUE P_M_XSTS_Q PID_M_XSTS_Q

PROPID_M_XACT_STATUS_QUEUE_LEN P_M_XSTS_L PID_M_XSTS_QLN

Queue properties

C RPG V3R2 RPG V3R7

PROPID_Q_AUTHENTICATE P_Q_AUTHNC PID_Q_AUTHNCTE

PROPID_Q_BASEPRIORITY P_Q_BASPRI PID_Q_BASEPRIO

PROPID_Q_CREATE_TIME P_Q_CRTIME PID_Q_CRTIME

PROPID_Q_INSTANCE P_Q_INSTNC PID_Q_INSTNC

PROPID_Q_JOURNAL P_Q_JRN PID_Q_JRN

PROPID_Q_JOURNAL_QUOTA P_Q_JQUOTA PID_Q_JRQUOTA

PROPID_Q_LABEL P_Q_LABEL PID_Q_LABEL

PROPID_Q_MODIFY_TIME P_Q_CHGTME PID_Q_CHGTIME

PROPID_Q_PATHNAME P_Q_PATH PID_Q_PATH

90

Envoy MQ for AS/400 Appendix A. RPG Interface for OS/400 V3R2

C RPG V3R2 RPG V3R7

PROPID_Q_PRIV_LEVEL P_Q_PRVLVL PID_Q_PRIVLVL

PROPID_Q_QUOTA P_Q_QUOTA PID_Q_QUOTA

PROPID_Q_TRANSACTION P_Q_XACT PID_Q_XACT

PROPID_Q_TYPE P_Q_TYPE PID_Q_TYPE

Queue manager properties

C RPG V3R2 RPG V3R7

PROPID_QM_CONNECTION P_C_CONECT PID_QM_CONNECT

PROPID_QM_ENCRYPTION_PK P_C_ENCRPT PID_QM_ENCRYPT

PROPID_QM_MACHINE_ID P_C_MCH_ID PID_QM_MCH_ID

PROPID_QM_PATHNAME P_C_PATH PID_QM_PATH

PROPID_QM_SITE_ID P_C_SITEID PID_QM_SITE_ID

Value type constants

C RPG V3R2 RPG V3R7

VT_CLSID VT_CLSID VT_CLSID

VT_I2 VT_I2 VT_I2

VT_I4 VT_I4 VT_I4

VT_LPWSTR VT_LPWSTR VT_LPWSTR

VT_NULL VT_NULL VT_NULL

VT_UI1 VT_UI1 VT_UI1

VT_UI2 VT_UI2 VT_UI2

 91

Appendix A. RPG Interface for OS/400 V3R2 Envoy MQ for AS/400

C RPG V3R2 RPG V3R7

VT_UI4 VT_UI4 VT_UI4

VT_VECTOR | VT_LPWSTR VT_V#LPWST VT_VECT#LPWSTR

VT_VECTOR | VT_UI1 VT_V#UI1 VT_VECTOR#UI1

Miscellaneous named constants

The constants are too numerous to list here. For a complete listing, please
refer to the FMQCONST source code. The following table provides a few
examples.

C RPG V3R2 RPG V3R7

PSD_SPECIALACCESS_ALL MQ_ACC_ALL MQ_ACCESS_ALL

MQ_ERROR_ACCESS_DENIED MQ_ACC_DND MQ_ER_ACCESS

MQ_ERROR_BUFFER_OVERFLOW MQ_BUF_OVR MQ_ER_BUF_OVR

PRLE MQ_LE MQ_LE

API functions

C RPG V3R2 RPG V3R7

FMQAbort() FMQAbort FMQAbort

FMQCommit() FMQCommit FMQCommit

FMQConnect() FMQConnect FMQConnect

FMQDebug() FMQDebug FMQDebug

FMQDisconnect() FMQDiscon FMQDisconnect

FMQGetLogPath() FMQGLogPth FMQGetLogPath

92

Envoy MQ for AS/400 Appendix A. RPG Interface for OS/400 V3R2

C RPG V3R2 RPG V3R7

FMQSetLogPath() FMQSLogPth FMQSetLogPath

FMQVersion FMQVersion FMQVersion

FMQV1Connect() FMQV1Cnct FMQV1Connect()

MQBeginTransaction() MQBgnTrn MQBeginTransaction

MQCloseCursor() MQClsCur MQCloseCursor

MQCloseQueue() MQClsQueue MQCloseQueue

MQCreateCursor() MQCrtCur MQCreateCursor

MQCreateQueue() MQCrtQueue MQCreateQueue

MQDeleteQueue() MQDelQueue MQDeleteQueue

MQFreeMemory() MQFreeMem MQFreeMemory

MQFreeSecurityContext() MQFreSecCt MQFreeSecurityContext

MQGetMachineProperties() MQGetMchPr MQGetMachineProperties

MQGetQueueProperties() MQGetQProp MQGetQueueProperties

MQGetSecurityContext() MQGetSecCt MQGetSecurityContext

MQHandleToFormatName() MQHndl2Fmt MQHandleToFormatName

MQInstanceToFormatName() MQInst2Fmt MQInstanceToFormatName

MQLocateBegin() MQLocBegin MQLocateBegin

MQLocateEnd() MQLocEnd MQLocateEnd

MQLocateNext() MQLocNext MQLocateNext

MQOpenQueue() MQOpnQueue MQOpenQueue

MQPathNameToFormatName() MQPath2Fmt MQPathNameToFormatName

MQReceiveMessage() MQRcvMsg MQReceiveMessage

MQRegisterCertificate() MQRegCer MQRegisterCertificate

MQSetQueueProperties() MQSetQProp MQSendMessage

MQSendMessage() MQSndMsg MQSetQueueProperties

 93

Appendix A. RPG Interface for OS/400 V3R2 Envoy MQ for AS/400

Null-terminated strings

MSMQ and Envoy MQ Client require that every string value be terminated
by a null character. In RPG, strings are predefined in length and are padded
with trailing blanks.

In RPG V3R7, you can convert strings between the two formats using the
RPG built-in function %STR.

In RPG V3R2, the %STR function does not exist. To create a null-terminated
RPG string in V3R2, insert X'00' at the end of the meaningful text, for
example:

 D M_Label S 124A
 C Eval M_Label = 'Test message ' + X'00'

To make sure that the null character is added to the end of the meaningful
text, use the built-in function %TRIM, for example:

 D M_Label S 124A
 C Eval M_Label = %TRIM('Test message ') + X'00'

Copy members and sample programs

For a list of RPG copy members and sample programs, see Online samples on
page 48 in Chapter 3, RPG Interface. Envoy MQ Client for OS/400 V3R2
contains versions of the copy members and sample programs for RPG V3R2.
The file locations in the Envoy MQ Client V3R2 library are listed in the
following table.

File Description

RPGSRCV3.2 Copy members that you can include in your applications

SAMPLEV3.2 Sample programs illustrating various Envoy MQ programming techniques
and solutions to programming problems

94

Envoy MQ for AS/400 Appendix A. RPG Interface for OS/400 V3R2

Copying
Envoy MQ
definitions

The following code illustrates how to copy Envoy MQ definitions into an
RPG V3R2 program:

 D/COPY RPGSRCV3.2,FMQCONST

FmqBook
program

We recommend that you study the FMQBOOK sample program, which
illustrates important messaging operations such as creating queues, sending
messages, and receiving messages. The V3R7 version of FMQBOOK is
presented in the Sample program on page 44. The V3R2 version is almost
identical to the V3R7 version, except for the short identifiers.

For an explanation of the programming techniques used in FMQBOOK, see
Data structures (static method) on page 30.

 95

Envoy MQ Client for AS/400 Index

Envoy MQ Client for AS/400
Index

propvariant structures, 71 A queue manager properties, 59
queue properties, 58 API
sample programs, 74, 85 Envoy MQ Client for AS/400, 13
static structures, 66 API functions
substructures, 68 COBOL, 62
value type constants, 59 RPG, 26

Code page RPG V3R2, 92
translation table, 9 AS/400

Configuration Envoy MQ Client for, 1
Envoy MQ Client, 3 ASCII
files, 5 conversion to EBCDIC, 43, 74

Connection
B defining, 9

Constants Binding
RPG, 26 ILE, 15
RPG V3R2, 92

C Copy members
COBOL, 84 COBOL RPG, 49 miscellaneous constants, 61

programming instructions, 54 D
COBOL interface

Data structures Envoy MQ Client for AS/400, 53
COBOL, 65 COBOL programming
RPG, 30 copy members, 84

Dynamic data structures data structures, 65
COBOL, 66 dynamic structures, 66
RPG, 38 FMQCONST copy member, 55

message properties, 55
property structures, 66

 97

Index Envoy MQ Client for AS/400

Envoy MQ Connector, 9 E
L EBCDIC

conversion to ASCII, 43, 74 Logon Environment variables, 5 Windows, 10 Envoy MQ Client for AS/400, 1, 11
API, 13 M
API functions, 26, 62

Message properties COBOL interface, 53
COBOL, 55 configuration, 3
RPG, 19 FMQCONST copy member, 19, 55
RPG V3R2, 88 ILE modules, 15

installation, 2 O
programming, 13

Operating systems RPG interface, 17, 87
supported, 1 system requirements, 1, 17, 53

OS/400 Envoy MQ Connector
version support, 1, 17, 53 defining connection, 9

P F
Ping-pong test FMQCONST

Envoy MQ Client for AS/400, 11 COBOL copy member, 84
Property structures COBOL copy member, 55

COBOL, 66 RPG copy member, 49
RPG, 31 RPG copy member, 19

Propvariant structures FMQLOCATE
COBOL, 71 COBOL copy member, 85
RPG, 35 RPG copy member, 49

FMQPROPVAR Q COBOL copy member, 71, 85
Queue manager properties RPG copy member, 40, 49

COBOL, 59 G RPG, 23
RPG V3R2, 91 GWPING test program, 11

Queue properties
I COBOL, 58

RPG, 23 ILE
RPG V3R2, 90 binding, 15

Envoy MQ Client modules, 15 R
languages, 1

RPG programming, 13
miscellaneous constants, 26 Installation
programming instructions, 18 Envoy MQ Client for AS/400, 2

RPG interface Integrated Language Environment
Envoy MQ Client for AS/400, 87 IBM AS/400, 1
for OS/400 V3R7, 17 IP address

RPG programming

98

Envoy MQ Client for AS/400 Index

copy members, 49
data structures, 30
dynamic structures, 38
FMQCONST copy member, 19
message properties, 19
property structures, 31
propvariant structures, 35
queue manager properties, 23
queue properties, 23
sample programs, 44, 49
static structures, 31
substructures, 33
value type constants, 24

S
Sample programs

COBOL, 74, 85
RPG, 44, 49
RPG V3R2, 94

Static data structures
COBOL, 66

RPG, 31
Strings

COBOL, 73
null-terminated, 43, 74, 94
RPG, 42

System requirements
COBOL interface, 53
Envoy MQ Client for AS/400, 1
RPG interface, 17

T
TCP/IP communications, 1
Timeout

TCP/IP, 9

V
Value type constants

COBOL, 59
RPG, 24
RPG V3R2, 91

 99

	Contents
	Installation
	System and network requirements
	Installation procedure
	Configuration
	Displaying the Envoy MQ Client menu
	Environment variables pointing to configuration files
	Editing the configuration files
	Explanation of configuration parameters

	Installation test

	ILE Programming
	API implementation
	Programming in C
	Programming in languages other than C
	Binding

	RPG Interface
	Programming steps
	FMQCONST copy member
	Message properties
	Queue properties
	Queue manager properties
	Value type constants
	Miscellaneous named constants
	API functions

	Data structures (static method)
	Static method
	Property structures
	Substructures of property structures

	Data structures (dynamic method)
	Dynamic method
	Property structure
	Substructures
	Using a dynamic property structure

	String handling
	Null-terminated strings
	EBCDIC to UNICODE conversion

	Sample program
	Source code

	Online samples
	Copy members
	Sample programs

	COBOL Interface
	Programming steps
	FMQCONST copy member
	Message properties
	Queue properties
	Queue manager properties
	Value type constants
	Miscellaneous named constants

	API functions
	Data structures
	Programming method
	Property structure
	Substructures of property structures

	String handling
	Null-terminated strings
	EBCDIC to UNICODE conversion

	Sample program
	Source code

	Online samples
	Copy members
	Sample programs

	RPG Interface for OS/400 V3R2
	Tables of API identifiers
	Message properties
	Queue properties
	Queue manager properties
	Value type constants
	Miscellaneous named constants
	API functions

	Null-terminated strings
	Copy members and sample programs

	Index

